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Abstract: To achieve the optimal operation of chemical processes in the presence of disturbances
and uncertainty, a retrofit hierarchical architecture (HA) integrating real-time optimization (RTO)
and control was proposed. The proposed architecture features two main components. The first is
a fast extremum-seeking control (ESC) approach using transient measurements that is employed
in the upper RTO layer. The fast ESC approach can effectively suppress the impact of plant-model
mismatch and steady-state wait time. The second is a global self-optimizing control (SOC) scheme
that is introduced to integrate the RTO and control layers. The proposed SOC scheme minimizes
the global average loss based on the approximation of necessary conditions of optimality (NCO)
over the entire operating region. A least-squares regression technique was adopted to select the
controlled variables (CVs) as linear combinations of measurements. The proposed method does not
require the second order derivative information, therefore, it is numerically more reliable and robust.
An exothermic reaction process is presented to illustrate the effectiveness of the proposed method.

Keywords: optimal operation; hierarchical architecture; extremum-seeking control; self-optimizing
control; necessary conditions of optimality; least-squares regression

1. Introduction

The effectiveness of optimal operation has been widely recognized, and becomes more important
when considering environmental impact and market competition in the chemical industry [1,2].
The hierarchical architecture (HA) of chemical processes includes the real-time optimization (RTO) layer
and the control layer, which operate on different time scales and have different tasks, respectively [3,4].
In the RTO layer, daily operation has been optimized based on a steady-state process model. This layer
is usually also divided into a site-wide optimization layer and local optimization layer. The control
layer is located below the RTO layer and it aims to ensure system stability, reject various disturbances,
and maintain the controlled variables (CVs) at the desired set-points. This layer can be further divided
into a supervisory control layer and a regulatory control layer. The objective of the supervisory
control layer is to satisfy the operational constraints, e.g., those configured within multivariable model
predictive controllers (MPC), whereas the objective of the regulatory control layer is to stabilize the
actual plant with proportional integral-derivative (PID) controllers. These layers are connected through
different set-points, which are passed from the higher layers to the lower layers.

The performance of the chemical processes tends to decay with time under various uncertainties
and disturbances (e.g., equipment damage, raw material fluctuation, daily weather fluctuation and
market demand change). Once such uncertainties or disturbances exist, the current operating strategy
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is no longer optimal. Thus, determining how to make better use of resources and energy to achieve
optimal operation has become an important issue in the chemical industry. Depending on how this is
realized, the approaches for achieving optimal operation of chemical processes can be classified into
three categories, namely, the model-free approach, the online model-based approach and the offline
model-based approach.

For the model-free approach, several measurement-based methods have been developed that avoid
using an explicit process model. Necessary conditions of optimality (NCO) tracking [5], hill-climbing
control [6] and extremum-seeking control (ESC) [7] belong in this category. These approaches use
the input excitation to estimate the steady-state gradient from the cost measurement without the
need for rigorous process models. Consequently, the advantage is that they can handle plant-model
mismatch and unexpected disturbances. Nonetheless, these approaches need to wait for the process to
settle down and reach a new steady state before estimating the gradient, therefore the convergence
rate is slow. The concept of ESC is relatively old and can be traced back almost 100 years [8]. It has
recently gained increased attention since the stability problem was proven by Krstic and Wang [9].
In recent years, there has been several advancements in ESC approaches such as the least-square-based
ESC [10,11], discrete-time ESC [12], sliding-mode ESC [13], Newton-based ESC [14], etc. A common
step included in all of these approaches is to drive the estimated steady-state gradient to zero under
some specific control law.

The online model-based approach relies on measurements collected online together with the
process model. Depending on the type of optimization problem, the online model-based approach
can be further classified as steady-state real-time optimization (SRTO) [15] and dynamic real-time
optimization (DRTO) [16] or economic model predictive control (EMPC) [17]. Due to the steady-state
wait time for SRTO and computation complexity of DRTO and EMPC, the convergence rate for
the online model-based approach is also slow. SRTO requires several preprocessing steps, such as
steady-state detection, data reconciliation, parameter estimation and model adaptation before it can be
used. A major improvement can be obtained in the data reconciliation step [18]. Recently, DRTO and
EMPC have become more attractive due to their better performance in handling input and output
constraints in comparison with SRTO. Both DRTO and EMPC use the dynamic model to predict future
optimal input trajectories.

