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Abstract: Activated carbon (AC) has been extensively utilized as an adsorbent over the past few
decades. AC has widespread applications, including the removal of different contaminants from
water and wastewater, and it is also being used in capacitors, battery electrodes, catalytic supports,
and gas storage materials because of its specific characteristics e.g., high surface area with electrical
properties. The production of AC from naturally occurring precursors (e.g., coal, biomass, coconut
shell, sugarcane bagasse, and so on) is highly interesting in terms of the material applications in
chemistry; however, recently much focus has been placed on the use of agricultural wastes (e.g., rice
husk) to produce AC. Rice husk (RH) is an abundant as well as cheap material which can be converted
into AC for various applications. Various pollutants such as textile dyes, organic contaminants,
inorganic anions, pesticides, and heavy metals can be effectively removed by RH-derived AC. In
addition, RH-derived AC has been applied in supercapacitors, electrodes for Li-ion batteries, catalytic
support, and energy storage, among other uses. Cost-effective synthesis of AC can be an alternative
for AC production. Therefore, this review mainly covers different synthetic routes and applications of
AC produced from RH precursors. Different environmental, catalytic, and energy applications have
been pinpointed. Furthermore, AC regeneration, desorption, and relevant environmental concerns
have also been covered. Future scopes for further research and development activities are also
discussed. Overall, it was found that RH-derived AC has great potential for different applications
which can be further explored at real scales, i.e., for industrial applications in the future.

Keywords: rice husk; activations; adsorptions; dye; heavy metals; applications

1. Introduction

Activated carbon (AC) is a highly porous material, and it has versatile applications in environmental
contaminant removal, electrode material preparation, development of supercapacitors, catalytic support
for various applications, and energy storage system development [1–5]. AC has a high surface area,
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a highly porous structure, and high thermal stability, as well as high acid and basic stability with
different surface functional groups [6]. These properties develop when AC is produced through
different physical or chemical activation processes. AC has widespread applications in the removal of
inorganic material [7–9], organic pollutants [10,11], and gaseous environments [12], with applications
with respect to energy. However, the versatile use of AC is sometimes hindered due to its high
production and processing costs. Therefore, many attempts have been put forward for AC production
from different low-cost precursors including industrial and agricultural waste [13–16]. Agricultural
solid wastes are very common in every country, and are very cheap resources which can be converted
into AC with excellent properties. Such kinds of examples are almond shells, hazelnut shells, poplars,
walnut sawdust [17], orange peel [18], sawdust [19], rice husks (RHs) [20], sugarcane bagasse [21],
coconut Burch waste [22], and tea leaves [23]. There are many precursors used to prepare AC. These
include bituminous coal [24,25], wood [26], coconut shells [27,28], peat [29,30], petroleum pitch [31],
and polymers [32]. In less developed countries, RHs are basically used as a heating source or to provide
nutrients in soil, or are even dumped into the environment [33]. However, RHs can be converted into
suitable materials before dumping them into the environment. Annually, 571 million tons of rice are
produced, and 140 million tons of RH waste are generated [34,35].

The major components of RH are lignocellulose materials and mineral components. Besides,
silica also becomes part of the RH during growth [36]. As a renewable and sustainable carbon
resource, RH has been investigated in synthesizing AC materials for various applications [37,38].
Proper management of such cheap and abundant raw materials to produce valuable materials is of
great importance. While different kinds of precursors have been utilized for AC production, low-cost
production of AC is still a challenging problem [39,40]. Therefore, the utilization of RH for the
production of AC can provide a better option with low-cost synthetic routes. In any case, to the best
of our knowledge there is no literature review on RH-derived AC production and its potential for
different applications and regeneration.

Henceforth, this review will investigate the properties of RH, activation processes for the synthesis
of AC, and the potentiality of RH-derived AC for various applications. In addition, this review
will provide a deep understanding of the regeneration, desorption of contaminants, and relevant
environmental concerns of AC. Finally, this research will address the key relevant challenges for the
future applications of RH-derived AC.

2. Properties of RH Precursor

RH is a form of lignocellulose biomass, and it is renewable waste, containing 28–30% inorganic and
70–72% organic compounds [41]. According to a previous study [41], the composition of the organic
compounds includes C, H, O, N, and S (Table 1). The inorganic components are mainly constituted of
silica [41]. RH has unique physicochemical and biochemical properties, which makes it a proper raw
material for AC preparation [42]. During char formation, lignin works as the main constituent [43].
Cellulose and hemicellulose are associated with low carbon yields, and these volatile fractions removed
during pyrolysis lead to the formation of microspore AC [44,45]. Generally, the properties of RH
depend on several factors including geological location, rice variety, climate variation, cultivations
methods, and fertilizers used in paddy growth [46–48]. For instance, the physical and thermochemical
properties of RHs from Japan, Portugal, and Uganda were different [49–51]. Six different RH varieties
from Bangladesh were thermogravimetrically analyzed by Ahiduzzaman et al. [52]. Table 1 highlights
some additional studies on the geographical location of growth of RH according to physicochemical
and biochemical properties, and an analysis of RH ash chemical compositions is provided in Table 2.
However, RH has high ash content, which differs depending on geographical location.
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Table 1. Physicochemical and biochemical properties of rice husk (RH) based on geographical location of growth (dry basis).

Geographical
Location Biochemical Analysis (%) Proximate Analysis (%) Ultimate Analysis (%)

Lignin Hemicellulose Cellulose Ash Volatile
Matter

Fixed
Carbon

Carbon
(C)

Hydrogen
(H)

Oxygen
(O)

Nitrogen
(N)

Sulphur
(S) Ref.

China - - - 16.64 67.63 16.89 37.65 5.13 36.20 1.63 0.18 [53]

Malaysia 26.10 21.25 42.45 11.98 74.54 12.11 - - - - - [54]

India - - - 15.80 63.90 14.90 41.02 5.10 - - - [55]

Uganda 10.58−13.47 11.39−19.97 31.3−36.54 15.87−25.56 58.78−63.37 14.77−17.75 29.98−34.48 4.46−5.59 40.48−43.36 0.36−0.63 0.005−0.041 [49]

Bangladesh - - - 11.38 71.56 17.06 38.48 6.60 44.05 - - [56]

Thailand - - - 11.97 72.80 9.30 48.90 6.20 44.10 0.80 0.30 [57]

Portugal - - - 11.70 59.90−60.90 14.70−15.90 38.80−40.00 4.60−5.00 29.60 0.80−1.30 - [51]

Pakistan 40.16 11.14 38.35 15.22 59.04 25.74 44.13 5.01 50.40 0.39 0.07 [58]

South Korea - - - 12.98 73.73 13.28 55.13 6.43 38.43 0.01 0.00 [59]

Japan - - - 12.70−22.00 - - 35.2−41.2 4.6−5.4 48.8 0.4 0.6−0.7 [50]

Egypt 20.00 21.00 35.00 19.00 - - - - - - - [60]

Table 2. Chemical composition of rice husk (RH) ash (total 100% in each column).

Chemical Constituents

Weight (%)

References

[61,62] [52,63] [64] [62] [65] [50,63] [48] [48] [66]

Iron oxide (Fe2O3) <0.5 0.12 0.2 - - - 0.09−0.27 0.09 0.26
Aluminum oxide (Al2O3) - 0.11 0.41 - - - 0.09−0.25 0.05 0.39

Calcium oxide (CaO) 0.25 1.06 0.41 1.6 0.28 1.2 0.33−2.00 0.48 0.54
Magnesium oxide (MgO) 0.23 0.33 0.45 - 0.14 - 0.30−0.45 0.44 0.90
Manganese oxide (MnO) - 0.08 - - 0.03 - - - 0.16

Silica (SiO2) 94.5 95.79 96.34 91.1 95.1 91.5 90−97 96.0 94.95
Sodium oxide (Na2O) 0.78 0.30 0.08 - - - 0.03−0.23 0.08 0.25

Potassium oxide (K2O) 1.10 2.17 2.31 5.3 0.13 4.3 1.80−2.80 2.10 0.94
Phosphorous pentaoxide (P2O5) 0.53 - - 0.6 - 1.1 0.03−1.20 0.59 0.74

Others - 0.04 - 1.4 - 1.9 - - -
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3. Pretreatment, Potentiality, and Drawbacks of Precursors and Synthesis of AC

3.1. Pretreatment of RH Feedstock

RH is usually composed of lignocellulosic materials together with a high amount of silica and
other metallic content. Table 1 shows the physicochemical properties of RH precursors of different
origins, and Table 2 highlights the properties of RH ash. From Table 1, it can be clearly seen that
the properties of RH vary by the geographical location [46]. It is reported that a high amount of ash
content should not be present in precursors as it can hinder the pore development during further
treatment i.e., AC production [67]. During activation, the activating agent can also react with the silica
which is present in the RH. As a result, the surface area of AC produced from lignocellulosic materials
with low ash content becomes higher than in the raw RHs under similar preparation conditions [68].
Leaching of RHs by acids or bases is, therefore, essential to escape the detrimental influences of the
unconventionally high ash content in the RH [42,67,69,70]. It has been reported that the surface area
and pore widening increased on leaching of RH [1]. Alkaline pretreatment of RHs by the utilization
of 2–4% w/v sodium hydroxide (NaOH) could reduce the ash content up to 74–93% [71]. According to
Equation (1), leaching of RHs by employing a base is highly possible [1].

