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Abstract: The propagation of cascading failures of modern power systems is mainly constrained by
the network topology and system parameter. In order to alleviate the cascading failure impacts, it is
necessary to adjust the original network topology considering the geographical factors, construction
costs and requirements of engineering practice. Based on the complex network theory, the power
system is modeled as a directed graph. The graph is divided into communities based on the
Fast–Newman algorithm, where each community contains at least one generator node. Combined with
the islanding characteristics and the node vulnerability, three low-degree-node-based link-addition
strategies are proposed to optimize the original topology. A new evaluation index combining with
the attack difficulty and the island ratio is proposed to measure the impacts on the network under
sequential attacks. From the analysis of the experimental results of three attack scenarios, this study
adopts the proposed strategies to enhance the network connectivity and improve the robustness to
some extent. It is therefore helpful to guide the power system cascading failure mitigation strategies
and network optimization planning.

Keywords: power systems; complex network theory; Fast–Newman algorithm; link-addition strategy;
cascading failures

1. Introduction

For smart grids, the advanced communication and information technology are employed to
enhance the intelligence and automation of the power systems. Meanwhile, cyber threats are introduced
to the physical systems triggering the self-organized criticality of the power system, leading to cascading
failure propagation between networks even blackouts occurred [1–3]. As the scale of the smart grid
expands, how to optimize the power system structure and effectively alleviate cascading failures has
aroused public concern.

Modern power systems are dynamical systems featured by complexity and nonlinearity. For
simplifying the model complexity, the complex network theory and the graph theory are introduced to
demonstrate the network dynamics [4]. Besides, the characteristics of complex networks can be used to
analyze the impacts on cascading propagation [5]. The larger the cluster coefficient (CC) of the network
is, the wider the cascading failure propagation is. Moreover, the smaller the average path length
(APL) of the network is, the deeper the cascading failure propagation is [6]. Statistics indicate that the
power system is a typical sparse network owing to geographical location constraints and inadequate
investment budgets [7]. As the power system expands, regional and long-distance power transmission
lines are constructed to balance the regional generation capacity. With the increase in transmission
lines, the APL increases slowly, while the regional CC is relatively large. Therefore, cascading failures
can be easily propagated in large regions of the power system.
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Previous studies have put forward the load-capacity model to analyze the cascading failure
propagation. Cascading failure model of the power system based on the complex network theory
combines with the characteristics of power flows [8]. System capacity and network connectivity
affect the propagation of cascading failures [9]. An electrical path efficiency matrix is assisted with
the assessment of power system influences and losses [10]. Based on the percolation theory [11],
the remaining giant component indicates the robustness of the network. However, evaluation indexes
of the existing studies are used to assess the connected component performance, which cannot be
implemented for isolated islands. The power system can maintain islanding operations after attacks.
Thus, the robustness index of the power system should contain all survival islands.

Additionally, relevant research focused on the mechanism of cascading failures. In the power
system, cascading failure can be triggered by means of physical equipment malfunction or misoperation
owing to weather or man-made, and intentional cyber-attacks. Power node or link failure caused by
system hidden failures as well as large area blackouts caused by natural disasters exhibit random
attacks (RA) to the power system. Adversaries can also attack specific targets. For example, high degree
node attacks (HDNA) disconnect the highly connected substation to destroy the network connectivity.
Moreover, cyber-attacks compromise communication data to control the power system operations,
which can construct not only simultaneous attacks but also sequential attacks [12]. For example,
a large area of new energy resources simultaneously disconnects from the backbone network, or some
special targets are sequentially compromised by coordinated strategies. The current research indicates
that vulnerability sequence attack (VSA) damages the network more seriously than simultaneous
attacks [13], because VSA can collapse the whole network by attacking fewer nodes. The evolution of
both logical and real values of system parameters can be analyzed by a hybrid attack graph under
attack and recovery actions scenarios [14]. As simultaneous attacks and sequential attacks have diverse
impacts on power systems, it is necessary to investigate the cascading failure propagation of multiple
attack scenarios by using proper evaluation indexes.