Of all of the offline model-based approaches, self-optimizing control (SOC) has been demonstrated
to be the most attractive one. The concept of SOC was first proposed by Skogestad [4] to design the
control structure. A set of offline selected CVs are said to be self-optimizing if by keeping them at
constant set-points through a simple feedback control, the process operation automatically approaches
optimum despite disturbances and uncertainties. In the past two decades, various methods of SOC
have been reported. Instead of using individual measurements as CVs [19], using linear combinations
of measurements as CVs has been proved to result in better performance [20]. Alstad [21] devised a null
space method to select the linear combinations of measurements to achieve optimal operation around
the nominal point. This method evolved into an extended null space method [22] to reduce the impact of
implementation error. Meanwhile, Kariwala proposed an eigenvalue decomposition-based SOC method
to minimize the local average loss and the local worst-case loss [23,24]. On this basis, a series of branch
and bound-based methods were developed to fast screen the CV candidates [25–28]. A mixed-integer
quadratic programming method was also proposed for measurements subset selection [29]. These
methods are all based on linearized models around nominal operating points and thus they are only
locally valid. More recently, the local SOC method has been advanced to the global method, which is
based on the simulation data over the entire operating space. Some artificial intelligence techniques
are also employed for the global SOC method [30,31]. For more detailed information about the SOC
method, readers are referred to an overview of the state-of-the-art and open issues in the development
of SOC by Jaschke [32].

The hierarchical architecture (HA) incorporating the SOC scheme has been reported in the
literature. For example, Jaschke [33] presented a novel control hierarchy to combine the NCO tracking
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and the local SOC. The NCO tracking approach uses finite difference to periodically update the
set-points to reduce the economic loss. Ye [34] developed a controlled variable adaptation-based
structure to improve the optimizing performance. A two-layer control architecture integrating the SOC
and modifier adaptation (MA) was also provided by Ye [35] to address the plant-model mismatch.

The main contribution of this work is a retrofit hierarchical architecture (HA) for integrating
real-time optimization and control. Specifically, a fast extremum-seeking control (ESC) approach using
transient measurements is employed in the upper RTO layer and the set-points are updated by driving
the estimated steady-state gradient of the cost to zero. The ESC approach can effectively suppress the
impact of the plant-model mismatch and steady-state wait time. The lower control layer is configured
with a global SOC scheme to select the appropriate CVs and track the set-points delivered from the
upper ESC layer. The SOC scheme minimizes the average loss globally and provides a faster reaction
to expected disturbances. The proposed methodology inherits the advantages of both the fast ESC
approach and the global SOC scheme.

The rest of this paper is arranged as follows: Section 2 introduces a fast extremum-seeking
control (ESC) approach using transient measurements. Section 3 presents the concept of a global
self-optimizing control (SOC) for CV selection. Section 4 devises a retrofit hierarchal architecture
(HA) integrating real-time optimization (RTO) and control. An exothermic reaction process is used to
investigate the advantages of the proposed methodologies in Section 5. Finally, the conclusions are
summarized in Section 6.

2. Fast ESC Using Transient Measurements

The objective of the ESC scheme is to estimate the gradient of the cost function and drive it to zero
under a specified control law (usually simple integral action). It can handle the plant-model mismatch or
any other unexpected disturbances since it is a model-free adaptive control approach. The performance
of this approach depends purely on the accuracy of the gradient estimation. Nevertheless, the
drawbacks of this approach are that the convergence rate is slow and the cost function value is required.
Hence, it fits better in the upper RTO layer.

An excitation signal (e.g., the sinusoidal signal or pseudo-random binary sequence signal) is
commonly added to provide sufficient excitation for the gradient estimation in the ESC scheme.
However, it requires a clear time scale separation between the process dynamics, excitation signal
and convergence to the optimum [9]. Typically, the excitation signal that is chosen is 10 times slower
than the plant dynamics such that the plant behaves like a static map. Furthermore, the selected
integral gain is usually small enough such that the convergence to the optimum is another 10 times
slower than the excitation signal, which means the overall convergence rate is about 100 times slower
than the plant dynamics. This is unacceptable and impractical for real-time optimization of most
processes. In order to address the steady-state wait time, which is caused by the local linear static map
assumption, an alternative solution is to explicitly include the plant dynamics in the ESC approach. In
this section, we introduce a fast ESC approach using transient measurements to significantly improve
the convergence rate.

A local linear dynamic model, the auto regression exogenous (ARX) model was used as an effective
way to include the plant dynamics. In the meantime, incorporating the plant dynamics in the gradient
estimation removes the static map assumption, therefore, one does not need the time scale separation
between the plant dynamics and the excitation signal. This results in a significantly faster convergence
rate compared to the conventional ESC approach, which is also shown in the simulation results in
Section 5.

For simplicity of derivation, we considered a nonlinear single input single output process, where
the objective is to drive the cost Q to its optimal value by adjusting the input u.