2NaOH(s) + SiO2(s)→ Na2SiO3(s) + H2O (1)

It is easy to remove water-soluble sodium silicate (Na2SiO3) by washing with water [1]. Figure 1
shows an overview of preleaching and AC production from RH. In addition, most of the remaining
metallic impurities in the RHs can be removed by acid-leaching of RHs, which can further hinder
pore development [71]. Liou et al. [72] reported that when RHs were refluxed with 3 N hydrochloric
acid (HCl) at 100 ◦C for 1 h, about 84% of the metallic impurities were extracted. Deiana et al. [47]
found a process that is best suited for the leaching of impurities. The process followed the sequence of
carbonization, activation, and leaching, respectively, to get the desired properties.Processes 2020, 8, x FOR PEER REVIEW  2 of 39 
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respectively. Reproduced with permission from [1,47,72]. Elsevier and Copyright Clearance Center,
2009; Copyright© 2008, & Copyright© 1997, American Chemical Society, respectively.
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On the other hand, silica needs to be removed for specific applications in order to increase the
quality of RH for the production of AC. In that case, base leaching can be effective, as it removes the
main constituent lignin from the RH as well as silica, leading to a low yield of carbon (reaction 1).
For example, Yeganeh et al. [67] reported a lower yield of carbon with base leaching compared to
non-leaching of RH. However, the leaching system ought to be carefully carried out in a way that does
not adversely compromise the overall yield and properties of the RH-derived AC.

3.2. Potentiality and Drawbacks of Modified RH

RH is considered to be an effective adsorbent for the removal of a range of pollutants. RH has
many advantages over other precursors. For example, it has high amounts of cellulose and carbon
compared to many woody biomasses. There is no need for extra steps for biomass processing (e.g.,
cutting, sizing, and so on), and it provides higher AC yield even with high temperatures. It has
high surface area and high adsorption capacities which are comparable to those of commercial AC
(Tables 1 and 3). The use of RH or another type of biomass has two major drawbacks, namely,
physical instability and low sorption capacity [73]. Hence, it is necessary for RH to go through proper
modification treatments for removing metallic impurities, lignin, and other easily accessible functional
groups from RHs as well as silica in order to overcome the associated problems [74].

RH biomass can be modified physically and chemically. Sometimes, only heating is very
effective. For example, when RH biomass was heated at 100 ◦C and applied for biosorption, increased
biosorption capacity was observed due to the denaturation of lignin [75]. The adsorption capacity
can be improved by the modification of the biomass with HCl, H2SO4, and nitric acid (HNO3).
Modification of RH biomass with salts (e.g., sodium chloride-NaCl, calcium chloride-CaCl2, and
manganese sulphate-MgSO4) can also increase the adsorption capacity. For example, an increased
biosorption capacity of dye has been observed [76]. HCl treatment of RH biomass can significantly
increase the biosorption capacity [77]. Janoš et al. [78] treated the RH with HCl, sodium carbonate
(Na2CO3), and sodium by phosphate (Na2HPO4). The results showed that the biosorption capacity of
methylene blue was increased after treatment with Na2CO3. On the other hand, Hsu et al. [79] reported
14 times higher adsorption capacity of methacrylic acid on modified RH. Ong et al. [80] mentioned
that ethylene diamine tetra acetic acid (EDTA)-modified RH was capable of acting as a single sorbent
to remove both methylene blue and Reactive Orange16 dyes. Hence, modification of RH can increase
the adsorption or biosorption capacity of different pollutants.

Therefore, instead of pristine RH, modified RH can have better potential to enhance the sorption
or biosorption capacity of different pollutants. However, further chemical or physical treatments
are necessary in order to boost its adsorption capacity to reach a level similar to that of commercial
activated carbon (CAC). Hence, further treatments are necessary.

3.3. Activation of RH for AC Synthesis

Various chemical, physical, physicochemical, and pyrolysis processes are utilized for the synthesis
of AC from RH. The physical process includes physical treatment of RH biomass at high temperatures
in the presence of steam or carbon dioxide. On the other hand, chemical treatment includes the
utilization of activating agents through impregnation followed by activation at a higher temperature
under inert environments [1,50,81–84]. However, the preparation of AC from RH by the utilization
of combination of these methods known as “physicochemical activation” has also been successfully
employed [85]. Figure 2 illustrates the preparation of AC through different methods.
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Table 3. Physiochemical characteristics of the rice husk (RH)-derived activated carbon (AC).

Production
Temperature

◦C

Activating
Agent

Brunauer-Emmett-Teller
(BET) Specific Surface

Area (m2/g)

Total Pore
Volume
(cm3/g)

Ash
Content

(%)

Yield
(%) Ref.

650 KOH 280 0.206 42.6 33.4 [61]
600 CaCl2 171 ± 1 - 40.5 - [87]

200 HNO3 +
K2CO3

542 ± 2.3 - 17 - [88]

900 H3PO4 438.9 0.3871 - 37.69 [89]

900 Na2CO3 +
K2CO3

1581 1.44 - - [63]

700 ZnCl2 750 0.38 2.0 17.7 [86]
650 ZnCl2 180.50 2.70 25.7 - [90]
900 H3PO4 420 - - 37.69 [89]
100 H2SO4 681 0.526 -3.0 36 [91]
300 ZnCl2 578 0.463 3.3 32 [91]

600-800 NaOH 1400 - - - [90]
600 H2SO4 17.2 0.48 7.80 - [92]
850 Water vapor 1180 1.09 1.0 6.9 [47]
850 CO2 334 0.207 61.5 33.2 [50]
850 CO2 460 0.261 47.7 26.1 [50]
850 CO2 388 0.231 55.1 30.60 [50]
850 CO2 325 0.200 60.7 34.2 [50]
850 CO2 473 0.267 52.2 26.8 [50]
800 KOH 3014 1.73 - - [93]
750 NaOH 2952 1.88 - - [93]
750 NaCO3 600 0.286 9.7 - [93]
750 K2CO3 1100 0.536 6.2 - [93]
875 CO2 466.9 0.35 58.8 26.5 [94]
600 Steam 272.5 - 45.97 - [82]
500 H3PO4 352 0.4158 3.3 33 [95]
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3.3.1. Physical Method and Thermal Activation of RH for AC Production

The adsorption capacity of the parent material can be improved by physical modification using
carbon dioxide and water vapor. On the other hand, thermal processes use high temperatures for the
production of highly porous carbons. RH/biomass treatment is carried out at high temperatures (up to
~1200 ◦C) with steam, carbon dioxide, or a mixture of these through physico-chemical processes. Both
steam and carbon dioxide are mild oxidants, and they can depolymerize and fragment the biomass/RH
into lower carbons [47,82,86]. However, the resulting carbon has a higher adsorption capacity than
pristine RH. Subsequently, during the carbonization process, new porosity is created along with a high
surface area in the AC materials (Figure 3). However, the weight of the host carbon decreases due to
loss of carbon during activation. Physical/physico-thermal activation to prepare AC from RH involves
low specific surface areas because of high silica content [47]. Data on the activation of RH using steam
and carbon dioxide are shown in Tables 3 and 4.
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Table 4. Detailed physical activation processes for AC production from RH.

Pre-Treatment of RH Pyrolysis Conditions Chemical Agents Activation Conditions Surface Area
(m2/g) Ref.

