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Abstract: Curcumin was microencapsulated by porous starch using a spray dryer with a particle
size between 1.5 and 2.0 µm and subjected to water bath (40–100 ◦C) and oven heating (150–200 ◦C)
in comparison to non-encapsulated samples. The minimum possible encapsulation rate ranged
from 26.75 to 52.23%. A reasonable thermal stability was observed after water bath heating with
regard to 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging activity. On the other hand,
the increase in oven heating temperature caused significant alterations compared with the control
samples (p < 0.05). The encapsulated particles subjected to oven heating at 170 ◦C demonstrated
serious collapse. The DPPH scavenging activity of non-encapsulated curcumin was significantly
reduced (p < 0.05) from 48.94% ± 3.72% (control, 0 ◦C) to 40.42% ± 2.23% (oven heating, 160 ◦C);
however, remained stable for the encapsulated samples (51.18% ± 4.86%–50.02% ± 1.79%) without
significant difference (p < 0.05). The ABTS scavenging activity was promoted as a function of the
oven heating temperature. Both DPPH and ABTS free radical scavenging activities remained stable
after water bath. Nevertheless, the color of microencapsulated curcumin was better preserved in
comparison to the controls.

Keywords: encapsulated curcumin; spray drying; free radical scavenging activity; color attribute;
oven heating

1. Introduction

Turmeric (Curcuma longa) is a perennial herb, and the yellow powder obtained upon grinding its
rhizomes has long since been consumed by humans and its usage is prevalent in several countries [1].
Turmeric powder is one of the main spices used in curry and acts as a coloring agent. Curcumin,
also known as diferuloylmethane, is the main active and coloring component in turmeric powder.
Several studies have shown that curcumin can prevent chronic diseases by trapping free radicals as
well as by exerting its antioxidant effects. However, curcumin is easily destroyed by heating [1,2].

Microencapsulation was first used in the manufacturing of carbon paper, before subsequently
being used in textiles, medicine, cosmetics, and food processing [3–5]. Microencapsulation refers
to the technique of encapsulating core material with a high-molecular-weight wall material to form
microcapsules. The main aim of this technique is to use the wall material for separating the core material
from the outside environment to envelop, protect, store, or release drugs [6,7]. Microencapsulation has
gained attention because wall materials act as a barrier against light, heat, acid, base, and humidity.
In addition, wall materials can suitably separate reactants to prevent immediate oxidation or hydrolysis
and conditionally release the core material at suitable timepoints for facilitating its reaction with
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reactants [7,8]. Microencapsulation is gradually being used in the food industry, where it can be
employed to encapsulate food additives (acidulants, flavoring agents, seasoning agents, or sweeteners),
probiotics, and coloring agents. The use of microencapsulation to process coloring agents can improve
the solubility and stability of these agents [9–13].

Spray drying, also known as bi-fluid drying, is a method that uses high pressure gas to atomize
liquids into a mist before convection is used to immediately evaporate the water in the mist droplets.
The convection effects of hot air are used to vaporize the moisture in the liquid, thereby facilitating
the drying of the solids in the solution, and this method of instant vaporization of water from liquids
using hot air is termed as spray drying. Spray drying is often employed to prepare microcapsules
with multi-core structure using the pores formed owing to the penetration of wall materials by core
materials, which further increase in size after spray drying. The core materials then occupy these pores
and are dispersed between the wall material and core sections [7,14–16]. This multi-core structure can
be confirmed via microscopic observation.

In a recent study, microencapsulated curcumin was evidenced to improve stability while different
dry methods (spray and lyophilization) were facilitated [17]; the results indicated that spray-dried
curcumin capsules possessed a higher retention rate under light exposure during long term storage
comparing to lyophilized ones. Such results make spray-dried curcumin capsules appealing for further
study regarding the wall material formulation including the employments of Aloe vera mulcilage, casein,
kappa-carrageenan, and casein and the antioxidant properties the capsules were also evaluated [18–20].
With the aid of rhamnolipids as a biosurfactant (emulsifier), curcumin was also successfully facilitated
into a liposomal delivery system in the light of nutra/pharmaceutical preparation even with only an
ethanol-injection method [21]. However, to the best of our knowledge, currently, there is no study
regarding the use of spray drying to encapsulate curcumin and assessment of its antioxidant activity
as well as the tolerability of its coloring component upon thermal processes simulating culinary arts.
Therefore, the present study aimed to use β-cyclodextrin and porous starch as wall materials for the
microencapsulation of curcumin with proper emulsification and thickening agents. An orthogonal
experimental design was used to optimize the microencapsulated curcumin (MEC) prepared by
spray drying with regards to the encapsulated rate and particle size. The changes in its stability
and bioactivity under common food thermal conditions were assessed to improve its applicability in
food processing.

2. Materials and Methods

2.1. Materials

Sample powder (of Indian origin) containing 95% curcumin, which was purchased from
Bo-Cheng flavoring ingredient Inc., Tainan, Taiwan, was employed as the MEC core material.
β-cyclodextrin, potato starch, sucrose stearic acid ester S-1170, and sodium carboxymethyl
cellulose (CMC) were food grade and obtained from local sources. The antioxidant
standards—di(phenyl)-(2,4,6-trinitrophenyl) iminoazanium (DPPH), 2,2′-azino-bis(3-ethyl benz-thiazo
line-6-sulphonic acid) (ABTS), and 6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox)
were purchased from Sigma-Aldrich GmbH (Sternheim, Germany). The high-performance liquid
chromatography (HPLC)-grade methanol was used for curcumin analysis; all other chemicals used
were analytical grade obtained from either Sigma-Aldrich or Merck (Darmatadt, Germany).

2.2. Experimental Framework

In the present study, a three-level orthogonal experimental design was employed that was
based on the four controlling factors for emulsification—wall material percentage, excipient weight,
homogenization temperature, and homogenization time—to identify the optimal microencapsulation
rates for subsequent heat resistance analyses. The similar orthogonal array have been employed
microencapsulation studies on curcumin and allicin utilizing spray drying technique [22,23]. Such an
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experimental framework is denoted as an L9(34) center composite array, 9 runs involved in 3 levels
for 4 factors with systematic vector of [−1, 0, 1]. The vector indices were marked in Table 1 with
parentheses. Changes in the curcumin content and antioxidant activity (DPPH and ABTS free radical
scavenging activities), as well as the changes in color before and after simulated thermal processing,
were examined.

Table 1. L9(34) § Orthogonal array of the present study with minimum encapsulation efficiency and
viscosity of curcumin containing emulsion.