The following assumptions should be met.
Assumption 1. The plant cost Q can be measured or calculated.
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Assumption 2. The process can be represented as a combination of a nonlinear time invariant part and a linear
stable time invariant dynamic part.

Assumption 3. The nonlinear time invariant part is sufficiently smooth and continuously differentiable such
that it has a unique optimal solution.

Assumption 4. The set of active constraints do not change with disturbances and they are perfectly controlled.

One can use the transient measurements to estimate the gradient from the cost. A sliding window
strategy containing the last N samples of data is used to fit the following ARX model:

Q(t) + a1Q(t− 1) + . . .+ anaQ(t− na) = b1u(t− 1) + . . .+ bnb Q(t− nb) + e(t), (1)

where t denotes the current time, e(t) denotes the white noise signal, and (na, nb) denotes the order of
the ARX model. The last N transient measurements of data are used to estimate the ARX parameters

θ =
[
a1, . . . , ana , b1, . . . , bnb

]T
based on the linear least-squares method:

θ̂ = arg min
θ
‖Ψ −Φθ‖22, (2)

where Ψ ∈ RN−n represents the vector of the last (N−n) cost data, which is given by

Ψ =
[

Q(N) Q(N − 1) . . . Q(n + 1)
]T

, (3)

and Φ ∈ R(N−n)×(na+nb) represents the characteristic vector, which is given by

Φ =


−Q(N − 1) . . . −Q(N − na) u(N − 1) . . . u(N − nb)

−Q(N − 2) . . . −Q(N − 1− na) u(N − 2) . . . u(N − 2− nb)
...

...
...

...
−Q(n) . . . −Q(n + 1− na) u(n) . . . u(n + 1− nb)

, (4)

where n = max(na, nb).
The analytical solution of problem (2) is given by

θ̂ =
[
ΦTΦ

]−1
ΦTΨ , (5)

Introducing the notation, A(q) = 1 + a1q−1 + . . .+ ana q−na and B(q) = b1q−1 + . . .+ bnb q−nb ,

where q−1 denotes the unit shift operator. Once the ARX parameters θ =
[
a1, . . . , ana , b1, . . . , bnb

]T
are

estimated, a local linear dynamic model can be obtained in the form:

Q(t) =
B(q)
A(q)

u(t) +
1

A(q)
e(t), (6)

The steady-state gradient around the current operating point can then be estimated by

Q̂u = A(q)−1B(q), (7)

where the notation “ˆ” means the estimated value, once Q̂u is estimated, a simple integral controller
can be used to drive the gradient to zero and update the controlled input. In discrete time, this can be
expressed as

û(t + 1) = û(t) +
KI

Ts
Q̂u, (8)
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where KI ∈ R denotes the integral gain and Ts denotes the sample time. It is also necessary to add
the perturbation signal ω (e.g., pseudo-random binary sequence signal) to the input for sufficient
excitation, which yields u(t + 1) = û(t + 1) +ω. The block diagram of the fast ESC approach is shown
in Figure 1. The buffers are used to store the last N transient measurements of data.Processes 2020, 8, x FOR PEER REVIEW 5 of 17 
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Figure 1. A block diagram of the fast extremum-seeking control (ESC) approach.

In this section, a fast ESC approach was proposed using transient measurements, which is based
on identifying a local linear ARX model around the current operating point. The steady-state gradient
can be estimated from the identified ARX model. By using transient measurements, one can effectively
eliminate the time scale separation between the plant dynamics and the excitation signal. This results
in a significantly faster convergence rate compared to the classical ESC approach, which is also shown
in the simulation results in Section 5. Additionally, the proposed approach can be extended to a
multivariable system where each input should have a particular excitation signal to estimate the
gradient, and the controller is a simple decentralized integral control framework.

3. Global SOC for CVs Selection

3.1. Basic Concept of SOC

The concept of SOC was first proposed to design control structures by selecting the appropriate
measurement combination as the CVs. A set of offline selected CVs are said to be self-optimizing
if by keeping them at constant set-points through a simple feedback control, the process operation
automatically approaches optimum despite disturbances and uncertainties. Usually, the model-based
approach has better convergence than the model-free approach, thus it fits better to integrate the RTO
and control layers. Consider the following steady-state optimization problems:

min
u

J(u, d)

s.t. y = f(u, d)
g(u, d) ≤ 0

(9)

where J ∈ R denotes the scalar cost function, u ∈ Rnu denotes the manipulate variables (MVs),
d ∈ Rnd denotes the disturbance variables, y ∈ Rny denotes the theoretical measurements, which
are calculated from the steady-state measurement model f : Rnu ×Rnd → Rny , g ∈ Rng denotes the
constraints corresponding to the operating limits and product qualities (e.g., temperature limit, flow
limit and product concentrations, etc.).
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For the SOC method, the controlled variables (CVs) c ∈ Rnc are selected as

c = Hym,
ym = y + n.