Base-leached Steam Temperature 946 ◦C, heating rate 8 ◦C min−1,
activation time 31 min

1004.30 [96]

Not leached Temperature 400 ± 10 ◦C for 1 h
under N2 flow Steam (50% H2O/50% N2)

Temperature 800 ± 10 ◦C, heating rate
3.5 ◦C min−1, steam flow rate 0.4 NL min−1,

activation time 10–240 min
362.30 [97]

No leaching Temperature 400 ◦C for 1 h under
N2 atmosphere Steam Temperatures 600 ◦C, heating period 1 h,

steam pressure 1.5 kg cm−2 272.50 [82]

Acid-leached Temperature 500 ◦C, N2 flow
1.4 K min−1, heating time 2 h Steam

Heating rate 5 K min−1, temperature 850 ◦C
in N2 gas flowing at 300 mL min−1, switch

to steam for 105 min
1180.0 [47]

Not-leached Temperature 400 ◦C, heating
period 1 h, N2 flow 500 mL min−1 CO2

Temperature 800–900 ◦C for 1 h and at 850 ◦C
for 0.25–3 h in a CO2 flow of 500 mL min−1 325–473 [50]

Acid-and base-leached RH char obtained by flash
pyrolysis at 500 ◦C Steam/CO2

Temperature 800 ◦C, heating rate 15 ◦C
min−1, activation time 15–60 min. 1514.0 [81]

Not leached RH, N2 flow rate 35 mL min−1,
heating rate 20 ◦C min−1 CO2

CO2 flow rate of 200 mL min−1, activation
temperatures 650, 750 and 850 ◦C

350.1 [98]

Not leached RH pyrolyzed at 700 ◦C for
30 min under N2 atmosphere CO2

Activation temperature 700 ◦C, activation
time 30 min 166.0 [86]
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3.3.2. Chemical Activation of RH for AC Production

Chemical activation refers to the impregnation of raw materials with various chemical agents
followed by the high-temperature heat treatment in the presence of the inner atmosphere or inert gases.
This process is often employed where the precursor consists of cellulosic or organic and inorganic
materials. ZnCl2, H3PO4, sodium by carbonate (NaHCO3), KOH, NaOH, and H2SO4 are commonly
used reagents for the impregnation (Table 3). This process requires the reaction of the biomass with the
activating agents, and the application of high temperatures ranging from 500 ◦C to 1000 ◦C (Figure 2).

Different activating agents have different roles as well as different mechanisms in the activation
of biomass, which can result in the further development of well-defined structures within the
material [42,83,86]. The main mechanism is that activating agents are capable of penetrating inside the
biomass, and can then break down the cross-linkages of cellulosic materials. There are two types of
processes. One method is the activation of biomass followed by carbonization directly [83,86]. The
second is a two-stage process in where the precursor material is pre-carbonized and subsequently
chemically activated followed by carbonization at high temperatures [84,99]. The second process has
added advantages. For instance, a surface area of 280 m2/g was obtained through NaOH activation
and carbonization of RH, and a surface area of 660 m2/g was obtained from NaOH activation of
pre-carbonized RH followed by carbonization [83,100]. Proper selection of the activation process is
also necessary. For example, concentrated H2SO4 is a strong oxidizing agent, and oxidation through
dehydration occurred in the cellulose and hemicelluloses [101]. In that sense, ZnCl2 is the most
preferable activating agent for the chemical activation of lignocellulosic materials [102]. On the other
hand, phosphoric acid is not linked with problems of aggressive corrosion, chemical recovery, and
other environmental disadvantages that are associated with other activating agents such as ZnCl2.
Tables 3 and 5 show different experimental data for chemical activation. Hence, to get the best results
it is necessary to maintain optimum conditions including pre-carbonization conditions, impregnation
ratio, type of activating agent, heating rate, activation temperature, activation time, and atmosphere.
Therefore, these factors need to be optimized to get the desired adsorption properties of produced AC.

3.3.3. Comparison between Physical and Chemical Activation

There are many properties that are comparable between physical and chemical activations of
biomass under certain conditions. For example, the chemical activation process utilizes activating
agents which add additional costs to the synthetic process, while the physical process does not consume
costly chemicals [86,103]. Conversely, the surface area of physically activated AC is lower than that
of chemically activated carbon (Table 5) [18,86,104]. For example, surface areas of 750 and 166 m2/g
were obtained by employing chemical and physical activation of RHs, respectively, under the same
activation temperature [86]. The yield of AC through chemical activation is lower than that of the
physical process, but fine porous structures can be obtained through chemical processes. Nevertheless,
chemical activation is related to problems of corrosion and needs for washing of AC along with the
problem in activating agent recovery [103,105]. Therefore, both processes have some advantages and
disadvantages in comparison to each other. However, commercially chemical AC is widely used due
to its high adsorption and specific capacity [81,106,107].
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Table 5. Adsorption performance of physically and chemically activated RH-derived AC.

Adsorbate

Physical Activation Chemical Activation

Ref.Pore Volume
(cm3/g)

BET Surface Area
(m2/g)

Adsorption
Capacity or

Removal
Percentage

Pore Volume
(cm3/g)

BET Surface Area
(m2/g)

Adsorption
Capacity or

Removal
Percentage

Methylene blue 0.37 417 28.5 mg/g - 143 44.25 mg/g [108]

Malachite Green 0.068671 9.8 97.3% 0.027 180.50 94.91% [109,110]
Acid Yellow 36 - 272.5 86.9% - - 100% [82,111]

Phenol - - 90% 1.126 1836 75.0 [112,113]
Humic acid - - 98.24% 724 74% [114,115]

Fe (III) - - 99% 0.3316 994.32 100% [116]
Ni (II) 18.4 ± 1.4% 0.42 1563 92.6% [117,118]
Cd (II) - - 125.94 mg/g 14 28.27 mg/g [119,120]
Pb (II) 0.23 610.1 111.9 mg/g 0.38 1038.6 236.2 mg/g [121]
Hg (II) - - 4.0 mg/g 0.835 2786 342.0 mg/g [122,123]
As (III) - - 96–100% 0.43–0.57 811–1624 1.22–1.32 mg/g [124,125]
Zn (II) - - - 0.41 604.34 40.87% [126]
RO-16 - - 13.32 mg/g [127]
Cr (4) - 380 94% - 571.07 152.91 mg/g [128,129]

Mn (II) - - 98% 0.3316 994.32 100% [116,130]
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3.3.4. Hydrothermal Treatment of RHs

Recently, hydrothermal treatment has become more popular as it results in high yields of carbons,
the production of quality products, the removal of minerals, and use of less energy compared to other
thermal processes. In comparison, hydrothermal/thermo-chemical treatment can transform different
biomasses at lower temperature (<200 ◦C), with high pressure and high moisture content in the
feedstock. Using this process, biomass can easily be hydrolyzed and dehydrated [131]. Hydrothermal
treatment can be used for adsorbent preparation, catalysis synthesis, materials for water purification,
materials for energy storage, and CO2 sequestration [132,133]. A number of studies have reported
the hydrothermal conversion of RHs. For example, hydrothermal treatment has been applied for
hydrochar synthesis [134], cellulose nanofiber synthesis [135], and materials for Li-ion batteries [132],
among other applications. Direct synthesis of AC from RH precursors using hydrothermal treatment
has not been explored yet. Therefore, this process needs further consideration in the case of AC
production from RH.

3.3.5. Cost-Effective Synthesis of AC

Many attempts have been put forward to reduce the cost of AC production from different biomasses.
Therefore, special emphasis has been placed mainly on low-cost precursors. In that case, agricultural
wastes (e.g., RH) have been widely used for producing AC. Recently, a green preparation technology
has been proposed based on the comprehensive utilization of RH which eliminates the potential waste
generation and emissions to the environment [36]. After the activation and carbonization of biomass,
much waste is produced, which can be very harmful to the environment [136,137]. The cost-effective
synthesis technology almost did not produce pollutants, as shown in Figure 4. Also, the activating
agent and water used were recycled. Hence, the entire technology is green and environmentally benign.
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On the other hand, very recently Ahmed et al. [138] proposed a facile method of producing
AC with lower chemical consumption. They mentioned that about a 70% reduction in chemical
requirements can be achieved by the utilization of a technique which includes a prepyrolysis of the
biomass before chemical activation of biomass instead of the direct chemical impregnation of biomass.
Consequently, this technology is very economical and environmentally friendly in comparison with
other technologies which consume huge amounts of activating agents while also producing large
amounts of liquid waste.

4. Environmental Applications, Mechanisms, Regeneration, Desorption, and Environmental
Concerns of RH-Derived AC

Carbon-based materials, which are highly porous, can play a critical role in adsorption applications
(contaminants and gas adsorption) as well as in catalytic support materials, capacitors, battery electrodes,
supercapacitors, and gas storage. To improve performance, AC should have high surface area together
with mesopore or macropore structures [89]. In this section, environmental applications through the
adsorption processes of different compounds and contaminants as well as different types of gas capture
by RH-derived AC will be discussed.

