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Abstract: The sustainable development of materials is one of the key targets in the modern era of
engineering. These materials are developed by different waste products, following the concept of
the circular economy. This study focuses on investigating the properties of concrete using carbon
black as a partial replacement of natural fine aggregate at different percentages. Experiments were
designed according to the British Standard (BS1881-Part-119) and American Standard (ASTM C-78) by
including carbon black in concrete beams to perform as filler material to develop sustainable concrete.
In this study, mechanical properties of concrete were targeted by developing beams using different
percentages (0%, 25%, 50%, 75%, and 100%) as a replacement of fine aggregates. These beams were
tested for flexural strength and, later on, the same beams were cut in the form of cubes, following the
equivalent cube test mechanism for the compressive strength test. The waste carbon black lightweight
concrete developed in this study was utilized for both structural and non-structural purposes. At 25%
and 50% replacement, the strength of lightweight concrete varied from 20–18 MPa, and according to
American Concrete Institute (ACI) standards, lightweight concrete at 28 days strength with ≥17 MPa
can be used as structural concrete, and the remaining 75% and 100% replacement concrete can be
used for non-structural purposes. This study will help in the development of economical eco-friendly
sustainable concrete materials.

Keywords: sustainable; eco-friendly; materials; waste management

1. Introduction

Globally, for development purposes, the material that is utilized the most is concrete [1]. Due
to the rapid utilization of concrete, the manufacturing of cement is also expanding every day, which
contributes to environmental pollution due to the release of CO2 [2,3]. Moreover, the demand for
concrete manufacturing ingredients, i.e., cement, sand, and aggregate, is also varying concurrently [4].
On a regular basis, conventional concrete is used for infrastructure development [5]. However, the
density of that type of concrete is very high, which contributes to the high self-load for structure [6,7].
To resist this loading effect, extra measures (i.e., reinforcing) are required to be taken [8]. Because of all
these aspects, the consumption of lightweight concrete is expanding day by day [9,10]. Lightweight
concrete is very helpful in minimizing this effect and makes a construction durable and strong due to
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less density, better strength, and thermal insulation [11–13]. The development of lightweight concrete
as a structural material has been under way ever since the Roman Empire. Likewise, their sensible
utilization occurred when lightweight concrete ships were developed by the American Emergency
Fleet Corporation [14]. Furthermore, a series of investigative reviews has been conducted by numerous
scholars on the evolution of lightweight concrete by employing a variety of substances, such as
ceramist and pottery [15], leca, argex and arlita [16], limestone [14], eps beads [17], rice husk ash [18],
vermiculite [9], automotive shredder residues [19], waste polystyrene [20], polyolefins waste [21],
polyurethane foam [22], etc. Moreover, approximately 1.5 billion tires are traded every year worldwide
and about 50% is disposed of due to the lack of productive use [23,24]. Each year about 2.5 million tons
of tires are disposed of in North America, with 4 billion scrap rubber tires already found in landfills [25].
According to Thomas et al., the disposal amount will increase to 1.2 billion annually at the end of
2030 [24]. To address this problem, waste rubber is added into the concrete as a replacement of fine
aggregate. A lot of investigational studies have been conducted to utilize the recycled tire by cutting
them into fine units (i.e., crumb rubber) in concrete and pavement [4,26–28]. Earlier research indicates
that the physical and durable characteristics of concrete have been enhanced due to the accumulation
of crumb rubber [29–31]. Nevertheless, the analysis suggests that the mechanical characteristics of
crumb rubber concrete are reduced [32,33]. The primary factor of this decrease is the weak adhesion
tie among rubber and cement particles as the rubber surface is very smooth [28,34]. Meanwhile, a lot
of investigative approaches show an enrichment of durability and elastic performances and a lack of
compressive behavior [35]. At the same time, microcracks are improved due to the enhancement of
strain capacity [36]. Another material that contributes to environmental pollution and affects the soil
and water characteristics, as well, is carbon black, which originally emerged due to the large-scale
utilization of rubber tires [37–39]. The fundamental unstructured material that is obtained from rubber
tires is carbon black that is utilized as filler material in rubber and plastic products. It is a very
popular material in the rubber industry because it enhances the resistance and mechanical properties
of rubber. Usually, it is identified as a pyrolytic carbon black due to its higher % friction in tires
and carbonaceous materials [37,40], since around 74–76% of tires are manufactured with carbon built
substantial [41]. Earlier experimental studies on the recycling and utilization of carbon black have
been done by numerous researchers [25,41–43]. Previous research also elaborates that carbon black
is helpful to minimize the crack appearance in concrete prisms when they are subjected to bending,
and it also enhances their conductivity and mechanical assets [42,44]. Similarly, another research
examines the performance of concrete by substituting various fractions of cement and sand with
carbon black [3,45]. Furthermore, efficient results have been obtained by a substitution of nanocarbon
black into concrete as an additive. The effect of nanocarbon black is amended by the conductivity
and mechanical characteristics of concrete [46]. Meanwhile, various researchers used carbon black
for various experimental purposes, such as the manufacturing of Na-ion batteries [47], to check the
impact of carbon black concrete on the corrosion of steel [48], for the advancement of elastic electronic
devices [49], by using it as an alternate microfiller [50], for laser displays [51] and sensors [52], to
develop concrete that can resist radiations (i.e., shielding concrete) [53], to be utilized as an additive [54],
for the use as mechanical reinforcement additive [55,56], etc.