Exp.**
Factors *

Wall Material
(%)

Excipient
(g)

HMG Temperature
(◦C)

HMG Time
(h)

1/(A) 1 (−1) 0.1 (−1) 40 (−1) 1 (−1)
2/(B) 1 (−1) 0.15 (0) 50 (0) 1.5 (0)
3/(C) 1 (−1) 0.2 (1) 60 (1) 2 (1)
4/(D) 3 (0) 0.1 (−1) 50 (0) 2 (1)
5/(E) 3 (0) 0.15 (0) 60 (1) 1 (−1)
6/(F) 3 (0) 0.2 (1) 40 (−1) 1.5 (0)
7/(G) 5 (1) 0.1 (−1) 60 (1) 1.5 (0)
8/(H) 5 (1) 0.15 (0) 40 (−1) 2 (1)
9/(I) 5 (1) 0.2 (1) 50 (0) 1 (−1)

* HMG: Homogenization. ** Exp.: Experimental sample. § 9 runs involved in 3 levels for 4 factors. (A) through (I)
refer to the representation of Figure 1.

2.3. Production of MEC

2.3.1. Operation of Spray Dryer

The wall material and MEC were prepared using the spray dryer (Pulvis Mini Spray Model GA32,
Yamato Scientific Ltd., Tokyo, Japan), according to a method described previously [23]. The conditions
used were as follows: feed velocity = 10 mL/min, air speed = 40 m3/h, and inlet temperature =

120 ◦C. The volume of each spray drying sample was 900 mL, and spray drying duration was 1.5 h.
After samples were used to prepare MEC powder, they were stored at −20 ◦C until further use.

2.3.2. Preparation of the Wall–Core Emulsion

Regarding the preparation of porous starch, according to the method described by Chang, Yu,
and Ma [24], 5 g of potato starch were added to 100 mL of distilled water. The mixture was heated
to 95 ◦C and maintained for 30 min until complete gelatinization was achieved. The potato starch
suspension was stored at 5 ◦C for 48 h until it solidified into a gel. The gel was cut into 1-cm3 blocks
and stored in a −10 ◦C freezer for 48 h. The frozen gel blocks were immersed in 95% edible alcohol
at room temperature for 3 h before placing them in a convection-heating oven for 6 h at 50 ◦C and
followed by 2 h of drying at 100 ◦C until alcohol was completely removed to obtain porous starch.

For the preparation of the wall–core emulsion, the prepared porous starch and β-cyclodextrin
were mixed in a 7:1 ratio and dissolved in distilled water at ≥70 ◦C to obtain an aqueous solution;
to obtain a thickened emulsion, 20 mg of curcumin (dissolved in 95% alcohol), 1–5% w/v wall material
powder, and 1–2 g excipient were dissolved in deionized water before heating the mixture in a
water bath (40–60 ◦C), along with high-speed homogenization at 4000 rpm (1–2 h) using a Polytron
RT-3000 homogenizer (Kinematica Inc., Luzern, Switzerland). The excipient comprised equal parts
of sucrose stearic acid ester (S-1170) and CMC, with S-1170 as emulsification agent and CMC as
thickener. The viscosity of the emulsion, which would determine the subsequent encapsulation rate,
was measured using a viscometer (DV-II+ Brookfield Engineering Laboratories, Inc., Middleboro, MA,
US) and a RV-4 spindle at a rotational speed of 100 rpm. The controlling factors, including the wall
material percentage, excipient weight, water bath temperature, and homogenization time, were used
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to prepare nine samples, as listed in Table 1, according to the three-level orthogonal experimental
design before spray drying to form MEC. Every batch of 900 mL of the thickened emulsion matrix was
subjected to spray drying to form MEC.

Four calibration curves were made for curcumin measurements:(I) 20 mg 95% curcumin alone,
(II) 20 mg 95% curcumin + 0.85 g wall material, (III) 20 mg 95% curcumin + 0.2.45 g wall material,
and (IV) 20 mg 95% curcumin + 4.05 g wall material. Each group was reconstituted in 10 mL of methanol
for 30 min before extraction was performed using an ultrasonic water bath (47 ± 3 kHz with power
level of 120 W). Thereafter, the sample was centrifuged for 15 min at 3000 rpm using a refrigerated
centrifuge (Avanti J-15, Beckman Coulter Inc., Indianapolis, IN, US). The supernatant was collected
and a serial dilution was prepared (10, 5, 2.5, 1.25, and 0.625 ppm). Subsequently, an absorbance
wavelength (λ) of 420 nm was set to measure the absorbance. The standard concentration curve for
curcumin was obtained after performing a regression with a R2 greater than 0.9993. The regression
curves were used for corresponding samples with different incorporated wall material.

2.4. Characteristics of MEC

2.4.1. Particle Size Evaluation of MEC

A transmission electron microscope with photography function (BX-51, Olympus, Tokyo, Japan)
was used to observe the particle size of MECs (at 100×magnification). The scale was used to estimate
the mean particle size of one MEC.

2.4.2. Quantitation of Curcumin Content in Every Group of Spray-Dried MEC Powder

Spray-dried MEC powder (20 mg) from nine experimental samples was weighed on a 5 ppm
basis and reconstituted in 10-mL methanol, followed by extraction in the ultrasonic water bath and
centrifugation using the refrigerated centrifuge as describe before. The corresponding standard curve
was used to measure curcumin content.

2.4.3. Measurement of Curcumin Encapsulation Rate of Spray-Dried MEC for Each Group

The concentration of spray-dried MEC powder of every group was converted from ppm to g
before the minimum possible encapsulation rate was calculated using the following formula:

minimum ER (%) =
Mm

Mt
×

M f

Mi
100 (1)

where Mt refers to total added curcumin mass and Mm refers to the mass in the microcapsules; Mf

refers to the final mass of the microcapsule solids after spray-drying and Mi refers to the initial mass of
the raw microcapsule solids.

Thereafter, the orthogonal table was used for factor analysis to identify the most suitable
encapsulation rate factor and samples from three groups with better encapsulation rates were selected
for the heat resistance analysis of spray-dried MEC.

2.5. Heat Resistance Analysis of Spray-Dried MEC

2.5.1. Heating Simulation

For hydrothermal cooking, samples were precisely weighed and reconstituted in methanol before
subjecting them to water bath processing at 50–100 ◦C (an increment of 10 ◦C with 10 min of heating),
which simulated the normal hydrate cooking temperature and duration of foods. Oven heating at
150–200 ◦C (increment/time = 10 ◦C/30 min) was the simulated temperature and duration for baked
products. During oven heating, each sample was placed in the same position in the oven for avoiding
temperature differences. Unheated (0 ◦C) samples were used as the control for the water bath and
oven heating samples. After heating, ultrasonic water bath was used for 30 min of extraction, followed
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by centrifugation at 3000 rpm for 15 min in a refrigerated centrifuge. The supernatant was collected for
heat resistance analysis.