4.1. Adsorption of Organic Pollutants

4.1.1. Adsorption of Dyes, Phenolic Compounds, and Others

Every day many organic contaminants are disposed through different routes. They are eventually
mixed with environmental matrices (e.g., soil, sediments, and water). A significant proportion remains
unchanged in the environment. Therefore, they can pose a significant threat to our health and aquatic
systems [139]. Among different routes, textile industries are dumping huge amounts of organic dyes
and pigments. They consume large amounts of water and dying chemicals, and subsequently discharge
huge amounts of effluents with synthetic dye and pigments into the environment, causing public health
concerns. Numerous methods can be adopted for the treatment of industrial dyes from wastewaters.
Among them, the adsorption process is the most effective and attractive method for the treatment of
organic contaminants, as the adsorbents are inexpensive and they do not require extra pretreatment
before their application. Satisfactory results were obtained with respect to the removal of many organic
chemicals by the utilization of AC as an adsorbent [140–142]. Among different adsorbents, AC is
heavily applied for the adsorption of different organic contaminants.

Among different kinds of AC, RH-derived AC has many advantages including high abundance,
cost-effectiveness, and forms of mesoporous or microporous AC that can be prepared from RHs [143].
The adsorption capacities of various dyes by RH, modified RH, and RH ash (RHA) are shown in Table 6.
The oxalic acid-modified RH was utilized for the adsorption of methylene blue and malachite green. It
was found that the adsorption capacity of modified RH increased from 19.77 to 53.21 mg/g and 28.00 to
54 mg/g at 293 K, respectively, for methylene blue and malachite green [144]. In one study RH dried at
60 °C for 48 h showed maximum adsorption for safranine and methylene blue 760 mg/g and 280 mg/g,
respectively [145]. It should be taken into consideration that commercial activated carbon (CAC) has a
higher adsorption capacity for organic pollutants. However, the cost of CAC is several times higher
than that of other low-cost precursor-derived ACs.
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Table 6. Organic contaminant adsorption capacity by AC prepared from RH and pristine RH. CAC:
commercial activated carbon.

Adsorbent Activation qe (mg/g) Adsorbate Ref.

RH Oxalic acid/20 ◦C 28.00 Malachite green [144]

RH Dried at 60 ◦C 25.63 Direct Red-31 [146]

RH - 19.96 Direct Orange-26 [147]

RH Dried at 60 ◦C 760 Safranine [145]

RH Steam/100 ± 5 ◦C 86.9 Acid Yellow 36 [82]

RH NaOH/400 ◦C 511 Basic Green 4 [148]

RH Dried at 60 ◦C 280 Methylene Blue [145]

RH Dried at 80 ◦C 838 Basic Red 2 [149]

RH Dried at 60 ◦C 14.00 Congo Red [147]

RH Dried at 80 ◦C 178.10 Safranine [149]

RH Dried at 80 ◦C 312 Methylene blue [149]

Oxalic acid modified RH Oxalic acid/20 ◦C 53.21 Methylene blue [144]

EDTA-RH NaOH/70 ◦C 46.30 Methylene blue [80]

Oxalic acid-modified RH Oxalic acid/20 ◦C 54.02 Malachite green [144]

NaOH-modified RH NaOH/70 ◦C 17.98 Malachite green [150]

EDTA-RH NaOH/70 ◦C 7.68 Reactive Orange 16 [80]

HCl-RH Steam/100 ◦C 50.0 Direct Blue 67 [151]

Carboxy methyl
cellulose-RH Steam/100 ◦C 50.0 Direct Blue 67 [151]

AC Steam/900 oC 19.2 Methylene blue [152]

AC CO2/900 ◦C 20.2 Methylene blue [152]

AC Steam + CO2/
900 ◦C 20.8 Methylene blue [152]

AC Steam/900 ◦C/
O3 at room temperature 24.8 Methylene blue [152]

AC CO2/900 ◦C/
O3 at room temperature 26.2 Methylene blue [152]

AC Steam + CO2/900 ◦C/O3
at room temperature 27.8 Methylene blue [152]

AC Steam/700 ◦C 19.89 Methylene blue [153]

AC H2O2/400 ◦C 26.6 Malachite green [154]

AC HNO3/400 ◦C 18.1 Malachite green [154]

AC HNO3/400 ◦C 14.1 Methylene blue [155,156]

AC H2O2/400 ◦C 18.7 Methylene blue [155,156]

AC NaOH/70 ◦C 9.8 Malachite green [157]

AC H2O2/110 ◦C 13.2 Safranin-T [140]

CAC Thermal 298.4 Methylene blue [153]

CAC - 490 Mordant Blue-9 [158]

CAC - 200 Methylene blue [159]
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Phenol is an important organic pollutant which gives water an unpleasant taste and odor when
dumped into the environment. It is a semi-volatile organic compound commonly present in oil refinery
wastes. Phenol is also produced during the transformation of coal into gaseous and liquid fuels. There
are many other sources of phenol pollution. These mainly include paint manufacture, coal conversion,
pesticides, petrochemicals, and industrial polymeric resins [160–162]. AC can remove phenol from
water to a great extent. The adsorption capacities of organic compounds onto RH and RH ash (RHA)
together with phenols are listed in Table 7. So far, most of the experiments on the phenol adsorption by
different ACs have been conducted on a solution basis. However, the adsorption of phenol in the gas
phase has also been reported. For example, porous carbons produced from the unaltered and pelletized
RH showed a comparatively high adsorption capacity (191.9 mg/g) of phenol in the vapor phase. This
was due to the presence of the main silica in the RH [112,163]. RH-derived AC has also been reported
to remove phenol, with an adsorption capacity of 201 mg/g within a few minutes of adsorption [164].
Hence, it can be assumed that silica has a great influence on phenolic compound removal.

Table 7. Adsorption capacities of phenols and other organic compounds by pristine rice husk (RH),
RH ash (RHA), and RH-derived AC.

Adsorbent Adsorbate Adsorption Capacity (mg/g) Ref.

RH Phenol 191.9 [112]

RH Phenol 4.508 [165]

RH Phenol 201 [164]

RH p-Chlorophenol 14.36 [165]

RH p-Nitro phenol 15.31 [165]

AC Paraquat 317.7 [79]

AC Phenol 7.91 [165]

AC p-Chlorophenol 36.23 [165]

AC p-Nitrophenol 39.21 [165]

CAC 2,4-Dichlorophenol 48.18 [166]

RHA Phenol 0.886 [167]

RHA Phenol 143.99 × 10−4 [168]

RHA phenol 0.951 [169]

Granular AC Phenol 1.00 [169]

RHA Phenol 0.989 [169]

RHA Resorcinol 888 × 10−5 [168]

RHA 2-Chlorophenol 209.55 × 10−6 [168]

RHA Pyridine 11.72 [170]

RHA α-Picoline 15.46 [171]

RHA Humic acid 2.7 [172]

AC Phenol 27.58 [173]

AC Humic acid 8.2 [172]

AC Humic acid 21-45 [174]

CAC 2,4-Dichlorophenol 48.18 [165]

CAC Chloramphenicol 343 [175]

On the other hand, H3PO4-impregnated RH and RH char were utilized for the removal of p-nitro
phenol, where a maximum adsorption capacity of 39.21 mg/g was reported [165]. CAC was also utilized
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for the removal of phenolic compounds. However, their adsorption capacity was not significant as that
of RH-derived carbons. For instance, the adsorption capacity of 2,4-dichlorophenol by H3PO4-modified
CAC was found to be 48.18 mg/g [166]. Therefore, RH-derived carbons have great potential in the
removal of phenolic compounds as compared to CAC.

4.1.2. Adsorption of Surfactant Materials

Surfactants are mainly synthetic chemicals. Surfactants are widely used in industrial cleaning and
textile manufacturing, as well as in households. There are many types of surfactants, namely alkyl
sulfates, linear alkyl-benzene sulfonates, alkyl ether sulfates, alkylphenol ethoxylates, alkyl ethoxylates,
and quaternary ammonium halide compounds. While surfactants have significant applications, they
can pose a threat to the aquatic environment when they exceed the desired concentration. Raw domestic
wastewaters have linear alkyl-benzene sulfonate concentrations in the range of 0.54–21 mg/L [176],
with toxicity to aquatic organisms when the concentrations exceed 0.1 mg/L. Surfactants can increase
the chemical oxygen demand in municipal wastewater treatment, and hence can increase the solubility
of other toxic organic compounds in soils [177,178].