(10)

where c ∈ Rnc (with nc = nu) are the selected CVs, H ∈ Rnc×ny represents the selection matrix and
ym ∈ R

ny denotes the available measurements, which are corrupted by the measurement noise n ∈ Rny .
The steady-state measurement model is linearized around the nominal point as follows:

y = Guu + Gdd, (11)

where Gu ∈ Rny×nu denotes the steady-state gain matrix of y with respect to u and Gd ∈ Rny×nd denotes
the steady-state gain matrix of y with respect to d. Then, the loss function L(u, d) is defined as

L(u, d) = J(u, d) − J
(
uopt(d), d

)
, (12)

where J(uopt(d), d) and uopt(d) denote the optimal cost function value and the optimal manipulated
variables for a given disturbance d, respectively. The ultimate goal is to keep the CVs at their desired
set-points cs delivered from the upper layer by adjusting MVs u. Meanwhile, the loss function L for the
expected disturbance d and measurement noise n is minimized.

For the SOC method [21,29], the CVs selection problem can be converted to minimize the average
loss Lavg in the form of selection matrix H as

min
H

Lavg(H) = min
H

1
2‖HY‖2F

s.t. HGu = J1/2
uu

(13)

where Y =
[

FWd Wn
]

is the augmented matrix and ‖ ∗ ‖F denotes the Frobenius norm, Wd and Wn

represent the diagonal matrices with the expected magnitudes of the disturbance and the measurement
noise, respectively. F represents the optimal sensitive matrix, Juu denotes the Hessian matrix of J with
respect to u.

The analytical solution to problem (13) can be derived:

HT = (YYT)
−1

Gu(GT
u (YYT)

−1
Gu)

−1
J1/2

uu , (14)

It should be noted that the above results are derived on the basis of linearization around the
nominal optimal point, therefore this method is only locally valid around the nominal optimal point. It
may lead to large steady-state loss if the process moves far away from the nominal condition in the
presence of various disturbances and uncertainties. Over time, the increase in the steady-state loss
may no longer be acceptable and re-optimization is required to get the new optimal set-points. The
aforementioned method belongs in the local SOC category [20–22]. To overcome the drawbacks of the
local SOC method, in the next section, a new SOC method is developed based on the approximation of
the necessary conditions of optimality (NCO) over the entire operating region, such that it is globally
sound. We call it the global SOC method.

3.2. Global SOC

A global SOC method was developed to circumvent the drawbacks of the local method by using
the simulation data over the entire operating space. Reconsidering the steady-state optimization
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problems (9), the first order NCO, which is also known as the Karush−Kuhn−Tucker (KKT) conditions
should hold:

g
(
uopt, d

)
≤ 0

µkgk
(
uopt, d

)
= 0 µk ≥ 0, k = 1, 2, . . . , ng

∂J
∂u

(
uopt, d

)
+

ng∑
k = 1

µk
∂gk
∂u

(
uopt, d

)
= 0

(15)

where µk denotes the Lagrange multipliers, the constraints gk with equality hold are the active
constraints, which is denoted as ga, and it can be separated from the above equations, then the NCO
can be reformulated as two parts [7]:

ga = 0,

∇p J = ∂J
∂u

[
I−

(
∂ga
∂u

)† ∂ga
∂u

]
= 0

. (16)

where ∇p J ∈ Rnu denotes the projected gradient, it can be further compressed as nu − na dimensions
using singular value decomposition [30] as

ga = 0, ga ∈ R
nga

∇cp J = ∂J
∂u V2 = 0, ∇cp J ∈ Rnu−nga

(17)

where ∇cp J ∈ Rnu−na denotes the compressed projected gradient, and V2 is the right singular vector
of ∂ga/∂u = USVT, V = [V1, V2]. According to Equation (17), the compressed NCO will change
depending on which constraints are active, this means the CVs will change when the constraints
transform from inactive and active. For the proposed SOC, to focus on the main contribution, we
must assume that the set of active constraints do not change with disturbances and they are perfectly
controlled at zero, which consumes the same number of degrees of freedom. In order to address
the issue of changes in the active set, several approaches, e.g., split range control [36] and constraint
handling approach [37] have been proposed recently. How to handle the changes in the active set is a
topic worthy of investigation in our future work.