2.5.2. Heat Resistance Analysis

Items of this analysis for the water bath samples included changes in curcumin content and in
DPPH and ABTS free radical scavenging activities. As for the evaluations of DPPH and ABTS free
radical scavenging activities, the corresponding standard curves established in Section 2.4.2 were
used to decide the sample weight needed for methanol reconstitution to a 50 ppm concentration level.
In addition, color analysis was included for the oven heating samples. Regarding the curcumin content,
the standard curve and measurement method from Sections 2.4.2 and 2.4.3 were used to evaluate
residual curcumin content following water bath heating and oven heating.

By modifying the method of Jafari et al. [25], the sample supernatants were serially diluted to
the concentrations of 50, 25, and 12.5 ppm. 0.05 mL of samples were added to a 96-well plate before
adding 0.1 mM DPPH (0.24 mL) and these were thoroughly mixed. The plates were incubated in the
dark for 50 min before measuring absorbance at λ = 517 nm using a microplate reader (Spectra Max
190, Molecular Devices Inc., San Jose, CA, US). The following formula was used to calculate the DPPH
free radical scavenging activity of the samples. Trolox was used as the standard, and methanol was
used for the control.

DPPH % Inh =

(
A0 −A1

A0

)
× 100 (2)

where: A0 is the absorbance of the standard and A1 is the absorbance of the sample.
The method of Jafari et al. [25] was modified and 7 mM ABTS+ solution was added to 2.45 mM

potassium persulfate solution (1:1 mixing and incubating in a dark room for 12–16 h). Following
this, 95% ethanol was used for dilution, and absorbance at λ = 734 nm was adjusted to 0.7 ± 0.02.
The sample supernatant was also serially diluted to 50, 25, and 12.5 ppm, and 8 µL of sample was
added to a 96-well plate before adding 0.24 mL of ABTS diluent. After incubation in the dark room
for 6 min, the absorbance at λ = 734 nm was measured using a microplate reader, and the following
formula was used to calculate the ABTS free radical scavenging activity of the sample. Trolox was
used as the standard, and methanol was used for the blank control.

ABTS scavenging activity (%) =
(AB−AA

AB

)
× 100 (3)

where: AB is the absorbance of ABTS radical + methanol; AA is the absorbance of ABTS radical +s
ample extract/standard.

For color analysis, a colorimeter (ZE-2000, Nippon Denshoku Ltd., Tokyo, Japan) was used to
measure changes in the L, a, and b values of spray-dried curcumin MEC powder before and after oven
heating according to the method of Barreiro, Milano, and Sandoval [26]. First, a standard whiteboard
(Y = 93.73, X = 95.61, and Z = 113.46) was used for correction.

2.6. Statistical Analysis

The Statistical Package for the Social Science (SPSS version 19.0) was used for statistical analysis.
One-way analysis of variance was used for significance, and Duncan’s multiple range test was used for
comparison of significant difference. The Pearson correlation analysis between color parameters and
antioxidant activity was also conducted. A difference of p < 0.05 was considered significant.

3. Results and Discussion

3.1. Particle Size Analysis of MEC

Figure 1 shows the observed particle size of experimental samples 1–9 under the transmission
electron microscope at a magnification of 100×. The particle size was found to be 1.5–2.0 µm.
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Some particles underwent aggregation, and the aggregated particles in Figure 1B,C are larger,
whereas others in Figure 1A through Figure 1I are smaller. The aggregate particle size in Figure 1
can be classified as follows: 1B = 1C > 1E = 1D = 1A > 1F = 1H = 1G = 1I. As curcumin itself is
hydrophobic and viscous, this finding may be associated with the subsequent encapsulation rate.
Typically, the particle size of spray-dried powder is <10 µm [24]. According to the manufacturer
instructions for the spray dryer used in the present study, particle size from the atomizing nozzle
should be 2.0–3.5 µm. The partial aggregation phenomenon shown in Figure 1 may be attributable to
the storage of the spray-dried powder in a −4 ◦C freezer and its thawing at room temperature that
resulted in water vapor causing the powder to form aggregates. Therefore, this phenomenon was
observed under transmission electron microscope.
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In addition, the particle size was smaller than that achieved using the atomizing nozzle (2.0–3.5µm)
owing to the effects of emulsion viscosity, solid content, and other physical characteristics of the
emulsion. Furthermore, the settings of the spray dryer have an influence on the particle size: a higher
inlet temperature results in faster drying and smaller particle size. When loading speed is fast and
drying remains incomplete, particles would aggregate and the powder particles from the spray dryer
would be larger. In addition, the type of atomizing nozzle affects the powder particle size. Typically,
an atomizing nozzle that mixes high pressure gas and sample provides better results than high-speed
rotating blades; moreover, the spray-dried powder particle size is smaller [24].

3.2. MEC Encapsulation Rate Analysis

Table 2 lists the minimum possible encapsulation rates. Despite different ratio between wall
and core materials, robust calibration curves were obtained as described in Section 2.4.2. The
experiment results showed that the minimum possible encapsulation rate ranged from 26.75 to 52.23%,
which is consistent with the results of spray drying studies on curcumin pigment and allicin, a diallyl
thiosulfinate mainly derive from garlic [22,23]. Additionally, these results are consistent with the
results if encapsulation rates reported previously [27].

Table 2. The encapsulation efficiency and viscosity of curcumin containing emulsion.

Exp.
Measurement

Minimum ER *
(%)

Viscosity **
(cPoise)

1 (A) 29.8 ± 1.44 ab 32 ± 2.1 a

2 (B) 27.4 ± 2.61 a 34 ± 1.7 ab

3 (C) 26.8 ± 1.14 a 44 ± 0.8 d

4 (D) 44.1 ± 1.53 d 36 ± 1.21 b

5 (E) 32.3 ± 0.91 bc 40 ± 1.50 c

6 (F) 34.7 ± 1.08 c 48 ± 2.06 e

7 (G) 45.9 ± 1.25 d 48 ± 1.46 e

8 (H) 44.9 ± 3.45 d 48 ± 2.14 e

9 (I) 52.2 ± 2.19 e 56 ± 1.49 f

* ER: Minimum encapsulation rate. ** For viscosity measurement, the temperature was between 23.5 ◦C and 29.5 ◦C
and the rotational speed was 100 rpm. All values are means of triplicates. Means followed by lowercase letters in
the same column are significantly different due to thermal treatments (p < 0.05).

In addition, the ratio of core material and wall material would affect the encapsulation rate.
For example, when the ratio of core material to wall material is 1:4, the encapsulation rate should be
approximately 20% while aqueous solubility and stability of curcumin was studied [28]. In the present
study, the ratios of core material to wall material was 1:25, 1:42.5, and 1:122.5 and the much higher
encapsulation rate can be attributed to the higher ratio of wall material.