The adsorption of the surfactants on the AC has occurred mainly through hydrophobic interactions
between the AC surface and surfactants [179]. Few studies have been found with respect to the removal
of different anionic and nonionic surfactants from wastewater using RH as adsorbent [180]. Specifically,
RH can remove 243.9 mg/g of linear alkyl benzenesulfonate from aqueous solution, and the adsorption
mechanism followed the Langmuir isotherm [181]. It has been found that lower pH adsorption of linear
alkyl benzenesulfonate increases due to the weak basicity of linear alkyl benzenesulfonate [180]. Apart
from the hydrophobic interactions, the van der Waals force between the surfactants and adsorbent also
plays a vital role in the adsorption of surfactants on husk ash [180]. However, adsorption of different
types of surfactants using RH and RH-derived AC could be further explored in more depth in order
to check their suitability to broaden their applications. Finally, based on the maximum adsorption
capacity value for the adsorption linear alkyl-benzene sulfonates, it can be predicted that similar kinds
of surfactants, as well as anionic and nonionic surfactants, can be better removed using RH-derived
AC, but further research is required.

4.1.3. Adsorption of Pesticides

With the advancement of modern agriculture, the use of pesticides is increasing day by day,
resulting in increased water pollution. Pesticides are non-biodegradable, persistent, and carcinogenic
in nature, and are thus considered a strong class of water pollutant. In addition, their toxicity together
with their degraded products have adverse effects on the environment. Different adsorbents have been
utilized for the removal of pesticides from water. For example, biochar has recently been utilized [182].
In addition, RH can be used for pesticide removal from water. Akhtar et al. [183] reported a higher
removal percentage (over 98%) of pesticide triphosphate on RH. According to our best knowledge,
RH-derived AC has only been applied in a few studies for the removal of pesticides. However,
RH-derived AC could be a good solution for the removal of pesticides from water and wastewater
in the future. As limited studies have been reported so far, in the future further applications can be
extended using RH-derived AC for the removal of pesticides.

In summary, it was found that AC derived from RH has a great potential for the removal of
various organic contaminants from water and wastewater using a very cheap and abundant material.
The comparison data also show that ACs from RH have better performance than other CACs or other
sources of ACs. Therefore, further research is needed on a commercial or pilot plant basis together with
new potential applications (e.g., pharmaceutical and personal care products, and endocrine disruptor
removal) of RH-derived AC.
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4.2. Adsorption of Heavy Metals

Besides textile dyes, many heavy metals (HMs) are contained in water and wastewater, which
have significant detrimental effects on humans as well as on aquatic species [184]. Different industrial
activities and agricultural wastes are the main sources of HMs in the environment. HMs are the most
hazardous contaminants in the aquatic and soil environments. The World Health Organization (WHO)
has listed the most toxic metals as cadmium, chromium, copper, lead, mercury, and nickel [185,186].
AC is widely used for HM treatment [187,188]. Adsorption of HM ions from water is a straightforward
method through electrostatic interactions [189]. Different factors such as the metal ion complex,
surface area and porosity, the solution pH and the point of zero charges of the surface, the surface
functionality, and the size of adsorbing species govern the adsorption of HMs in AC. Generally,
chemically treated RH exhibited greater maximum adsorption capacities of HM ions than unmodified
RH [190]. Suemitsu et al. [191] mentioned the better adsorption capacity of HMs. They used Procion
Red and Procion Yellow-treated RH for the removal of Ni(II), Cr(VI), Zn(II), Cu(II), Cd(II), Pb(II), and
Hg(II) ions from aqueous solution. They reported better removal efficiency for all HMs except Cr(VI),
for which the removal efficiency was nearly 40%. In another study, activated RH exhibited appreciable
adsorption (99 ± 0.5, 97 ± 0.6, 96 ± 0.8, and 95 ± 0.9% for the removal of Pb, Cd, Zn, and Cu ions,
respectively) from low-concentration aqueous solutions [88]. Physically and chemically activated RH
showed ~100% removal efficiency with initial concentrations of 9740, 540, 100, 30, 10, and 15 µ/L of Fe,
Mn, Zn, Cu, Cd, and Pb, respectively, [61]. Hexavalent chromium has also been successfully removed
by RH derived AC [192]. For removal of lead (II) ions, Raikar et al. [193] used RH in four different
forms with or without chemical treatments. The maximum percentage removal of lead (II) ions was
93.36%, 94.8%, 96.72%, and 99.35% with RH, RHA, phosphoric acid-treated RH, and acetic acid-treated
RH adsorbents, respectively. A comparison of HM removal by AC is presented in Table 8.

Table 8. Efficacy of CAC, RHA, and RH-derived AC for the removal of heavy metals (HMs).

Adsorbate Adsorbent
Material C0 (mg/L) Adsorption

Capacity (mg/g) Removal (%) Ref.

Fe(III) AC 9.740 100 [61]
Fe(II) CAC 55.2 38.57 [194]
Mn(II) AC 0.54 100 [61]
Zn(II) AC 0.10 100 [61]
Zn(II) RHA 39.17 96 ± 0.8 [88]
Zn(II) AC 50 19.38 [195]
Zn(II) RHA - 26.10 [196]
Zn(II) RH - 29.69 [197]
Zn(II) AC 100 75.1 [191]
Zn(II) CAC 98 20.50 [194]
Cu(II) AC 0.03 100 [61]
Cu(II) RHA 40.82 95 ± 0.9 [88]
Cu(II) AC 100 29.00 [198]
Cu(II) AC 50 4.77 [199]
Cu(II) AC - 112 [200]
Cu(II) AC 100 78.8 [191]
Cd(II) AC 0.01 100 [61]
Cd(II) AC 1000 20.24 [201]
Cd(II) AC 1000 16.18 [201]
Cd(II) AC 1000 11.12 [202]
Cd(II) RHA 39.87 97 ± 0.6 [88]
Cd(II) RHA - 25.27 [196]
Cd(II) RH - 21.36 [203]
Cd(II) AC 130 99.2 [191]
Pb(II) AC 0.015 100 [61]
Pb(II) RHA 39.74 99 ± 0.5 [88]
Pb(II) AC 400 108.00 [198]
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Table 8. Cont.

Adsorbate Adsorbent
Material C0 (mg/L) Adsorption

Capacity (mg/g) Removal (%) Ref.

Pb(II) RHA - 207.50 [204]
Pb(II) AC 120 99.8 [191]
As(III) AC - 1.22 [173]
As(V) AC 0.09–0.85 53 [205]
Cd(II) AC 50 41.15 [98]
Se(IV) AC 50 40.92 [98]
Cr(VI) AC 250 48.31 [206]
Cr(VI) AC 150 39.7 [191]
Hg(II) RHA - 46.14 [207]
Hg(II) RH - 66.66 [207]
Hg(II) AC 200 384.62 [195]
Hg(II) AC 130 92.7 [191]
Ni(II) RHA - 25.33 [196]
Ni(II) RH - 8.86 [206]
Ni(II) AC 100 61.6 [191]

In summary, it was found that AC derived from RH has great potential for the removal of HMs
from water. The comparison data also show that AC from RH has better performance than other
commercial ACs or other sources of ACs.

4.3. Adsorption of Inorganic Anions

Inorganic anions are another group of pollutants in wastewater which are known to be toxic
and carcinogenic. The presence of these anions in ground and surface waters has resulted in severe
contamination, and they can cause adverse health effects. For example, phosphate in surface water
and groundwater caused water quality problems. Fluoride poses a serious threat to public health
and causes dental and skeletal fluorosis. WHO limits the fluoride concentration in groundwater to
1.5 mg/L [208]. Also, water pollution occurs due to excessive discharge of nitrate (NO3

−) and bromide
(Br−) in the environment [209–211]. Maximum limits of 50 mg/L NO3

− for adult and 15 mg/L NO3
− for

infant drinking water are permitted [212].
RH-derived ash or carbon have been utilized for the removal of fluoride by Tantijaroonroj et al. [213].

It was reported that RH-derived ash could remove fluoride ions (F−) by up to 42.5% at pH 2 (Table 9). RH
was chemically and physically modified, and then the fluoride ion removal capacity was increased up to
75%, which is even higher than that of commercial AC (53.4%) [214]. Iron-impregnated activated silica
carbon was produced from RH, and applied for the removal of fluoride ions by Majumder et al. [215].
They reported higher removal of fluoride ions. On the other hand, it was reported that the maximum
adsorption capacity for bromate ion removal was 50 mg/L using granular AC [216]. Silver impregnation
AC showed 85–93% bromide removal efficacy [217]. Other CACs were also applied for the removal of
bromide ions, with satisfactory results. However, the removal of bromide ion using RH-derived AC
has not been well established yet.

Two-fold enhancement of nitrate ions was achieved by the utilization of urea-modified RH-derived
AC. The maximum nitrate adsorption capacity was found to be 8.11 ± 0.031 mg/g [218]. A 94.3%
removal capacity of nitrate ion was observed for the anionic RH at optimized conditions (90 min,
pH = 7.0) [219]. In addition, different ACs produced from sugar beet bagasse and coconut coir were
also used for the nitrate removal [220–222]. However, the adsorption removal percentage of nitrate
was similar to that of RH-derived AC [221]. In contrast 78–89% phosphate removal efficiency was
achieved by the utilization of agro-waste RH at pH 6.0 with 2 h contact time [223,224].
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Table 9. Adsorption capacities of inorganic anions by pristine RH, RH ash (RHA), and RH-derived
activated carbon (AC).