In the meantime, if the CVs, c are perfectly controlled at the desired setpoint cs, we can redefine
the CVs as c̃ = c− cs with zero value. It should be noted that with all active constraints implemented,
the compressed gradient ∇cp J with respect to the remaining degrees of freedom is in the unconstrained
subspace and their value will always be zero under optimal conditions. On this basis, the controlled
variables should be selected as close to∇cp J as possible. The approximation to the compressed projected
gradient should be over the entire operating region such that the method is globally valid. Naturally,
the CVs can be selected as an approximation of ∇cp J using the least-squares regression technique. At
the current sampling time t, the jth approximated NCO, ẑt, j can be represented as the linear form:

ẑt, j =
[

yT
t 1

]
θ j,

t = 1, 2, . . . , N j = 1, 2 . . . , nu − na
(18)

where yt denotes the current measurements vector, θ j denotes the parameters to be estimated, and N
denotes the total number of samples over the entire operating region. Define

Y =


yT

1 1
...

...
yT

N 1

, z j =


z1, j

...
zN, j

 (19)
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where z j denotes the real value of jth compressed NCO calculated from the process simulation model
offline. The regression parametersθ j can be determined by solving the least-squares regression problem:

θ̂ j = arg min
θ j

N∑
t = 1

‖zt, j − ẑt, j‖
2
2, (20)

The analytical solution of problem (20) is given by

θ̂ j =
[
YTY

]−1
YTz j, j = 1, 2 . . . , nu − na (21)

The block diagram of the global SOC method is shown in Figure 2.Processes 2020, 8, x FOR PEER REVIEW 8 of 17 
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Figure 2. A block diagram of the global self-optimizing control (SOC) method.

In this section, a global SOC method was proposed for the selection of CVs that is based on the
approximation of necessary conditions of optimality (NCO) over the entire operating region. The
selected CVs are globally valid compared to the local SOC method. Additionally, the proposed method
does not require the second order derivative information, therefore it is numerically more reliable and
robust. In the next section, a retrofit hierarchical architecture (HA) combining the fast ESC and global
SOC is proposed and elaborated.

4. A Retrofit HA Integrating RTO and Control

Considering the differences between ESC and SOC, in general, the former is a model-free scheme
that requires the cost measurements to estimate the gradient information based on the local linear
least-squares method. In contrast, SOC is a CVs selection scheme that needs no cost measurement, but
rather the process simulation model offline to minimize economic loss compared to optimal operation.
Furthermore, the SOC scheme can quickly reject the expected disturbances since it works in a feedback
fashion, whereas the ESC scheme can handle plant-model mismatch or other unexpected disturbances.

To include both merits from the ESC and SOC schemes, a retrofit HA for RTO and control
integration is proposed in this section. Since the time scale in the RTO layer and control layer is
different, the ESC scheme fits better in the slower RTO layer to improve the economic performance,
while the SOC scheme fits better to integrate the RTO and control layers at a higher frequency. The
proposed HA is shown in Figure 3.
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Figure 3. The proposed hierarchical architecture.

The proposed HA contains the following features:

(1) An ESC scheme is employed in the upper layer as an alternative to online model-based real-time
optimization techniques. The computational burden is reduced since it is a data-driven approach
based on the local linear least-squares method. In addition, incorporating the plant dynamics
during the gradient estimation removes the time scale separation between the plant dynamics
and the excitation signal, which leads to a faster convergence compared to the classical ESC
approach. More importantly, the ESC layer can handle the plant-model mismatch and reduce the
steady-state loss by adjusting the set-points.

(2) A SOC scheme is configured with the lower control layer, which can significantly benefit the ESC
layer. It should be noted that there are some inherent shortcomings in the ESC scheme. Any a
priori information about the process is ignored and the convergence rate is slow in the presence
of expected disturbances. The proposed hierarchical architecture combining the ESC and SOC
circumvent the above shortcomings of ESC. More precisely, when the expected disturbances
occur, the SOC scheme can make a fast adjustment such that the loss is under an acceptable level,
whereas in the case where the plant-model mismatch or other unexpected disturbances enter into
the process, the action is mainly attributed to the upper ESC layer and the true optimum will
be achieved.

(3) Convergence (stability) analysis is another important issue. In this part, we discuss the convergence
issue. As mentioned in Section 2, although the fast ESC scheme effectively eliminates the time
scale separation between the plant dynamics and the excitation signal, the integral adaptation
gain of the ESC scheme must be selected as small to ensure a clear time scale separation between
the dither and convergence to the optimum. To this end, there are two time scales in the ESC
layer, namely, fast (plant dynamics and dither) and slow (convergence to the optimum). In the
proposed retrofit HA, the SOC scheme configured with the lower control layer belongs to the
fast time scale [9]. The convergence (stability) results from the least-squares based ESC [10]
require a smooth control action parameterized by a performance parameter, which is used by
the ESC controller. In the proposed HA, the smooth control action is given by the SOC scheme
and the performance parameter is the set-points passed from the ESC layer. In conclusion, the
existing convergence results from reference [10] can be applied to the proposed HA under two
conditions: (a) the control layer configured with SOC is closed-loop stable; (b) the product of
integral adaptation gain and the length of the moving window KIN must be small enough. It is
intuitive that a small value of the product KIN guarantees the measurements used for gradient
estimation is in the small neighborhood of the current operating point. The gradient estimation
error can be bounded if the selected moving window length N is sufficiently small, which allows