From the orthogonal array, which evaluated the effects of different factors, the ratio of wall
material was found to be the greatest factor that affects the encapsulation rate. The results showed
that encapsulation rate typically increased when the ratio of wall material increased. Reportedly,
the physicochemical characteristics of wall material are one of the main factors that determine
the encapsulation rate [22]. β-cyclodextrin and porous starch were used as microencapsulation
wall materials in the present study. In the literature, it has been reported that β-cyclodextrin can
protect volatile substances from damage during heating in the spray drying process [29]. In addition,
β-cyclodextrin has a suitable molecule size and exhibits good biocompatibility, and it has a hydrophobic
interior and hydrophilic exterior. These structural characteristics can tightly absorb hydrophobic
curcumin [30]. Due to its honeycomb structure and high emulsification ability, porous starch can help
β-cyclodextrin form a tight mesh structure to increase the absorption and adhesion, ensuring that
curcumin is sufficiently encapsulated in the wall material, thereby resulting in a higher encapsulation
rate [31].
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Spray drying involves the evaporative cooling effect. This phenomenon is based on the principle
that when air and liquid solution come in contact and mix, water droplets will absorb heat from air and
form water vapor. Therefore, the heat content of air will decrease, inherently decreasing the temperature.
However, as water vapor increases, the relative humidity of air also increases [32]. Therefore, the choice
of inlet temperature and hot air flow speed would have an effect on spray drying to some extent.
We selected a spray drying temperature of 120 ◦C because previous research has shown that volatile
substances do not easily volatilize at low temperatures, resulting in incomplete spray drying and
subsequent adherence of the particles to the spray drying chamber, thereby decreasing the yield.
However, excessively high temperature will prohibit the bioactivity of the spray-dried sample [22].
Related studies have shown that in downstream spray drying at 120 ◦C, the core temperature of MEC
is <100 ◦C [26], which is the phenomenon caused by the evaporative cooling effect as well. We selected
a spray drying rate of 40 m3/h because an excessively low flow rate will result in an inability to
completely separate MEC and dry air flow in a cyclone separator [26]. In addition, the increased
relative humidity due to the evaporative cooling effect becomes unfavorable for the drying air flow to
convey atomized suspension to the cyclone separator, causing more samples to adhere between the
drying chamber and cyclone separator and thereby decreasing the yield. An excessively high flow
rate will cause MECs to be carried by the drying airflow away from the spray dryer. In the literature,
although it has been mentioned that the effects of the flow rate are not significant, we believe that it
would result in some loss [26].

The practical inconvenience of spray drying is that extremely viscous substances tend to block the
atomizing nozzle, resulting in discontinuous production. Furthermore, emulsion viscosity is reportedly
a factor that affects microencapsulation rate [26]. Therefore, we performed viscosity analysis of the
emulsion before spray drying in the present study under the ambient temperature range (23.5–29.5 ◦C),
and the obtained viscosity range was 34–56 cp. This viscosity range does not cause any obstruction at
the atomizing nozzle during spray drying and can achieve good encapsulation rates and hence can be
used as a reference for future studies. Table 2 shows the viscosity of various samples. Samples 6–9
having higher encapsulation rate showed higher viscosity as well, proving that viscosity can affect the
encapsulation rate.

Experimental samples 7–9 were observed to have considerably superior minimum encapsulation
rates, and the orthogonal array results showed that the factor that greatly affects the encapsulation rate
is the ratio of wall material. Therefore, experimental samples 7–9 that were subjected to MEC treatment
were named as S7-S9, respectively, and as heat resistant study samples to facilitate subsequent results
and discussion; whereas, a non-MEC (control) was also prepared accordingly without the incorporation
of the wall material and excipient. For the best possible minimum ER, the 0.2 g of excipient, 50 ◦C of
HMG temperature, and one hour of HMG time would be considered as an optimal options.

3.3. Effects of Heating Type and Temperature

3.3.1. Changes in Curcumin Content

Table 3 also shows the changes in curcumin content in non-MEC control and S7–S9 at 0 ◦C and
50–100 ◦C of water bath as well as 150–200 ◦C of oven heating. When the control was hydrothermally
heated to 100 ◦C, its curcumin content decreased before slightly increasing to 6.24± 0.00 ppm, which was
consistent with the findings in the literature that high temperature would occasionally cause the
increase curcumin solubility even though not drastically [32]. The presumed content that directly
converts from the original potency is approximately 5 ppm. We noticed that the resulted measured
value of non-MEC control is higher than those of MEC ones because the non-MEC control did not
include the wall material and excipient. Therefore, the methanol reconstitution of the non-MEC control
could be more efficient comparing to those of MEC ones.
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Table 3. The changes of curcumin content in MECs (5% of wall material contained in S7–S9 on a 5 ppm
curcumin content bases) after water bath and oven heating using different processing temperatures.

Heating Method Temperature (◦C) Experimental Sample

Control S7 S8 S9

Water Bath

0 6.91 ± 0.00 Aa 4.40 ± 0.00 Ec 4.49 ± 0.01 Fb 4.33 ± 0.00 Bd

50 5.89 ± 0.01 Fa 4.49 ± 0.00 Dc 4.63 ± 0.01 Db 4.34 ± 0.00 Bd

60 5.96 ± 0.00 Ca 4.62 ± 0.00 Ab 4.55 ± 0.00 Ec 4.25 ± 0.01 Dd

70 5.91 ± 0.01 Da 4.55 ± 0.00 Bc 4.73 ± 0.00 Bb 4.25 ± 0.01 Dd

80 5.85 ± 0.00 Ga 4.37 ± 0.00 Fc 4.67 ± 0.01 Cb 4.30 ± 0.00 Cd

90 5.89 ± 0.00 EFa 4.37 ± 0.00 Fc 4.43 ± 0.01 Gb 4.31 ± 0.01 Cd

100 6.24 ± 0.00 Ba 4.55 ± 0.00 Bc 4.81 ± 0.00 Ab 4.24 ± 0.01 Dd

Oven Heating

0 6.91 ± 0.00 Aa 4.40 ± 0.00 Ac 4.49 ± 0.01 Ab 4.33 ± 0.00 Ad

150 2.61 ± 0.01 Ba 2.46 ± 0.00 Bb 2.45 ± 0.00 Bb 2.24 ± 0.00 Bc

160 2.14 ± 0.00 Cb 2.08 ± 0.00 Cc 2.26 ± 0.01 Ca 1.85 ± 0.01 Cd

170 n.a. 1.60 ± 0.00 Da 1.30 ± 0.00 Db 1.26 ± 0.01 Dc

180 n.a. 1.29 ± 0.00 Ea 0.99 ± 0.00 Eb 0.95 ± 0.00 Ec

190 n.a. 1.05 ± 0.00 Fa 0.85 ± 0.00 Fb 0.76 ± 0.02 Fc

200 n.a. 0.86 ± 0.01 Ga 0.55 ± 0.01 Gc 0.67 ± 0.00 Gb

All values are means of triplicates. Means bear capital letters within the same column are significantly different due
to temperature (p < 0.05). Means bear lowercase letters in the same row are significantly different due to samples
(p < 0.05). n.a.: data not available.