However, vulnerability of topology is affected by the transmission efficiency, connectivity,
and connected components [15], particularly the power flow distribution of power systems [16].
The topology of the power system is relatively inflexible and vulnerable to intentional attacks [17].
Diverse fault diagnosis technologies have applied to monitor, locate, and identify the faults, which need
to handle a large amount of data and operate system resources [2,3]. The effective control chart technique
could substantially decrease the loss caused by the diagnosis and correction [18]. Optimal nonlinear
adaptive control reduced uncertainties and improved the robustness under different operation
scenarios [19]. In order to decrease the network vulnerability, the network structure can be optimized
by link-addition strategies to mitigate cascading failures [20]. Existing research proposes interlink
addition strategy to increase connectivity density, in order to reduce cascade-safe region and improve
the network connectivity [21]. For improving the network robustness, connectivity links and interlinks
could be added simultaneously [22], while the construction costs are too high to realize [23]. Ji et al. [24]
compared with various connectivity link addition strategies, for the purpose of verifying the feasibility
of low-degree node link-addition strategy and improving the power network robustness. However,
these link-addition strategies have focused on the pure topology evolution evaluating by using degree
or betweenness indexes, without considering special characteristics of power systems.

Since the power system is managed in regions, isolated islands can maintain in operation.
The Fast–Newman algorithm is introduced to divide the network topology into communities,
thereby ensuring that the network can be effectively partitioned [25]. In power systems, the location of
generators is the key factor for a valid community [8]. Besides, the load distribution has influences on the
power generation dispatch and control strategy [26]. For providing sufficient power supply, the power
system can be partitioned into communities following the power flow directions. Moreover, critical
regions greatly affect the topology evolution, and the community partition of these regions seriously
influences on the network vulnerability [27]. To achieve the reliability and preventive maintenance is
another optimization goal [28]. Therefore, the community-based link-addition strategy is proposed to
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optimize the existing power network topology, in order to reduce investment budgets and alleviate the
burden of load centers.

In summary, present researches have confirmed that the power system is affected by the community
structure, but less attention is paid to the optimal community structure on mitigating cascading failure
propagation. In order to address this issue, we propose an improved load-capacity model based
on the islanding power flow distribution, in terms of the complex system and percolation theory.
The island ratio is a measure of the robustness of power networks. For further demonstrating the
difficulty of attacks, an evaluation indicator is introduced to assess the influence of the sequential
attack. In order to optimize the original power system, three community-based link-addition strategies
between low-degree nodes are therefore proposed to meet the requirements of engineering practice.
This paper is of practical significance in how to optimize network topology and improve the network
robustness of the power system.

The reminder of the paper is organized as follows. Section 2 presents the fundamental theoretical
background on constructing a load-capacity model. Section 3 discusses the evaluation index. Section 4
describes the process of constructing link-addition strategy. Section 5 provides the simulation results
and the corresponding analysis. Section 6 summarizes several concluding remarks and discusses the
challenging issue. Lack of the period.

2. System Model

Based on the complex network theory, the power system is modeled as a directed graph
GP = (VP, EP), with N nodes and without multiple edges or loops, where VP and EP are power
nodes and lines, respectively. The power nodes are categorized as three types: generator nodes that
generate electricity, load nodes that consume electricity, and substation nodes that transfer electricity.
Particularly, one generator node carrying loads can be classified into the load node. The power lines are
directed by the power flow changes over time. In order to decrease calculation complexity, this study
ignores the differences in transmission lines, the transient voltage instability and phase angle mismatch.
In this graph, the nodes and lines can be removed as a result of failures or attacks. It is assumed that
the adversaries can manipulate the systematic information to construct malicious attacks of any target
of the system.

In the power system, the real and reactive power injections are balanced at every node, as indicated
in Equations (1) and (2). Moreover, the real and reactive power flows in transmission lines by following
Kirchhoff’s law, as expressed in Equations (3) and (4) [29].

Real and reactive power injection at node i:

Pi = Vi

N∑
j=1

V j(Gi j cosθi j + Bi j sinθi j), (1)

Qi = Vi

N∑
j=1

V j(Gi j sinθi j − Bi j cosθi j), (2)

Real and reactive power flows from node i to node j are:

Pi j = Vi
2Gi j −ViV j(Gi j cosθi j + Bi j sinθi j), (3)

Qi j = −Vi
2Bi j −ViV j(Gi j sinθi j − Bi j cosθi j), (4)

where Pi is the real power injection at the power node i, Qi the reactive injection at the power nod i, Pi j
the real power flow from node i to node j, Qi j the reactive power flow from node i to node j, V the
voltage magnitude, θi j the difference in the phase angle between power nodes i and node j, Bi j the
admittance, Gi j the susceptance, and N the initial number of nodes, i, j ∈ N.
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According to the power flow distribution, the power system capacity is assumed to be proportional
to its initial states [30]. It is assumed that the power system is provided with moderately reactive power
to compensate losses and avoid out-of-limit at the same voltage grade. The initial power flow capacity
is the maximum power flow in transmission lines of Equation (5). The initial generation capacity is the
maximum output of generators of Equation (6). The initial node capacity is the maximum sum of out
flows Pout f low,i j(i) and local loads Lload(i) of node i of Equation (7).