The primary aim of this research is to produce a versatile lightweight concrete by utilizing the
material that contributes to environmental pollution (i.e., carbon black). Furthermore, the behavior
of specimens is reviewed by applying two sorts of tests, namely destructive and non-destructive
testing. With the help of destructive testing, compression and flexural strength are analyzed, and
ultrasonic pulse velocity tests are used for non-destructive analysis purposes. An innovative procedure
is developed for the compression testing of a standard specimen. The results are analyzed through
experimental, analytical, and statistical methods. A relationship is developed between numerous
parameters to investigate the performance of carbon black-based concrete.
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2. Materials and Methods

2.1. Materials

2.1.1. Basic Material Characteristics

The basic cementitious material used in this research is according to ASTM [57] with Grade 53 of
Type-1 cement manufactured by Maple Leaf Pvt. Ltd. The physical and chemical properties of cement
are shown in Tables 1 and 2 [58–62].

Table 1. Chemical properties of ordinary Portland cement.

LOI SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O

3.48 20.80 4.97 3.15 63.17 1.86 2.64 0.66 0.42

Table 2. Basic physical properties of the materials.

Property Unit Result Standard

Ordinary Portland Cement

Bulk Density kg/m3 1440.00 ASTM C-188
Normal Consistency % 28.00 ASTM C-187

Fineness % 96.34 ASTM C-184
Initial Setting Time mints 135.00 ASTM C-191
Final Setting Time mints 190.00 ASTM C-191

Soundness mm 1.00 BS 196-3

Fine Aggregates

Fineness Modulus __ 2.17 ASTM C-136
Bulk Density kg/m3 1529.00 ASTM C-29

Coarse Aggregates

Bulk Density kg/m3 1500.00 ASTM C-29
Aggregate Impact Value % 20.45 BS 812-3

Aggregate Crushing Value % 26.50 BS 812-3
Los Angeles abrasion % 31.00 ASTM C-131

Water Absorption % 3.50 ASTM C-127

The fine aggregate utilized in this research is “Chenab River (sand)” and the maximum size of
fine aggregate is 4.75 mm. A coarse aggregate used in this research—“Sakhi Sarwar aggregates”—is
composed of mixed limestone (55%) and sandstone (45%). It is well-graded and the maximum size is 20
mm. The physical and gradation curve of these aggregates are shown in Table 2 and Figure 1 [63–69].

2.1.2. Carbon Black

Carbon black is an extremely fine, one-dimensionally conductive, and spherical shape material
that has a higher surface to volume ratio due to its size. It contains a very small quantity of oxygen
while the extent of carbon in carbon black is >98% [41]. Moreover, it can be produced underneath
the control environment due to the deficient ignition or thermal decomposition of gaseous or fluid
hydrocarbons [3,41]. The material is usually obtained from waste tires through the help of the pyrolysis
technique [46]. The gradation curve at various replacement percentages of sand with carbon black and
the physical properties of carbon black is shown in Table 3 and Figure 1 [63,65]. As the replacement of
sand increased, the fineness of fine aggregates decreased, and the gradation curve became gap graded.
In this study, the size of most particles was 0.15 and 0.075 mm.
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Table 3. Basic physical properties of waste carbon black.