3.3.2. Changes in DPPH Free Radical Scavenging Activity Due to Water Bath

Figure 2 shows the changes in DPPH free radical scavenging activity of the control and S7–S9 at
50 ppm after heating for 10 min under different water bath temperatures. Based on the results shown in
Figure 2, there were no significant differences in DPPH free radical scavenging activity in the samples
from 0 to 100 ◦C (p ≥ 0.05); although DPPH free radical scavenging activity began to decrease at 50 ◦C
(from 47.25% ± 2.30% to 38.18% ± 2.43%) in S9, it increased again from 38.18% ± 2.43% to 49.09% ±
1.19% after temperature increased to >100 ◦C. Because the results of control and the literature [25]
showed that there was no significant difference in DPPH when the control was heated for 10 min at
50–100 ◦C (p ≥ 0.05) and curcumin absorbance was only decreased by 6.2% after heating at 100 ◦C for
10 min compared with the 0 ◦C experiment, the possibility that S9 exhibits lower DPPH free radical
scavenging activity at 50–80 ◦C due to curcumin degradation can be excluded. Therefore, it can be
inferred that S9 has a better encapsulation rate and that heating causes the mesh structure formed
between β-cyclodextrin and porous starch to form tighter links with curcumin. This causes incomplete
dissolution when methanol was used for reconstitution as well as a decrease in DPPH free radical
scavenging activity. High temperature (100 ◦C) disrupts this mesh structure, releasing curcumin,
which increases the DPPH free radical scavenging activity.

Overall, the DPPH free-radical scavenging activity of curcumin did not undergo significant
changes when heated to 100 ◦C. This finding answers the question from the previous encapsulation rate
result regarding heat destruction due to spray drying. In addition, no significant changes were noted
between the control and S7–S9. Furthermore, in the literature, it has been shown that curcumin exhibits
better thermal stability in water and the heptadiene–dione moiety that determines the physiochemical
properties and antioxidant activity of curcumin is cleaved at high temperatures [33]. Therefore,
bioactivity changes in curcumin may only occur when a high temperature causes the cleavage of the
heptadiene–dione moiety. Hence, a higher temperature (150–200 ◦C) and prolonged duration (30 min)
of oven heating was used for assessing the MEC heat resistance.
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Figure 2. 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) free radical scavenging activities of MECs
after water bath at different temperatures. MECs were reconstituted by methanol to achieve the 50-ppm
curcumin concentration. All values are means of triplicates. Means followed by capital letters are
significantly different due to thermal treatments (p < 0.05). Means with different lowercase letters
within the same set temperature group are significantly different caused by samples (p < 0.05).

3.3.3. Changes in DPPH Free Radical Scavenging Activity Due to Oven Heating

Because no significant difference was noted in DPPH free-radical scavenging activity at 50–100 ◦C
water bath heating between the S7–S9 and the control (p ≥ 0.05), this experiment aimed to use higher
temperatures (150–200 ◦C) and prolonged heating duration (30 min) for investigating the effects on
DPPH free radical scavenging activity in the different samples.

Figure 3 presents the changes in DPPH free radical scavenging activity under different oven
heating temperatures at a concentration of 50 ppm in the samples. For the control sample, data were
only collected up to 160 ◦C; as the applied oven temperature was higher than 160 ◦C, the sample became
seriously collapsed with obvious case hardening and burnt smell. This finding may be explained by
the visual observation of natural curcumin being completely damaged after 30 min of oven heating
at 170 ◦C, melting into a dark brown and viscous turmeric oil-like substance. This is consistent with
previous research showing that the intramolecular bonds of curcumin break under high temperatures,
resulting in the exposure of polar site and causing particle melting [33].
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Figure 3. DPPH free radical scavenging activities of MECs after oven heating at different temperatures.
MECs were reconstituted by methanol to achieve the 50-ppm curcumin concentration. All values
are means of triplicates. Means followed by capital letters are significantly different due to thermal
treatments (p < 0.05). Means with different lowercase letters within the same set temperature group are
significantly different caused by samples (p < 0.05).
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Therefore, in this experiment, we only investigated the natural sample and MEC samples at
temperatures between 0–160 ◦C; the results showed that the scavenging activity in the control at 0 ◦C
and 150 ◦C was 48.94% ± 3.72% and 48.24% ± 1.56%, respectively, and that there was no significant
difference (p ≥ 0.05). This finding demonstrates that natural curcumin is relatively stable when heated
for 30 min at 0–150 ◦C. When temperature was increased to 160 ◦C, there was a significant decrease
in the scavenging activity, which was only 40.42% ± 2.23%—a 17.23% decrease compared with the
unheated samples (p < 0.05). This finding is consistent with the abovementioned finding that the
heptadiene–dione group cleaves under high temperatures, resulting in a decrease in antioxidant
activity [33].

Although S7 showed a decrease in scavenging activity at 160 ◦C (44.13% ± 1.14%), it increased after
further increase in temperature, with the other MEC samples also showing similar trends: S8 showed
a decrease at 170 ◦C and 180 ◦C, with scavenging activities of 44.34% ± 1.43% and 41.78% ± 1.09%,
respectively, and S9 showed decreasing trends at the same temperatures, with scavenging activities
of 32.94% ± 6.48% and 36.42% ± 2.18%, respectively. However, S8 and S9 were similar to S7 and
their scavenging activities increased after further increase in temperature. At the highest temperature
(200 ◦C), the scavenging activities of the three samples were the highest (77.04% ± 2.48%, 58.40% ±
3.62%, and 75.76% ± 2.19%, respectively, for S7, S8, and S9).