Adsorbent Adsorbate C0 (mg/L) Adsorption Capacity mg/g Removal% Ref.

AC F− 5 - 88.30 [213]
RH F− 5 - 75 [214]
AC BrO3 - 1.5 - [215]
AC Br− 10 83.5 [217]
AC NO3

− 15 3.76 [218]
RH NO3

− 100 93.4 [219]
GAC NO3

− 50 10.2 - [220]
AC PO4

3− 10 - 89.1 [223]
AC PO4

3− 10 - 95.85 [224]

Therefore, AC has great potential in the removal of different inorganic ions from water and
wastewater. RH-derived AC or carbons or ash have been well applied in the removal of fluoride and
nitrate ions. On the other hand, data on the removal of phosphate ions (PO4

3−) and bromide ions using
rice husk derived ACs are limited. Therefore, further study should cover these gaps in order to check
applicability on a larger scale.

4.4. Gas Capture

There are many toxic gases such as carbon dioxide (CO2), carbon monoxide, ammonia, nitrogen
dioxides, sulfur dioxide, hydrogen, and methane, among others. Among them, CO2 is the most
abundant gas in the atmosphere. It is a greenhouse gas [225–227]. There are many detrimental effects of
those gases on the environment. Similarly, many methods have been adopted for the capture of those
gases from the environment. For example, for the removal of CO2, carbon capture and sequestration
technology are mostly adopted. AC, especially RH-derived AC, has great potential for CO2 adsorption
due to its microporosity and the presence of nitrogen [228–230]. The CO2 adsorption capacity of the
hydrofluoric acid pre-dashed RH was 77.9 mg/g at 30 °C and 18.1 mg/g at 120 [231]. KOH-activated
RH carbon was utilized for low-pressure CO2 uptake, and maximum CO2 uptake of 2.11 mmol/g
at 0.1 bar and 0 °C was recorded. RH-derived AC exhibited a large CO2 uptake of 6.24 mmol/g at
0 ◦Cat 1 bar [232]. Gargiulo et al. [233] overviewed CO2 adsorption onto RH-derived sorbents and
other materials under dynamic conditions. They mentioned that CO2 adsorption onto those sorbents
is driven by different factors such as pore volume, polarity, pore size distribution, surface area, and
the presence of active sites i.e., functionality and unsaturated coordinative sites. On the other hand,
Gansesan et al. [234] reported that RH-derived carbon can store gases (e.g., CO2, H2, methane) and
also has electrochemical charge storage capacity. They mentioned the high adsorption capacities of
those gases. For example, they reported values of up to 9.4 mmol/g (298 K, 20 bar), 1.8 wt % (77 K,
10 bar), and 5 mmol/g (298 K, 40 bar), respectively, for CO2, H2, and CH4. These values were superior
compared to many other carbon-based physical adsorbents. Finally, Dahlan et al. [235] used siliceous
RH materials to produce RH ash, which was then applied for flue gas desulfurization in small-scale
industrial boilers.

Therefore, RH-derived AC can be well applied for the removal of CO2 as well as in desulfurization
together with other uses. Limited data have been found for the removal of other gases (such as CO,
NH3, methane, and so on) using RH-derived AC. Hence, the applications of RH-derived AC can be
broadened towards the removal of these gases.

4.5. Air Cleaning

There are many semi or volatile organic compounds (VOCs) which are very harmful for the
environment. VOCs are mainly carbon-based chemicals which have high vapor pressure at ambient
temperature. Many of them are very toxic, being lethal to humans and animals. Therefore, it is



Processes 2020, 8, 203 19 of 38

highly necessary to reduce these effect in order to get clean air for a safer, smarter, and greener
lifestyle [112,236–239]. Several filtration systems have been proposed but AC is widely used to adsorb
those compounds from the air. AC derived from RH was found to have potential for the adsorption
of VOCs. For example, KOH-activated RH-derived carbon showed higher sorption of toluene and
phenol, with maximum adsorption capacity of 263.6 mg/g and 6.53 mg/g, respectively [240]. It was
also found that post acid treatment of AC increased VOC adsorption capacity significantly [241]. In a
different study, a relatively high phenol adsorption capacity (1919 mg/g) in the vapor phase was found
by the utilization of hierarchically porous carbon derived from rice husk [112]. On the other hand,
the adsorption of 16 VOCs (namely, n-pentane, n-hexane, cyclohexane, benzene, dichloromethane,
trichloromethane, tetrachloromethane, 1,1-dichloroethylene, trichloroethylene, methanol, ethanol,
2-propanol, acetone, acetonitrile, diethyl ether, and ethyl acetate) in the gas phase was studied by
Li et al. [238] using RH-derived AC. It was found that the presence of higher in the air decreased the
adsorption capacity of VOCs; however, at lower humidity the adsorption of those compounds was
higher [238]. Therefore, RH-derived AC can be a good option for future real-scale applications for
filtering air pollutants. However, their potential mechanism of action as well as the reusability of
AC should be considered carefully. In addition, more VOCs should be studied under experimental
conditions in order to investigate the possible further applications of RH-derived AC.

4.6. Critical Assessment of Adsorption Research

The removal of contaminants from wastewater is a matter of concern to different stockholders.
Among several methods, the adsorption method is being used extensively, and is a very simple,
and effective process. Based on this principle, a large number of works have been devoted to the
adsorption process using different adsorbents in both commercial as well as lab-scale experiments.
However, adsorption studies mainly involve: (1) selection of a new adsorbent; (2) characterization;
(3) physicochemical parameter studies; (4) experiments in batch or on a column basis with the adsorbent;
and (5) fittings the parameters into different models and equations. In principle, any adsorbent should
have some adsorption capacity into different contaminants. RH-derived AC has been found very
effective in the removal of different organic and inorganic contaminants. Even RH-derived AC has
excellent sorption performance over CAC. However, RH-derived AC has not been utilized for the
removal of many contaminants. Hence, more research is required for a proper assessment of the
efficacy of RH-derived AC.

4.7. Adsorption Mechanism of AC

Adsorption of different organics, inorganics, pesticides, surfactants, heavy metals, and so on onto
adsorbent surfaces can happen through different mechanisms, namely hydrogen bonds formation, van
der Waals forces, electrostatic interactions, surface precipitation, ion exchange mechanisms, cation
exchange or anion exchanges, pore filling, π–π interactions, hydrophilic or hydrophobic interactions,
diffusion processes, and so on. The removal of contaminants using an adsorbent usually follows
four different steps such as (1) adsorbate transport to the adsorbent surface; (2) film diffusion onto
the adsorbent surface; (3) adsorbate diffusion inside the pore; and (4) interaction between adsorbent
pores and surface with adsorbate molecules. These kinds of interactions are very tough to control, but
their interactions can be strong, weak, or more specific; this can be predicted and analyzed through
different processes [242,243]. The potentially different adsorbents and different mechanisms to bind
contaminants onto AC are shown in Figure 5.
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From a mechanistic viewpoint, the rate-limiting step is considered as a critical factor in overall
sorption processes [243]. Though different kinetics and equilibrium isotherm studies can help to
identify the types of the adsorption process, in most cases, the mechanism of action needs to be
predicted [244,245].

Cation and anion exchange occurs when opposite sites are present in both adsorbent and adsorbate
molecules. In this case, the zeta potential value of the adsorbent is very important as it plays a vital
role in the different ionic compounds. Hence, these kinds of bonds can easily form and quicken the
overall adsorption process. For example, the removal of methylene blue by adsorption on the surface
of AC occurs due to MB being in the MB+ cationic form. The overall adsorption process follows the
above mentioned four steps [246]. Similar kinds of different anionic and cationic interactions may
occur between the adsorbate and adsorbent (Figure 6). The oxygen atom in AC can have strong effects
on the adsorption of contaminants, especially when it presents to an edge of carbon surface [247,248].
Many studies showed that ion adsorption onto AC occurs due to the ion exchange with protons in
oxygen functional groups [249,250]. According to metal ion classification, hard metal ions (Zn2+, Ni2+)
are adsorbed to the surface of the functional group (-COOH, -OH). However, AC has π electrons on
the surface of micropores, where the soft metal ions (Pb2+) tend to be adsorbed [249,251].
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It is common for water molecules to form different types of hydrogen bonds with surface oxygen
groups or other functional groups of the adsorbents, where at least one hydrogen atom is present
between the adsorbent and adsorbate molecules [252,253]. Hydrogen bond formation is very common
for organic pollutants with the AC adsorbents.