Processes 2020, 8, 181 10 of 17

the chosen integral gain KI to be large (since only the product should be small), leading to arbitrary,
fast convergence. However, in the general case, the adaptation gain should be chosen small such
that the performance remains close to the steady state when seen from the upper ESC layer. The
detailed convergence (stability) proof which relies on the Lyapunov–Razumikhin theorem can be
found in reference [10].

In summary, the SOC scheme not only stabilizes the process, but also drives the process to a near
optimal region with an acceptable steady-state loss, whereas when the loss becomes unacceptable or
plant-model mismatch occurs, the ESC layer will take actions by adjusting the set-points to reduce
them. The major properties show that the model-free ESC and the model-based SOC concepts are
complementary rather than competitive.

The procedures for the implementation of a retrofit HA are summarized as follows:

1. Collect the last N transient measurements of cost data and input data (also known as the set-points
to the lower control layer).

2. Estimate the steady-state gradient around the current operating point based on Equations (5) and
(7).

3. Keep the steady-state gradient at the zero value under an integral control action and update the
set-points to the lower control layer.

4. Determine and sample the entire operating space using independently generated inputs,
disturbances and random noises.

5. Calculate the compressed NCO, zj and matrix Y from a process simulation model offline.
6. Fit the CVs and calculate the regression parameters by linear least-squares Formula (21).
7. Keep the selected CVs at the zero value under a simple feedback control law and update the MVs

to the lower plant layer as the process input.

5. Case Study

5.1. Process Description

The continuous stirred tank reactor (CSTR) with a reversible exothermic reaction A
 B has been
extensively investigated [30,33]. A schematic diagram of the CSTR is shown in Figure 4.
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Figure 4. A schematic diagram of the continuous stirred tank reactor.

According to the law of conservation of mass and energy, the following ordinary differential
equations can be obtained to model the dynamic behavior of the system [30]:

dCAo
dt = 1

τ (CAi −CAo) − r,
dCBo

dt = 1
τ (CBi −CBo) + r,

dTo
dt = 1

τ (Ti − To) − 5r.

(22)
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where CAi, CBi, Ti denote the inlet A concentration, inlet B concentration and inlet stream temperature,
respectively, and CAo, CBo, To denote the outlet A concentration, outlet B concentration and outlet
stream temperature, respectively, τ is the residence time. r represents the reaction rate, which is
defined as

r = 5000exp
(
−10000
1.987To

)
CAo − 106exp

(
−15000
1.987To

)
CBo, (23)

The manipulated variables u, disturbance variables d and measurement variables y of the
exothermic reaction process are

u = [Ti],
d =

[
d1 d2 ]T = [ CAi CBi ]T,

y =
[

y1 y2 y3 y4 ]T = [ CAo CBo To Ti ]T.
(24)

The measurement noise is ±0.01 (mol·L−1) for concentrations CAo and CBo, and ±0.1 K for
temperatures To and Ti. The state-input constraints are

0.5
(
mol · L−1

)
≤ CAi ≤ 1.5

(
mol · L−1

)
,

0
(
mol · L−1

)
≤ CBi ≤ 0.5

(
mol · L−1

)
,

390 K ≤ Ti ≤ 440 K.
(25)

The objective is to minimize the cost function J, which is defined as

J = (0.001657Ti)
2
− 2.009CBo, (26)

where the first term of J represents the cost of heating the input stream and the second term is the
negative profit of the desired product B.

The nominal values for the exothermic reaction process are listed in Table 1.

Table 1. Nominal values for the exothermic reaction process.

Variable Nominal Value Unit

CAo 0.498 mol·L−1

CBo 0.502 mol·L−1

To 426.803 K
CAi 1 mol·L−1

CBi 0 mol·L−1

Ti 424.292 K
F 1 mol·min−1

τ 60 s

To illustrate the effectiveness of the proposed method, first, we applied the fast ESC scheme alone
to control the exothermic reaction process and compared it with the classical ESC scheme [9], with
a special focus on the convergence time to the optimum. Then, we adopted the global SOC scheme
alone to control the process and compared it with the local SOC scheme [20], with a special focus on
the average loss over the entire operating space. Finally, we used a retrofit HA combining the fast ESC
and global SOC to control the process and compared it with the ESC scheme alone, the SOC scheme
alone, simultaneously under the same disturbance conditions, which demonstrates the superiority of
the proposed methodology.