The trend of decrease in scavenging activity and then increase was also observed during water
bath heating, and the decreasing trend was not positively correlated with temperature. Therefore,
this decreasing phenomenon can be explained by the tight binding between the mesh structure of wall
material and core material (curcumin) or by the chemical changes between the two, which increased
the scavenging activity. According to the literature, when temperature is increased, the intermolecular
hydrogen bonds of curcumin break, which increases curcumin solubility. In addition, high temperatures
break other chemical bonds, causing the exposure of polar sites (-OH) and ketone groups (C=O),
further increasing the solubility [33]. Therefore, additional increases in temperature disrupt the
mesh structure of the wall material and simultaneously break the chemical bonds in curcumin and
increase its solubility. This event causes its DPPH free radical scavenging activity to increase under
the same concentrations. Furthermore, our experiment indirectly proves that microencapsulation
exerts some protective effects. We observed that the free radical scavenging activity of the control
began to substantially decrease at 160 ◦C and that the particles were completely damaged at 170 ◦C
through visual observation. However, the DPPH free radical scavenging activity of MEC samples
(S7–S9) increased at the highest temperature (200 ◦C) and reached its maximum value, demonstrating
that the core temperature of MEC-encapsulated curcumin did not exceed 170 ◦C when an oven heating
temperature of 200 ◦C was used.

3.3.4. Changes in ABTS Free Radical Scavenging Activity Due to Water Bath

Figure 4 shows changes in the ABTS free radical scavenging activity when samples undergo
heating under different water bath temperatures; the control is a non-MEC sample. Similar to the
DPPH free radical scavenging activity results, there was no significant difference in ABTS free radical
scavenging activity at 0–100 ◦C (p ≥ 0.05), showing that the ABTS free radical scavenging activity of
curcumin is relatively stable at 0 ◦C and 50–100 ◦C.

Figure 4 also indicates the ABTS free radical scavenging activity of S7–S9. The ABTS free radical
scavenging activity of S8 decreased at 90 ◦C (11.24% ± 2.36%), whereas there were no significant
differences at the remaining temperatures (p ≥ 0.05). S7 showed a higher ABTS scavenging activity
among the MEC samples, which increased with the increase in temperature: the ABTS free radical
scavenging activity increased by approximately 88.63% 0 ◦C and from 50 ◦C to 100 ◦C. Furthermore,
S9 shows a similar trend as the ABTS free radical scavenging activity increased by 26.88% from 0 ◦C
to 100 ◦C. This phenomenon can be explained by the results of previous research. As curcumin is
relatively stable in an aqueous solution at 0–100 ◦C, the increasing temperatures break the intramolecular
hydrogen bonds and expose the polar and ketone groups, which increases curcumin solubility, thereby
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increasing the ABTS free radical scavenging activity [22,33]. The experimental HMG time of S7 is the
central point (0) and also the median between those of S8 and S9. The incorporated excipient level
of S7 is set at the lower end (−1) whereas HMG temperature level of S7 is set at the higher end (1).
A higher HMG temperature could result in a better ABTS free radical scavenging activity through
the observation of MEC S7. It also echoes that upon employing the least amount of excipient would
help promote the resulted ABTS free radical scavenging activity. The excipient serves as a substance
formulated alongside the curcumin; it is often referred to as “filler”, or “diluents” [22], therefore,
the least possible amount of utilization would be an optimal option as long as the minimum possible
ER being retained in a considerably high level [22].
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Figure 4. 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) free radical scavenging
activities of MECs after water bath at different temperatures. MECs were reconstituted by methanol
to achieve the 50-ppm curcumin concentration. All values are means of triplicates. Means followed
by capital letters are significantly different due to thermal treatments (p < 0.05). Means with different
lowercase letters within the same set temperature group are significantly different caused by samples
(p < 0.05).

On comparing the results in Table 2, we observed that the ABTS free radical scavenging activity
is poorer than DPPH free radical scavenging activity at the same concentration and that the DPPH
free radical scavenging activity does not increase with temperature, whereas the ABTS free radical
scavenging activity does. First, the DPPH free radical scavenging activity is better than the ABTS
free radical scavenging activity at the same temperature because DPPH free radicals are non-polar
(hydrophobic) substances, whereas ABTS is a polar (hydrophilic) substance. Under conditions of
neutral pH, curcumin, being a non-polar (hydrophobic) substance, does not easily dissolve in water.
Therefore, at the same concentrations, DPPH free radicals tend to be reduced by the hydrogen atoms in
curcumin to form a stable molecular state, resulting in better scavenging activity. In addition, previous
research has mentioned that high temperatures will lead to the exposure of polar groups and that
ABTS free radicals are hydrophilic. Therefore, the ABTS free radical scavenging activity of curcumin is
more sensitive to temperature changes compared with the DPPH free radical scavenging activity [33].

3.3.5. Changes in ABTS Free Radical Scavenging Activity Due to Oven Heating

Figure 5 shows changes in ABTS free radical scavenging activity in samples under different
oven temperatures. In the control sample, the ABTS free radical scavenging activity significantly
increased from 17.24% ± 1.90% to 22.43% ± 2.58%, when the temperature increased from 0 to 150 ◦C,
which conforms to the phenomenon that the ABTS free radical scavenging activity increases with
increase in temperature [33]. However, further increase in temperature to 160 ◦C resulted in a rapid
decrease in the free radical scavenging activity to 12.15% ± 0.87%, demonstrating that the high
temperature of 160 ◦C cleaves the heptadiene–dione moiety and decreases the antioxidant activity,



Processes 2020, 8, 172 13 of 19

which conforms to expected results. In the MEC samples (S7–S9), it was observed that their free radical
scavenging activity increased with temperature increases. However, the ABTS free radical scavenging
activity of S7 decreased at 170 ◦C. Although this activity decreased in the remaining two MEC samples,
there was no significant difference (p ≥ 0.05). This result was similar to the abovementioned results
and can be explained by the interaction between the microencapsulation wall material and curcumin.
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Figure 5. ABTS free radical scavenging activities of MECs after oven heating at different temperatures.
MECs were reconstituted by methanol to achieve the 50-ppm curcumin concentration. All values
are means of triplicates. Means followed by capital letters are significantly different due to thermal
treatments (p < 0.05). Means with different lowercase letters within the same set temperature group are
significantly different caused by samples (p < 0.05).

Comparison with the DPPH scavenging activity showed that the increase in the ABTS free radical
scavenging activity in the MEC sample was greater at higher temperatures, with a mean increase of
125% from 0 to 200 ◦C. This proves the abovementioned hypothesis that high temperatures lead to the
exposure of polar groups outside and increase the ABTS free radical scavenging activity [33,34].

From a series of heat resistance analyses, we observed that the curcumin content and antioxidant
activity were not positively correlated, indicating that curcumin degradation does not necessarily
lead to a decrease in the antioxidant activity. On the other hand, a suitable level of heating can aid
in increasing the antioxidant activity of curcumin. Reportedly, the HPLC results of anthocyanin,
a similar polyphenol, when heated at a range of 100–165 ◦C, showed that although anthocyanin
was degraded, its antioxidant activity (determined by DPPH and ABTS assay) was not significantly
affected [35]. However, this was considered to be attributable to the anthocyanin degradation products
that maintain the antioxidant activity [36]. This phenomenon can explain the increased antioxidant
activity of curcumin at high temperatures, despite it being degraded at these temperatures. In addition,
Yang, Hsu and Yang [37] reported that the ferric-reducing antioxidant activity was increased when
black soybean was roasted at 180 ◦C for 20 min. Zhou, Cai, and Xu [38] showed that the optimal
roasting conditions was 210–230 ◦C for 30–35 min for yellow and black soybeans. Furthermore, Xu and
Chang [39] reported that pressure steaming or steaming alone caused significant increases in the DPPH
radical scavenging activity and in other antioxidant-related indices in yellow and black soybeans.