Different types of π–π interactions (e.g., cationic or anionic and so on) can also occur within
the adsorbent and adsorbate molecules in solution. π–π interactions belong to the noncovalent
interactions which can contribute to chemical bonding, biomolecular structure formation, boiling
points, solvation energies, and the structures of molecular crystals. For this kind of interaction,
at least one of them should have π-electron rich or a deficient group in the form of a benzene or
aromatic ring which can potentially cause these kinds of interactions. Surface functional groups in the
adsorbate and adsorbent play a critical role in such kinds of interactions. Based on the type of surface
functional group present in the structure and the solution pH, the adsorbent or adsorbate molecule
either can act as an electron donor or electron acceptor site for electron–donor–acceptor interactions,
electron acceptor–acceptor interactions, and electron–donor–donor interactions. Among them, electron
donor–acceptor interactions are the strongest form of interaction. These kinds of interactions can
significantly dominate sorption mechanisms [254].

Finally, some other weak bonds such as van der Waals forces (e.g., all weak interactions except
the hydrogen bonds), surface deposition, and non-defined covalent bonds can also form between the
adsorbent and adsorbate molecules.

4.8. Regeneration, Desorption, and Environmental Concerns of Used AC

4.8.1. Regeneration

After the use of any sorbent, it is necessary to reuse it again and again for maximum profitability,
check the extractability of solute, elucidate the mechanism of adsorption, and check reusability [255].
There are several methods for AC regeneration, namely solvent extraction [256] and oxidizing [257],
thermal [258,259], microwave [260], and biological regeneration [261]. The solvent extraction process
has been used for many years for the desorption of organic compounds using subsequent compounds
such as chloroform, ethanol, dimethylformide, acetone benzene, and so on [256,262]. However, the
advanced oxidation process has been focused on the regeneration of adsorbent [263]. In this vein,
hydrogen peroxide (H2O2) and ozone (O3) are mostly used to oxidize organic compounds by generation
of hydroxyl radicals [264]. In comparison with other regeneration processes, the thermal process
has some drawbacks. This is because the regeneration efficiency is sometimes hampered due to
the formation of non-volatile compounds with higher molecular weight at the AC surface [257,265].
Pyrolysis temperature and duration also influence the weight loss percentage of AC [258]. Using
microorganisms for the regeneration of AC with higher stability and prolonged duration of service is
also recognized as a bioregeneration process [261]. Studies on the regeneration of spent adsorbent help
to elucidate the nature of adsorption.

4.8.2. Desorption of Organics and Heavy Metals

The desorption of the RH or RH-derived AC-loaded adsorbate (i.e., contaminants) allows the
reuse and recovery of the adsorbent and adsorbate. For better results, parallel column use can facilitate
adsorption and desorption processes. The desorption experiment depends on different factors such as
the amount to be sorbed, the process requirements, and the economic considerations. The desorption
process is usually carried out by mixing a suitable solvent with the contaminant-saturated adsorbent.
The mixture is then shaken or centrifuge until the adsorbate desorbs from the adsorbent. For example,
the maximum desorption values of textile dyes (Acid black 26, Acid green 25, and Acid blue) from
pinecone were 93.16%, 26.97%, and 98%, respectively [266]. For dye to desorb from the adsorbent,
hydrochloric acid is mostly used as it can easily desorb more than 90% of dye from adsorbent [267].
Thus, a stable original form of adsorbent is highly recoverable. A study on the adsorption/desorption of
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benzene, toluene, ethylbenzene, and xylene (BTEX) suggested that the adsorption/desorption of BTEX
was affected by chemical structure, solubility, and molecular weight. It is common that organic solvents
such as methanol, ethanol, acetone, ether, and aldehyde be used for organic pollutant desorption from
adsorbents. On the other hand, different studies suggest that acids like HCl, H2SO4, HNO3, Na2CO3,
and potassium chloride (KCl), bases like NaOH, and chelating agents like EDTA have an excellent
capability for the desorption of metal ions [88]. Few have metals such as Cr (VI) and Ni (II) which can
be desorbed using a basic medium. Figure 6 shows the desorption of solute and hence the solvent
regeneration of adsorbent.

4.9. Environmental Concerns

Perhaps most of the criticism of AC is due to relevant environmental concerns. It is anticipated
that contaminated-loaded AC needs to go through proper treatment processes before going to the
environment. However, as we mentioned earlier that there are several ways for the desorption of
contaminants (organics, inorganics, and so on) as well as several processes of regeneration. Even so, at
the end-use of the sorbent, proper disposal of the adsorbent is necessary. As a part of this, recently
thermal treatment processes (incineration, gasification, combustion, and so) have been applied for
the conversion of adsorbent into alternative materials such as syngas through gasification (organic
contaminant-loaded AC). On the other hand, HM-loaded AC can be first desorbed and then further
applied in the soil in an area where metals needed for plant growth. Furthermore, the regenerated AC
can be used for further applications such as fly ash, which can form a part of a cement composite or
building materials like biochar (recently applied in building construction). Finally, as an alternative for
the conversion of contaminant-loaded AC or for the use of desorbed and regenerated AC a new proper
desorption treatment system that can desorb solute by up to 100% is necessary.

5. Catalytical and Energy Applications of RH-Derived AC

5.1. Catalytic Support

For carbon materials to act as catalyst support, the properties of high surface area and mesoporosity
are necessary. Results show that mesopores in AC can significantly improve the catalytic activity of
materials [266–270]. Lu et al. [271] produced porous carbon from RHs by CO2 activation. Different
transition metals can be immobilized or can be impregnated through different physical and chemical
processes in order to produce different catalysts. Wang et al. [272] developed a method to produce
high-quality biodiesel from soybean oil with an AC-based catalyst. The calcium oxide (CaO)/AC
catalyst was used in the synthesis of fatty acid methyl ester. The best yield of biodiesel production was
about 93.01%. Metal-impregnated and functionalized ACs were promising catalysts and adsorbents
for various industrial applications as well. For instance, iron-containing catalysts had high catalytic
activity and good effects for removing the harmful metal ion in wastewater. It was also reported
that iron-containing AC formed an active and selective catalyst for phenol oxidation with H2O2 as
oxidant [273]. It is revealed that iron displays better activity than other transition metals [274], zeolites,
and other porous materials [274,275].

As AC from RH has a high surface area and a mesoporous and microporous structure, it can
be an alternative catalytical material for various applications such as hydrogen production, oxygen
evaluation reactions, CO2 and CO reduction, and ammonia production.

5.2. Electrodes for Battery and Supercapacitors

AC is an amorphous material with a low presence of sp2 carbon structures. Renewable
biomass-derived AC has recently gained attention as a supercapacitor. From RH, hierarchical porous
carbons with high surface area are highly possible. These hierarchical structures have excellent electrical
double-layer storage capacity. Therefore, these kinds of AC have great potential as a supercapacitor.
RH contains SiO2 as a part of its components. SiO2 is an insulator. Henceforth, after removing SiO2,
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the prepared AC from RH is mainly responsible for its conduction properties [276]. AC electron
transport properties were investigated by Kennedy [276]. Liu et al. [277] mentioned that when the
silica in RH is not removed, then KOH can react with the silica, which can hinder the formation of
mesopores. Therefore, the obtained AC shows high microspore volume as well as a specific area up to
3263 m2/g with a specific capacitance of 315 F/g at 0.5 A/g. Moreover, the carbon which was produced
from RHs had a specific area of 2523.4 m2/g. The specific capacitance of that carbon was 250 F/g at
the current density of 1 A/g, which remained at 198 F/g when the current density was raised 20 times,
indicating excellent rate performance. The carbon electrode produced from RHs also showed a long
cycle life. The capacitance remained almost stable after the first ∼100 cycles which kept stable up to
10,000 cycles [278]. This information clearly indicates the suitability of RH-derived AC to be used as a
supercapacitor electrode.

Compared to CAC, RH-based carbons could provide higher double-layer capacitance [136].
Hierarchical porous carbon derived from RH was also used to enhance the electrochemical kinetics of
the lead–carbon electrode [279]. Results showed that charge acceptance of the lead–carbon electrode is
increased mainly due to the extra electrochemically active surface provided by AC.