5.2. Fast ESC Scheme

In this subsection, the fast ESC scheme proposed in Section 2 is compared with a classical
ESC scheme [9] to control the exothermic reaction process. An additional sinusoidal signal with an
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amplitude of 0.5 K and a time period of 40 s is added to the classical ESC scheme, and an additional
pseudo-random binary sequence signal with an amplitude of 0.5 K is added to the fast ESC scheme,
the measurements are assumed to be available with the sample time of 10 s, the adaptation gains of KI

are 0.3 and 2 for the classical ESC and the proposed fast ESC, respectively. The total simulation time is
5000 s with disturbances CAi from 1 (mol·L−1) to 0.6 (mol·L−1) and CBi from 0 (mol·L−1) to 0.4 (mol·L−1)
at time t = 2000 s. The comparison of the input variables using both schemes is shown in Figure 5.
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It can be clearly seen that both ESC schemes converge to the same steady-state input value, which
is 398.53 K, however, the classical ESC scheme has a significantly slower convergence compared to the
proposed fast ESC scheme due to the steady-state wait time. The proposed ESC scheme converges
to the optimum within 200 s, whereas the classical ESC scheme takes more than 2000 s to converge.
This example clearly shows the effectiveness of the proposed fast ESC over classical ESC.

5.3. Global SOC Scheme

In this subsection, the global SOC scheme proposed in Section 3.2 is compared with a local SOC
scheme [20]. In this case, there is only one degree of freedom, such that only one CV needs to be
selected. All four measurements are included in the CV function. In the local SOC scheme, the process
model is used offline to calculate the optimal sensitive matrix F.

F =
∂yopt

∂d
=


0.4859 0.3213
0.5141 0.6787

10.1664 −39.0005
7.5960 −37.3942

, (27)

The matrices Gu and Juu are evaluated at the nominal point, which is shown as

Gu =


−0.0011
0.0011
1.0056

1

, Juu = 0.0549 (28)
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The diagonal matrices with the expected magnitudes of the disturbance Wd = diag
([

1 0.5
])

and the measurement noise Wn = diag
([

0.01 0.01 0.1 0.1
])

, which yields,

Y =
[

FWd Wn
]
=


0.4859 0.1606 0.01 0 0 0
0.5141 0.3394 0 0.01 0 0

10.1664 −19.5003 0 0 0.1 0
7.596 18.6971 0 0 0 0.1

, (29)

The analytical solution of the selection matrix for the local SOC scheme is H1

=
[
−13.1173 15.0102 −1.1384 1.3478

]
with the average loss L1 = 10.0355. We also investigated

the condition without measurement noises, the result is H′1 =
[
−0.4351 −0.5224 −0.7289 0.9674

]
with the average loss L′1 = 8.6377.

In the global SOC scheme, the input variables are divided equally into 10 parts and
the total sample number is N = 113 = 1331. From the offline calculation, the
matrix Y ∈ R1331×5, z j ∈ R1331×1 in Equation (19) can be obtained, but the result is not
given due to the space limitation. The selection matrix for the global SOC scheme can be
calculated by Formula (21), which is H2 =

[
−83.6231 −16.0319 14.3094 −1.6229 1.8325

]
with the average loss L2 = 1.2493. Similarly, the result without measurement noise is
H′2 =

[
−95.7641 −3.2551 8.4998 −3.1792 3.4181

]
with the average loss L′2 = 1.1834. For a

clear comparison, the average loss, maximum loss and standard deviation for the above four scenarios
are listed in Table 2.

Table 2. Economic loss comparison.

Scenarios Average Loss Maximum Loss Standard Deviation

local SOC with noise 10.0355 90.6237 14.7173
local SOC without noise 8.6377 65.3685 12.6398
global SOC with noise 1.2439 8.5157 1.3853

global SOC without noise 1.1834 6.2701 1.2041

From the above results, we can clearly see that compared to the local SOC scheme, the average
loss, maximum loss and standard deviation for the global SOC scheme has been significantly reduced,
e.g., the average losses are reduced by 87.6% with measurement noise and 86.3% without measurement
noise, respectively. It should also be noted that the losses and standard deviations with measurement
noise are larger than that without noise. This example clearly shows the superiority of the proposed
global SOC over the local SOC in the sense that the selected CVs are globally valid.