Property Unit Result Standard

Fineness Modulus __ 0.835 ASTM C-136
Bulk Density kg/m3 801 ASTM C-29Processes 2019, 5, x FOR PEER REVIEW  4 of 16 
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Figure 1. Gradation curve of aggregates.

2.2. Mix Design and Preparation of Test Specimens

The utilization of carbon black as a filler material was carried out in this research. Basically, M20
grade was used in this study at a 0.65 w/c ratio. Fine aggregate was replaced with carbon black by
volume at numerous percentages. The mix proportion of waste carbon black lightweight concrete is
shown in Table 4.

Table 4. Mix proportion of Waste Carbon Black (WCB) Lightweight Concrete.

Mix ID Unit WCB-0 WCB-25 WCB-50 WCB-75 WCB-100

W/C Ratio __ 0.65 0.65 0.65 0.65 0.65
Water Liter 269.18 269.18 269.18 269.18 269.18
Replacement of WCB % 0 25 50 75 100
Cement kg/m3 414.12 414.12 414.12 414.12 414.12
Fine Aggregate kg/m3 660.31 494.27 330.15 164.12 0
Coarse Aggregate kg/m3 1293.90 1293.90 1293.90 1293.90 1293.90
Waste Carbon Black (WCB) kg/m3 0 85.88 173.66 259.54 345.42

Firstly, the fine and coarse aggregates and cement were mixed for 2 min. After the waste carbon
black was added, it was mixed again for 2 min. Then, the required water was added. We mixed until a
homogenous and uniform lightweight concrete was formed. For every mix proportion, a fresh concrete
test was performed to determine the consistency of concrete according to ASTM C-143 [70]. After
successful preparation of a homogenous concrete, the molding of the standard specimen (i.e., 500 mm
× 100 mm × 100 mm) was carried out and after 24 h the specimen was demolded and put into a water
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tank for curing purposes according to ASTM C-192 [71]. For each mix ID, three specimens were cast
for 7 days and, relatively, for 28 days. For this purpose, a compaction vibrating table was used.

2.3. Testing Methods

After demolding, the specimens were dried at room temperature at 23 ± 2 ◦C and then both
destructive and non-destructive tests were applied to investigate the behavior of waste carbon black
lightweight concrete.

2.3.1. Non-Destructive Testing

In this testing, an ultrasonic pulse velocity test was conducted on a standard specimen to determine
the carbon black concrete characteristic and uniformity [72,73]. For this aim, the MATEST (Italy) brand
apparatus of ultrasonic pulse velocity was employed. The equipment consists of two probes with
a frequency of 55 kHz, a measuring range of 0–3000 µs ± 0.1 µs, and the coupling agent for a firm
connection and better transmission. The test was conducted according to ASTM C-597 [74] and the
operational diagram is shown in Figure 2.
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Figure 2. Schematic diagram of ultrasonic pulse velocity.

Firstly, non-destructive testing was applied to every specimen before destructive testing. Then,
the waves were passed through each standard specimen. Afterwards, the travel time was noted. Then,
with the help of the following equation listed in ASTM C-597 (1) and (2), the velocity (V) and dynamic
modulus of elasticity (Ed) were determined and the Poisson’s ratio for lightweight concretes was taken
(0.28) [17,75].

V =
L
T

, (1)

where
L = travel path length (m), T = transit (µs), V = pulse velocity (km/s).

V =

√
Ed(1− µ)

ρ(1 + µ)(1− 2µ)
. (2)

µ = Poisson ratio;
V = pulse velocity (m/s);
ρ =density of concrete (kg/m3);
Ed = dynamic modulus of elasticity (GPa).
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2.3.2. Destructive Testing

In destructive testing, a compressive and flexural strength test was carried out on specimens to
determine their behavior under specific loading. The technique that we applied for the destructive
testing on specimens is given below:

Step 1: The third point load flexural strength test was applied on standard prisms (i.e., 500 mm ×
100 mm × 100 mm) according to ASTM C-78 [76], as shown in Figure 3a.
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Step 2: After the flexural strength test, the prism was broken into two pieces and the length of
each piece was evaluated with measuring tape, as shown in Figure 3b.