3.3.6. Color Changes

In the color system, brightness (L* value), redness (a* value), and yellowness (b* value) attributes
are used. A higher brightness (0–100) indicates that the color is brighter, whereas a lower value
indicates that the color is darker brown. A positive redness value indicates red color, whereas a
negative value indicates green color. A positive yellowness value indicates yellow color, whereas a
negative value indicates blue color, with a larger value indicating a darker color.



Processes 2020, 8, 172 14 of 19

During oven heating, browning will occur. Therefore, it is expected that the L*value will
decrease as color becomes darker. The browning reaction can be categorized into enzymatic
and non-enzymatic. Enzymatic browning is mainly caused by polyphenol oxidase (PPO) activity,
wherein it hydrogenates monohydric phenol into dihydric phenol before oxidation and further into
diphenylquinone, followed by oxidative polymerization to form a black substance [40]. However,
some studies have reported that PPO activity will decrease when heated at 80 ◦C for 30 min [41,42].
Heating to disrupt PPO activity is commonly used in the food processing industry to prevent enzymatic
browning of polyphenols. Therefore, we can exclude that the present browning reaction is enzymatic in
nature. Non-enzymatic browning can be divided into Maillard reaction (also known as amino-carbonyl
reaction), caramelization, and ascorbic acid oxidation. Ascorbic acid oxidation mainly occurs in
vegetable and fruit juices and can be prevented by fixation. Caramelization refers to the production
of brown products under high temperature heating or acid–base treatment when carbohydrates
are present in the absence of amino compounds [42–44]. Because curcumin MEC itself does not
contain amino compounds, amino-carbonyl reaction can be excluded. Ascorbic acid oxidation can be
disrupted by fixation. Therefore, the browning reaction was speculated to be due to caramelization.
Caramelization typically occurs at temperatures higher than the melting point of the carbohydrate,
and any carbohydrate can undergo caramelization [42].

The oven heating temperature and duration of the different samples are fixed and every sample was
placed in the center of the oven to avoid any effect of temperature differences. Therefore, color variations
because of manipulations can be avoided. A previous study reported that phosphatidylethanolamine
(PE) and glucose undergo browning in a non-polar medium and that the product exhibits high
antioxidant activity and maintains lipid oxidation stability as well as increases the stability of different
free radical scavengers [34]. Therefore, this finding could be associated with the results of the DPPH
and ABTS free radical scavenging activity as oven temperature increases.

Table 4 shows that all color indices significantly decreased at each temperature point in the control.
In particular, a drastic decrease (L* value of 17.95 ± 0.06) was observed at 170 ◦C, along with the
presence of dark brown color and complete destruction through visual observation. At 0 ◦C and
150–200 ◦C, L* value decreased by 68.99%, showing that the non-microencapsulated natural curcumin
is extremely sensitive to heating at temperatures >150 ◦C and that particle begins to collapse when
temperature is increased to 160 ◦C.

In addition, although we observed significant differences in the MEC samples, they were relatively
stable compared with the control, with the decrease in L* value at 0–200 ◦C being 13.49–24.78%,
demonstrating that curcumin MEC maintains some brightness under high-temperature oven heating.

From Table 4, we observed that the a* value in the control at the oven heating temperature of
150 ◦C did not greatly decrease; however, a further increase in temperature caused a substantial
decrease in its a* value from 24.01% ± 0.43% to 1.07% ± 0.01%, showing that color changed from red to
dark brown, thereby indirectly proving that caramelization occurred.

A similar situation was observed in the MEC samples, although the a* values increased when
the temperature was increased to 190 ◦C. This phenomenon can be explained by the disintegration
of MEC wall material owing to the high temperature, which results in the exposure of curcumin
and, subsequently, in the presentation of the original color. Moreover, this finding reiterates the
aforementioned result that high temperatures disrupt the mesh structure of the wall material and result
in the complete release of curcumin, leading to an increase in the antioxidant activity.

The b* value of the non-microencapsulated samples substantially decreased under oven heating
temperature of 150 ◦C from 34.65% ± 0.59% to 25.31% ± 0.04% and the color changed from yellow
to dark brown. This finding was similar to the aforementioned results, proving the occurrence of
caramelization. In the MEC sample, the b* value increased after high temperature oven heating
(150–170 ◦C) and appears as golden-yellow. Further increase in temperature (180–190 ◦C) resulted in
the Maillard reaction and caused the b* value to decrease, and bright yellow was gradually lost.
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Table 4. Changes in color indices (L*, a*, and, b*) for MECs (5% of wall material contained in S7–S9)
due to different oven heating temperatures.