RH-derived AC was also used in cathodes of Li–S batteries [280,281]. Amorphous nanoporous
AC produced from RH showed a specific capacity of 730 mAh/g which remained at 140 mA h/g
at 10 C (∼3.75 A/g). After three cycles, the columbic efficiency was above 99% [282]. The high
capacity, rate capacity, and long-term cycle life of the AC prepared from RH suggest promising
applications to lithium-ion battery anode electrodes. Mai et al. [283] developed a highly porous AC
with micro/mesoporosity through carbonizing RH with K2CO3. Elemental sulfur was uploaded to the
micropores to obtain RH-derived AC (RHAC)@S composite materials. The discharge capacity was
1080 mA h/g at a 0.1 C rate after 50 cycles of charge/discharge tests at the current density of 0.2 ◦C.
These results have demonstrated that the RH-derived AC is very promising cathode material for the
development of high-performance Li–S batteries.

Therefore, RH-derived AC has great potential in the application in the field of batteries and energy
storage capacitors and supercapacitors. Further study is required for the real-scale applications of
RH-derived AC in the field of supercapacitors and batteries.

5.3. Hydrogen Storage

Very recently, hydrogen energy, as a renewable energy source, has come to the attention of
many researchers. It has zero environmental emissions, as hydrogen fuel does not emit any toxic
byproducts [284]. AC produced from RH has been utilized for hydrogen storage. For example,
Chen et al. [38] evaluated the hydrogen storage capacity for two types of AC synthesized at room
temperature from RH. Heo et al. [285] produced AC from RH using a KOH chemical activating agent,
resulting in an increase in the surface area and pore size. The hydrogen storage capacity greatly
dominates the nanometer size distribution and the microspore volume. Hence, hydrogen storage by
RH-derived AC is in the preliminary stage, and it needs further study to obtain more data as well as to
check the suitability of RH-derived AC for hydrogen storage.

5.4. Energy Application

Thermochemical methods like gasification, pyrolysis, combustion, cofiring, and biochemical
processes are used for the conversion of biomass to biofuel [286]. The thermochemical process produces
solid chars, liquid bio-oils, and syngas as the final products (Figure 7). Syngas usually contains carbon
monoxide (CO), CO2, H2, and methane (CH4), has relatively high higher heating values, and can be
co-combusted with natural gases in a combustor [287]. The upgraded bio-oil can be used as the fuel
for diesel engines [288]. The yield of pyrolysis product greatly depends on the feedstock type and
operational conditions, and also on pyrolysis temperature [289].



Processes 2020, 8, 203 24 of 38

Processes 2020, 8, x FOR PEER REVIEW  22 of 39 

 

Therefore, RH-derived AC has great potential in the application in the field of batteries and 
energy storage capacitors and supercapacitors. Further study is required for the real-scale 
applications of RH-derived AC in the field of supercapacitors and batteries. 

5.3. Hydrogen Storage 

Very recently, hydrogen energy, as a renewable energy source, has come to the attention of many 
researchers. It has zero environmental emissions, as hydrogen fuel does not emit any toxic 
byproducts [284]. AC produced from RH has been utilized for hydrogen storage. For example, Chen 
et al. [38] evaluated the hydrogen storage capacity for two types of AC synthesized at room 
temperature from RH. Heo et al. [285] produced AC from RH using a KOH chemical activating agent, 
resulting in an increase in the surface area and pore size. The hydrogen storage capacity greatly 
dominates the nanometer size distribution and the microspore volume. Hence, hydrogen storage by 
RH-derived AC is in the preliminary stage, and it needs further study to obtain more data as well as 
to check the suitability of RH-derived AC for hydrogen storage. 

5.4. Energy Application 

Thermochemical methods like gasification, pyrolysis, combustion, cofiring, and biochemical 
processes are used for the conversion of biomass to biofuel [286]. The thermochemical process 
produces solid chars, liquid bio-oils, and syngas as the final products (Figure 7). Syngas usually 
contains carbon monoxide (CO), CO2, H2, and methane (CH4), has relatively high higher heating 
values, and can be co-combusted with natural gases in a combustor [287]. The upgraded bio-oil can 
be used as the fuel for diesel engines [288]. The yield of pyrolysis product greatly depends on the 
feedstock type and operational conditions, and also on pyrolysis temperature [289]. 

RH

Gasification
Gas

 Electric power 
generation

Size 
reduction

Combustion

Heat Energy

 Boiler, 
Furnace, Dryer

Low Temperature 
pyrolysis (200-

300)̊C 

Pyrolysis in 
presence of CO2

Liquid 
fuel(syngas, 

biofuel)/ Char

 Steam
 Power
 Transportation fuel
 Fertilizers
 Hydrogen for oil 

refining
 Consumer products
 Chemicals
 Substitute gas

 
Figure 7. Possible energy applications of RH-derived AC and RH. 

Islam et al. [290] reported a techno-economic analysis of the pyrolysis process for converting RH 
waste to pyrolysis oil and solid char. Williams et al. [291] pyrolyzed RHs in a fluidized bed reactor at 
temperatures of 400–600 °C. They analyzed the pyrolysis oils to determine their yield and 
composition in relation to process conditions. RH was paralyzed between 420 °C and 520 °C in a 
fluidized bed, and the chemical composition, heating value, stability, miscibility, and corrosion 
characteristics of bio-oil were determined [292]. Fast pyrolysis of RHs was carried out by Tsai et al. 
[293] in a fixed bed reactor using a pyrolysis temperature of 400–800 °C and a heating rate of 100–500 
°C /min. Lu et al. [294] produced bio-oil in a fluidized-bed pyrolysis reactor and analyzed the bio-oil 
for its chemical and physical properties. Therefore, RH-derived AC has a wide range of energy 
applications which can further be considered in the future. 

Figure 7. Possible energy applications of RH-derived AC and RH.

Islam et al. [290] reported a techno-economic analysis of the pyrolysis process for converting RH
waste to pyrolysis oil and solid char. Williams et al. [291] pyrolyzed RHs in a fluidized bed reactor at
temperatures of 400–600 ◦C. They analyzed the pyrolysis oils to determine their yield and composition
in relation to process conditions. RH was paralyzed between 420 ◦C and 520 ◦C in a fluidized bed, and
the chemical composition, heating value, stability, miscibility, and corrosion characteristics of bio-oil
were determined [292]. Fast pyrolysis of RHs was carried out by Tsai et al. [293] in a fixed bed reactor
using a pyrolysis temperature of 400–800 ◦C and a heating rate of 100–500 ◦C /min. Lu et al. [294]
produced bio-oil in a fluidized-bed pyrolysis reactor and analyzed the bio-oil for its chemical and
physical properties. Therefore, RH-derived AC has a wide range of energy applications which can
further be considered in the future.

6. Future Prospects

For the adsorption of different organic pollutants, heavy metals, and inorganic anions from
aqueous solutions, different methods have been adopted to prepare AC from RH. However, CACs
are rather expensive, which is a big concern for real applications in water and wastewater treatment,
particularly in developing countries. There are several main concerns that need to be addressed to
utilize low-cost AC for the adsorptive removal of pollutants from water.

Future research should be focused on the following:

• This literature review indicates that more detailed systematic studies on the method of removing
compounds as well as on technical improvements in the manufacture and use of adsorbents
are required.

• Regeneration of used AC and proper disposal systems should be improved for zero
environmental concerns.

• Most of the results are also based on laboratory benchmarks, suggesting that pilot-scale studies
are needed to test the RH AC under actual field conditions.

• The applications of RH-derived AC need to be broadened with respect to different inorganic
ions, HMs, organic contaminants (e.g., endocrine disruptors, pharmaceuticals, and personal care
product removal), and gas capture (e.g., Mercury-Hg, sulfur dioxide-SO2, CO, air pollutants).

• The mechanism of pollutant removal using HR-derived AC should be given more focus to obtain
a clear understanding.

• The commercial production system should be developed in order to maximize the versatile
advantages of its high adsorption capacity of different pollutants.



Processes 2020, 8, 203 25 of 38

• A proper new regeneration new system needs to be developed.
• To address relevant environmental concerns, it is necessary to desorb the contaminants before

dumping or further treatment of AC. Alternatively, suitable methods of disposal should
be considered.

7. Conclusions

Adsorbents like AC with great adsorption capacity are promising materials for the future.
Interestingly, the advantages of AC produced from RHs are comparable and, in some cases, greater
than those of CACs produced from coal or other sources. Removal of silica from RHs is critical to the
formation of porous structures in the activation process. However, the presence of silica can also affect
the electrochemical performance of the resulting AC to be used as a supercapacitor. The presence of
silica in RH could show higher performance for the adsorption of various pollutants. Therefore, based
on the type of application, silica is either removed or remains unaltered. The chemical and thermal
treatment of RH precursors to produce activated carbon leads to a higher adsorption of different
pollutants. There are many shortcomings in the application of RH-derived activated carbons for the
removal of many pollutants. Moreover, the mechanism of removal is not yet clear. Hence, further
research is needed.
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