5.4. A Retrofit HA Combining the Fast ESC and Global SOC

In this subsection, a retrofit HA combining the fast ESC and global SOC is considered. An
additional pseudo-random binary sequence signal with an amplitude of 0.5 K is added to the input
signal, the measurements are assumed to be available with a sample time of 25 s, the adaptation
gains are 0.12 and 3 for the fast ESC scheme and the global SOC scheme, respectively. The expected
disturbance scenarios are designed as after 1000 s at the nominal value with a step change of 0.4
(mol·L−1) that occurs in the inlet A concentration. At t = 2000 s, a step change of −0.8 (mol·L−1) occurs
in the inlet A concentration and a step change of 0.2 (mol·L−1) occurs in the inlet B concentration. At t
= 3000 s, a step change of 0.4 (mol·L−1) occurs in the inlet A concentration. At t = 4000 s, a step change
of 0.2 (mol·L−1) occurs in the inlet B concentration as shown in Figure 6.
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A comparison of the input variables using the fast ESC scheme alone (at the same conditions as
in Section 5.2), the global scheme alone (at the same conditions as in Section 5.3) and the proposed
combined method is shown in Figure 7.
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the proposed combined method.

It can be clearly seen that both the ESC scheme and combined method converge to the same
steady-state value, which is 424.29 k for 0~1000 s, 426.27 k for 1000~2000 s, 408.2 k for 2000~3000 k,
417.17 k for 3000~4000 k and 410.67 k for 4000~5000 k, respectively. However, steady-state losses differ
between the SOC scheme and the other two schemes. The steady-state losses for the SOC scheme are
0.11 k for 0~1000 s, 0.68 k for 1000~2000 s, 2.54 k for 2000~3000 k, 1.47 k for 3000~4000 k and 4.68 k for
4000~5000 k. It was also clearly shown that for 2000–3000 s and 3000–4000 s, the convergence rate of
the combined method is faster than the other two schemes.

In addition, it is also necessary to compare the profits among the three methods in the presence
of plant-model mismatch (structural uncertainty). Considering the plant-model mismatch, more
specifically, a step change of 3% in the activation energy E1 (structural mismatch) occurs at time 2400 s,
a comparison of the profits (negative cost −J) of these methods is shown in Figure 8.

It was shown that the plant-model mismatch reduces the desired profit value from 0.4237 to
0.3022 at time 2400 s. The reason is that the structural uncertainty reduces the reaction rate for the
exothermic process. Nonetheless, the combined method and the ESC scheme alone performed similarly
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in terms of the profit and both outperform the SOC scheme alone, which was anticipated since they
both inherit the good features of the model-free approach, and more importantly, as we see from
Figure 7, the combined method provides moderate and smoother input usage than the ESC scheme
alone. The above results demonstrate the superiority of the proposed methodology.
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6. Conclusions

The main contribution of this work is a retrofit HA for real-time optimization and control
integration, which demonstrates that ESC and SOC are complementary rather than competitive.
The features of the proposed HA can be summarized as follows. (1) A fast ESC scheme using transient
measurements that is employed in the upper RTO layer, which can effectively suppress the impact
of plant-model mismatch and steady-state wait time. The time scale separation between the plant
dynamics and the excitation signal was removed by using transient measurements during the gradient
estimation. (2) A global SOC scheme is configured with the control layer to select the appropriate
CVs, which provide a moderate reaction to expected disturbances and maintain the process in a near
optimal region. The selected CVs are globally valid compared to the local SOC method since it is based
on the approximation of NCO over the entire operating space. (3) A linear least-squares regression
technique is adopted in both the ESC and SOC schemes, which does not require the second order
derivative information, therefore it is numerically more reliable and robust.

An exothermic reaction process was investigated to illustrate the effectiveness of the proposed
methodology. The results show that the proposed method inherits the advantages of each individual
method, i.e., quickly rejecting disturbances whose characteristics are known, and converging to the
optimal operating point in the presence of unknown disturbances. Future work may consider more
sophisticated and realistic cases such as the issue of the calculation of the ARX model with measurement
noise in the process industry, and how to deal with the changes in the active set is also worthy of
further investigation.
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Abbreviations

The following abbreviations are used in this manuscript:

HA Hierarchical Architecture
RTO Real-Time Optimization
ESC Extremum-Seeking Control
SOC Self-Optimizing Control
NCO Necessary Conditions of Optimality
CVs Controlled Variables
MPC Model Predictive Controllers
PID Proportional Integral-Derivative
SRTO Steady-state Real-Time Optimization
DRTO Dynamic Real-Time Optimization
EMPC Economic Model Predictive Control
MA Modifier Adaptation
ARX Auto Regression Exogenous
MVs Manipulate Variables
KKT Karush−Kuhn−Tucker
CSTR Continuous Stirred Tank Reactor
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