Index Temperature (◦C)
Sample

Control S7 S8 S9

L*

0 53.74 ± 1.03 Ac 74.37 ± 0.53 Cb 76.39 ± 1.34 Ba 76.53 ± 0.38 Ca

150 40.81 ± 0.19 Bc 77.57 ± 0.29 Ab 77.41 ± 0.10 Ab 78.69 ± 0.03 Aa

160 30.07 ± 0.55 Cd 75.45 ± 0.24 Bc 76.17 ± 0.18 Bb 77.21 ± 0.02 Ba

170 17.95 ± 0.06 Ed 73.06 ± 0.29 Dc 75.19 ± 0.03 Cb 75.60 ± 0.06 Da

180 18.63 ± 0.03 Ed 71.14 ± 0.07 Ec 73.63 ± 0.15 Da 71.73 ± 0.22 Eb

190 19.75 ± 0.06 Dd 67.10 ± 0.71 Fb 72.21 ± 0.11 Ea 64.75 ± 0.12 Fc

200 16.66 ± 0.06 Fd 63.31 ± 0.25 Gb 66.07 ± 0.24 Fa 57.57 ± 0.17 Gc

a*

0 24.82 ± 0.28 Aa
−1.40 ± 0.26 Bc

−0.82 ± 0.2 Bb
−2.40 ± 0.16 Cd

150 24.01 ± 0.43 Ba
−5.38 ± 0.09 Dc

−4.63 ± 0.11 Cb
−5.02 ± 0.25 Dbc

160 15.04 ± 0.53 Ca
−5.67 ± 0.05 Eb

−5.40 ± 0.28 Db
−6.60 ± 0.06 Ec

170 1.07 ± 0.01 Fa
−6.92 ± 0.09 Fd

−6.10 ± 0.18 Eb
−6.52 ± 0.13 Ec

180 1.78 ± 0.01 Ea
−5.83 ± 0.13 Ec

−6.97 ± 0.16 Fd
−5.10 ± 0.11 Db

190 5.35 ± 0.01 Da
−3.93 ± 0.22 Cc

−4.63 ± 0.06 Cd
−0.87 ± 0.14 Bb

200 2.23 ± 0.39 Eb 0.13 ± 0.06 Ac
−0.34 ± 0.13 Ad 3.02 ± 0.08 Aa

b*

0 34.65± 0.59 Aa 25.83 ± 0.09 Fb 22.81 ± 0.55 Gd 24.05 ± 0.29 Fc

150 25.31 ± 0.04 Bd 35.67 ± 0.04 Ca 34.01 ± 0.04 Db 33.27 ± 0.02 Cc

160 12.83 ± 0.29 Cd 38.73 ± 0.29 Aa 37.79 ± 0.02 Ab 36.94 ± 0.04 Ac

170 0.11 ± 0.12 Fd 37.62 ± 0.12 Fd 37.38 ± 0.01 Bb 35.29 ± 0.05 Bc

180 0.67 ± 0.04 Ed 34.24 ± 0.04 Ed 34.89 ± 0.08 Ca 31.74 ± 0.07 Dc

190 2.32 ± 0.03 Dc 30.03 ± 0.03 Dc 29.28 ± 0.02 Ea 26.24 ± 0.04 Eb

200 2.74 ± 0.46 Dd 25.24 ± 0.46 Dd 24.27 ± 0.04 Fb 22.48 ± 0.03 Gc

All values are means of triplicates. Means bear capital letters within the same column are significantly different due
to temperature (p < 0.05). Means bear lowercase letters in the same row are significantly different due to samples (p
< 0.05).

Color analysis results showed that under the heating temperatures of >150 ◦C, Maillard reaction
occurs in the non-microencapsulated sample, causing its color to rapidly change to dark brown and
the visual observation of the particles to be gradually disrupted. When the non-microencapsulated
sample was heated to 170 ◦C, particles were completely destroyed to become an oil-like substance.
In comparison, some degree of color change occurred in the microencapsulated sample. This was
owing to the absence of red-brown or dark brown color caused by the Maillard reaction from direct
flames. This finding reflects the protective function of microencapsulation under oven heating.
In addition, if the heating temperature was controlled at 150–170 ◦C, MECs would appear in the
preferred golden-yellow color. The caramelization reaction mentioned here may reflect the increase in
antioxidant activity mentioned previously [33].

3.4. Correlation Analysis and Practical Justification

Table 5 presents Pearson’s product moment correlation coefficient between the antioxidant abilities
and color parameters. Generally, negative correlations between L*/b* and both free radical scavenging
abilities were obtained regardless sample variation (S7–S9). However, a nearly positive correlation
between a* and both free radical scavenging abilities were obtained regardless sample variation (S7
and S9) A significant correlation between color indices and ABTS free radical scavenging ability for S9;
a strong positive correlation was observed for a* whereas strong negative correlations was observed
for L* and b*. A positive correlation between a* and DPPH free radical scavenging ability was also
observed especially with S7 and S8. We also noted that there were significant differences (p < 0.05),
curcumin content was relatively stable between 0 ◦C and 50–100 ◦C of the hydrothermal process;
this finding is consistent with the aforementioned antioxidant results. Additionally, the curcumin
content in non-MEC control and S7–S9 samples significantly decreased as the temperature increased
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while the oven heating was applied. In contrast to the aforementioned antioxidant activity, curcumin
content did increase under high temperature, indicating that the recovery of antioxidant activity at
high temperature is correlated to the tight binding between curcumin and wall material. Therefore,
the increase in MEC antioxidant activity during oven heating was owing to disruption of the chemical
bonds by the high temperature, which exposes the certain functional groups, thereby increasing the
solubility and caramelization; moreover, the glucose reaction products produced during oven heating
can increase the antioxidant activity [32,33].

Table 5. Pearson correlation analysis between antioxidant abilities and color parameters for oven
heating ranging from 150–200 ◦C.

Activities Sample
Correlation Coefficient (R2)

L* a* b*

S7 −0.714 0.889 † −0.800
DPPH S8 −0.705 0.952 ‡ −0.777

S9 −0.764 0.628 −0.817 †

S7 −0.601 0.597 −0.600
ABTS S8 −0.197 −0.031 −0.241

S9 −0.930 ‡ 0.972 ‡ −0.918 ‡

†p < 0.05, ‡ p < 0.01.

We also noticed that maybe it was more useful at room temperature as control condition instead
of 0 ◦C for free radical scavenging activity and color retention evaluations. However, the chosen
control temperature (0 ◦C) followed some other previous studies [22,34]. Additionally, the exposure of
microcapsules to room temperature for thermal equalization would cause a certain degree of moisture
rehydration. We would also report that the reconstituting solvent (methanol), the thermal stability
and the antioxidant property of MEC after spray drying are not sufficient to use these materials in
foods even though some previous studies can be considered as supportive references. It has been
reported that the ternary wall material matrices of maltodextrin, gum Arabic, and modified starch as
wall material for curcumin encapsulation by spray drying was effective to prevent loss of curcumin
and colour changes after an 8-week storage under incident light [17]. A study also indicated that
curcumin-based hydrophilic colorants obtained by assisted by spray-drying possessed a wide range of
pH and heat stability while k-carrageenan, poly (vinyl alcohol), and polyvinylpyrrolidone was used as
encapsulant materials [24].

4. Conclusions

The highest minimum possible encapsulation rate when porous starch was used as spray drying
MEC wall material was 52.23%. The DPPH free radical scavenging activity of encapsulated curcumin
was relatively stable under water bath heating and reached its maximum value under oven heating
(77.04 ± 2.48). The DPPH free radical scavenging activity of encapsulated curcumin was better than its
ABTS free radical scavenging activity. The non-microencapsulated sample underwent rapid browning
reaction under oven heating temperatures of >160 ◦C and its color appeared dark brown. Under high
oven heating temperatures, the color of MEC was well maintained and appeared golden-yellow
when temperature was maintained at 150–170 ◦C. The study results showed that MEC can effectively
protect bioactivity and color under high oven heating temperatures and that the antioxidant activity
of curcumin increases after oven heating. The use of β-cyclodextrin and porous starch as MEC wall
material and use of spray drying to prepare MEC would feasible for the bakery industry with the
pH stability, the solubility, the interaction with the food compounds, and proper solvent system
carefully evaluated.
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