Step 3: After measuring each piece, two pieces of 100 mm × 100 mm × 100 mm cubes were
produced by cutting. The mechanism is shown in Figure 3c.

Step 4: The completion of compression strength test cutting conducted on standard 100 mm ×
100 mm × 100 mm cubes to investigate their strength is shown in Figure 3(a). For this purpose, the
MATEST brand device was utilized at a loading rate of 5 KN/s with a maximum machine capacity of
2000 KN following the ASTM C-39 [77].

For a better understanding of the results, the flexural strength was computed by using Equation
(3) listed in ACI 318 [78].

fr = 0.7
√

fc′. (3)

fc’ = compressive strength (MPa);
fr = flexural strength (MPa).
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3. Results and Discussion

3.1. Fresh Concrete Test

To know about the workability of fresh waste carbon black, a concrete slump test was performed on
every replacement of fine aggregates. As the replacement increased, the workability values increased,
as shown in Table 5.

Table 5. Workability of Waste Carbon Black (WCB) Lightweight Concrete.

Mix ID Slump (cm)

WCB-0 5.08
WCB-25 13.97
WCB-50 15.24
WCB-75 16.51

WCB-100 7.62

It is clearly shown in Table 5 that with the increase in replacement, the workability has increased
which results in the decrease of workmanship during the casting of concrete structures. At 100%
of carbon black, the workability was also very good, which indicates that the carbon black has not
absorbed a lot of water. Therefore, with a lower water/cement ratio, a good workable concrete can be
made by utilizing waste carbon black as a filler material.

3.2. Density

When the percentage replacement of carbon black increases, the density of concrete decreases due
to the lighter weight of carbon black with respect to fine aggregates. The consequence of carbon black
replacement on concrete density and weight reduction is shown in Figure 4.
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As shown in the above Figure 4, as the content of carbon black varies, the weight reduction
of concrete is increased up to approximately 16%, and the weight is reduced at 100% replacement.
Meanwhile, at 100% replacement, the density is 2050 kg/m3. The density of waste carbon black concrete
lies in between 2370 kg/m3–2050 kg/m3. At every 25% replacement of sand with carbon black at about
3.5%, weight is reduced relative to conventional concrete weight.

3.3. Non-Destructive Testing

In this research, the ultrasonic pulse velocity test was also used to analyze the waste carbon black
concrete quality and their uniformity and presence of voids. The brief result analysis of non-destructive
testing is shown in Figure 5.
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Figure 5. Non-destructive testing: (a) % replacement of carbon black effect on UPV and (b) dynamic
modulus of elasticity (GPa).

The higher the percentage replacement, the lower the value of velocity. At 0% replacement, the
value of velocity was 4370 m/s at 28-days curing, and the value of Ed was about 36 GPa. On the other
hand, at 100% replacement, the value of velocity was about 2600 m/s and Ed was 11 GPa. The value of
the velocity at 28-days curing varied from 4370 m/s–2600 m/s. Meanwhile, the value of the velocity at
7-days curing varied from 4150 m/s–2448 m/s. Furthermore, the Ed value varies from 32 GPa–9 GPa at
7-days curing. For 7- and 28-days curing, the difference between the velocity values at 0% replacement
was about 5.25%.

3.4. Destructive Testing

The destructive testing results were very helpful to analyze the true behavior of specimens under
specific loading. In this research, compression and flexural strength tests were applied to the standard
specimen according to the technique discussed above. The destructive testing results at 7- and 28-days
curing are shown in Figure 6.
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Figure 6. Destructive testing: (a) compressive strength at 7-days and 28-days curing, (b) flexural
strength at 7-days and 28-days curing.
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At 0% replacement, the value of compressive strength was approximately 13.40 MPa and the
flexural strength was about 3 MPa. The graphical analysis shows that percentage replacement and
destructive testing results are inversely proportional to each other. As the curing period increased, the
results of destructive testings showed more efficient results of waste carbon black lightweight concrete.
At 28-days curing, the compressive strength at 0% was approximately 21 MPa and the flexural strength
was 3.5 MPa. The percentage difference at 7- and 28-days was only 40% for 0% replacement. As the
percentage replacement increased, the value of destructive testing decreased. At 28-days curing, the
strength was not much increased at 75% and 100% replacement compared to the 7-days curing results.
It indicates that approximately 85% of strength at 75% and 100% replacement was achieved at 7-days
curing. The comparison between experimental flexural strength and by using Equation (3) is shown in
Table 6.

Table 6. Comparison between flexural strength—fr (MPa).

Mix ID Experimental fr (MPa) ACI fr (MPa) % Difference

WCB-0 3.31 3.20 –3.43
WCB-25 2.93 3.07 +4.78
WCB-50 2.71 2.96 +9.23
WCB-75 2.54 2.40 –5.51

WCB-100 2.15 2.27 +5.58

The experimental values are very close to the value computed through the ACI equation. The highest % difference
is +9.23 for WCB-50.

3.5. Destructive and Non-Destructive Results

Non-destructive testing (NDT) results are very helpful to investigate the performance of destructive
testing (DT) results. NDT properties are observed with the help of ultrasonic pulse velocity and dynamic
modulus of elasticity values. However, DT properties are collected by destructive machine-based testing
equipments, such as compressive strength testing machines. Figures 7 and 8 show the comparative
results of 28-days destructive and non-destructive testing.

Processes 2019, 5, x FOR PEER REVIEW  9 of 16 

 

At 0% replacement, the value of compressive strength was approximately 13.40 MPa and the 
flexural strength was about 3 MPa. The graphical analysis shows that percentage replacement and 
destructive testing results are inversely proportional to each other. As the curing period increased, 
the results of destructive testings showed more efficient results of waste carbon black lightweight 
concrete. At 28-days curing, the compressive strength at 0% was approximately 21 MPa and the 
flexural strength was 3.5 MPa. The percentage difference at 7- and 28-days was only 40% for 0% 
replacement. As the percentage replacement increased, the value of destructive testing decreased. 
At 28-days curing, the strength was not much increased at 75% and 100% replacement compared to 
the 7-days curing results. It indicates that approximately 85% of strength at 75% and 100% 
replacement was achieved at 7-days curing. The comparison between experimental flexural 
strength and by using Equation (3) is shown in Table 6. 

Table 6. Comparison between flexural strength—fr (MPa). 

Mix ID Experimental fr (MPa) ACI fr (MPa) % Difference 

WCB-0 3.31 3.20 –3.43 
WCB-25 2.93 3.07 +4.78 
WCB-50 2.71 2.96 +9.23 
WCB-75 2.54 2.40 –5.51 

WCB-100 2.15 2.27 +5.58 
The experimental values are very close to the value computed through the ACI equation. The 
highest % difference is +9.23 for WCB-50. 

3.5. Destructive and Non-Destructive Results 

Non-destructive testing (NDT) results are very helpful to investigate the performance of 
destructive testing (DT) results. NDT properties are observed with the help of ultrasonic pulse 
velocity and dynamic modulus of elasticity values. However, DT properties are collected by 
destructive machine-based testing equipments, such as compressive strength testing machines. 
Figures 7 and 8 show the comparative results of 28-days destructive and non-destructive testing. 

 
(a) 

10

12

14

16

18

20

22

2500 3000 3500 4000 4500

Co
m

pr
es

siv
e 

St
re

ng
th

 (M
Pa

)

UPV (m/sec)

Figure 7. Cont.



Processes 2020, 8, 174 10 of 16

Processes 2019, 5, x FOR PEER REVIEW  10 of 16 

 

 

(b) 

Figure 7. Non-destructive testing (NDT)–destructive testing (DT): ultrasonic pulse velocity (UPV) 
vs. (a) compressive strength and (b) flexural strength. 

 
(a) 

 
(b) 

Figure 8. NDT–DT: dynamic modulus of elasticity (Ed) vs. (a) compressive strength and (b) flexural 
strength. 

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

2500 3000 3500 4000 4500

Fl
ex

ur
al

 St
re

ng
th

 (M
Pa

)

UPV (m/sec)

10

15

20

25

10 15 20 25 30 35 40

Co
m

pr
es

siv
e 

St
re

ng
th

 (M
Pa

)

Ed (Gpa)

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

10 15 20 25 30 35 40

Fl
ex

ur
al

  S
tr

en
gt

h 
(M

Pa
)

Ed (Gpa)
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(a) compressive strength and (b) flexural strength.
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Figures 7 and 8 clearly show the relationship between destructive and non-destructive testing
results. As the values of velocity increased, the same the values of destructive testing also improved,
which indicates a direct relationship among these testing techniques. Moreover, the amount of the
dynamic modulus of elasticity varies. Higher velocity values indicate the uniformity and homogeneity
of standard specimens. Because fewer voids were present, the values of compressive and flexural
strength were high. Meanwhile, the highest value of compressive strength shows the high value of
ultrasonic pulse velocity and dynamic modulus of elasticity. Flexural strength also varies simultaneously
to compressive strength.

3.6. Statistical Analysis

The statistical analysis is very helpful to analyze the variation of testing values that were obtained
during the entire testing. For this purpose, the standard deviation and regression analysis was used to
investigate the trending of results. The standard deviation for various parameters at 28-days curing is
listed in Table 7. Figure 9 showing the statistical analysis of compressive strength, flexural strength,
and ultrasonic pulse velocity at 28-days curing.

Table 7. The standard deviation of destructive and non-destructive testing.

Mix ID UPV (m/s) Flexural Strength (MPa) Compressive Strength (MPa)

WCB-0 4370.44 ± 11.41 3.31 ± 0.07 20.86 ± 1.43
WCB-25 4058.46 ± 9.96 2.93 ± 0.07 19.25 ± 1.15
WCB-50 3616.25 ± 16.78 2.71 ± 0.06 17.92 ± 2.56
WCB-75 3312.80 ± 20.21 2.54 ± 0.06 11.75 ± 1.34

WCB-100 2620.66 ± 21.08 2.15 ± 0.07 10.51 ± 1.41
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Figure 9. The statistical relationship between compressive strength and ultrasonic pulse velocity.

Figure 9 indicates that the R-Square is 0.70, which demonstrates a satisfactory relationship between
ultrasonic pulse velocity and compressive strength at 28-days curing. Furthermore, an exponential
equation is proposed for future research. In Figure 10, the regression analysis is shown, indicating a
R-Square of 0.9455, which demonstrates a very good relationship between ultrasonic pulse velocity
and % replacement at 28-days curing.
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3.7. Cost Analysis

After the statistical and graphical investigation of waste carbon black lightweight concrete results,
the impact of sand replacement with waste carbon black in terms of cost are also shown in Table 8.

Table 8. Cost analysis for 1 m3 concrete produced using waste carbon black.

Mix ID Cement Aggregate Sand WCB Total Cost Saving

USD($) USD($) USD($) USD($) USD($) (%)
WCB-0 29.39 9.81 3.93 0 48.34 –

WCB-25 29.39 9.81 2.94 0.48 47.83 1.06
WCB-50 29.39 9.81 1.96 0.98 47.35 2.05
WCB-75 29.39 9.81 0.98 1.46 46.85 3.08
WCB-100 29.39 9.81 0 1.95 46.36 4.10

Table 8 shows that as the percentage replacement increases, the cost decreases because at 100%
replacement of sand, the fine aggregate cost is approximately zero. This is economically very beneficial
for the construction industry in order to save a lot of money against the utilization of waste carbon black.

4. Conclusions

This study focused on the utilization of waste carbon black as filler material for the development
of concrete. Moreover, the development of lightweight concrete through the utilization of waste carbon
black was very effective. Approximately 16% weight was reduced through the replacement of sand
with waste carbon black and, simultaneously, a lot of dead load saving occurred due to the utilization
of waste carbon black in concrete. A new technique for the investigation of compressive strength
was applied with reference to the equivalent cube test mechanism. The results obtained through this
technique were excellent and very helpful for future experimental investigations. Destructive and
non-destructive testing, and, later on, statistical analysis were conducted. The performance through
the value of the coefficient of determination (R-square) was 0.70 between the ultrasonic pulse velocity
and compressive strength results at 28 days of curing condition. Correspondingly, the R-square for
% replacement and ultrasonic pulse velocity was 0.94. The waste carbon black-based lightweight
concrete developed in this study can be utilized for both structural and non-structural purposes. At
25% and 50% replacement the strength of lightweight concrete varied from 20–18 MPa and, according
to ACI lightweight concrete, if 28 days strength is ≥ 17 MPa, it can be used as structural concrete [79].
The remaining 75% and 100% replacement concrete can be used for non-structural purposes. This
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study will help in the development of economical eco-friendly sustainable concrete materials and black
carbon waste management.
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