CPF = max(Pi j), (5)

Cgen,i = max(Pgen(i)), (6)

CNode,i = max(
∑
i, j∈N

Pout f low,i j(i) + Lload(i)), (7)

So, the system capacity Cp is α times the initial states.

Cp = α
(
CPF,Cgen,CNode,i

)
, (8)

where α is the tolerance parameter, α ≥ 1. In the model, the tolerance parameter α is a consistent one.
It is assumed that the power system adopts the overcurrent protection mechanism. For simplicity,
if the power flow exceeds the system capacity, the transmission lines trip off instantly without further
automatic reclose.

3. Evaluation Index

(1) Cluster coefficient
CC indicates the network connectivity level between nodes and their neighboring nodes [31].

Assume that node i has a number of Ei links and ki neighbors, while the maximum number links of
these neighboring nodes is ni(ni − 1). The CC of node i is shown as follows.

C(i) =
2Ei

ni(ni − 1)
, (9)

Then, global CC of the network equals to the mean value of the local CC of all nodes

C =
∑
i∈N

C(i)/N, (10)

(2) Average path length
APL is a measure of network efficiency. Dijkstra algorithm [32] is used to find the shortest path

from the source node i to the destination node j, then the average distance between two nodes is shown
as follows.

L =
1

N(N − 1)

∑
i, j∈N

di j, (11)

In this study, di j is assumed to be the distance cost of one new connectivity link, which indicates
the difficulty of adding one new link from one source node to the other destination node.

(3) Node vulnerability
Based on the percolation theory, nodes are functional only in a giant component, which is a

maximal connected component of the graph. The number of nodes that belong to giant components
owing to one node removal indicates the node vulnerability. In one network, although a number
of nodes have the same vulnerability, node removal contributes various influences on the remained
components. In literature [4], the node types and their locations are combined to further distinguish
the most vulnerable node. If the nodes are in separate single loops, the node in the bigger single loop
is more important than that of the smaller one. Since a line-shaped branch is generated after unlocking



Processes 2020, 8, 126 5 of 16

the single loop, the longer the branch, the more the loss of nodes. If the nodes are in the same single
loop or in different single loops of the same size, further investigation is required until the most critical
node is located.

Ir(i) =
N′
N

,∀length(r(i)) > length(r(ϕ)), (12)

where N′ is the node number of the remaining giant component, ϕ the set of nodes with the same
vulnerability, r(i) the single loop where node i locates, and length stands for the length of the single
loop, i ∈ ϕ ∈ N.

After part of nodes are removed from the network in a random or targeted manner, the remaining
giant component ratio is used to estimate the network robustness [33]. However, the power system
can maintain in islanding operations. Thus, the island ratio is the proportion of all survival isolated
components of the power system.

I =
∑

x Θ(x)
N

, (13)

where Θ is the node number of one survival island, and x is the number of islands.
For assessing the influence of the network under sequential attacks, an evaluation indicator S is

introduced to combine with the difficulty of attacks and the survivability of the network.

S = τ× I, (14)

where τ is the number of sequential attacks, and S is a scalar without units.

4. Link-Addition Strategy

4.1. Fast–Newman Algorithm for Community Partition

According to the power system management, each community has at least one generator node to
supply sufficient electricity, or it will fail to partition. The directed power system graph detects the
valid community modularity by using the Fast–Newman algorithm [25].

Q =
1

2m

∑
i j

[Ai j −
kik j

2m
]δ(vi, v j), (15)

where m is the link number, 2m the sum of degrees of the network, A the adjacent matrix, k the degree
of a node, and δ(vi, v j) the function for judging the community of two nodes. If they are in the same
community, it is 1, otherwise 0. The modularity Q ranges from [−0.5, 1), the greater the modularity,
the better the effect of community partition. Statistics show that when Q is between 0.3 and 0.7,
communities will cluster effectively [34].

4.2. Low-Degree-Node-Based Link-Addition Strategy

One-degree node (leaf node) of the power system is easily removed, owing to its overloaded
transmission line or neighboring node removal that suffers from disturbances or attacks. Through the
addition of new links to the leaf nodes, the connectivity level of the network can be increased. This is
because the removal of tree-shaped root nodes can cause a large area to be disconnected from the core
component, and the leaf nodes of the most vulnerable nodes are critical for optimizing the power
system topology. However, some leaf nodes are generator nodes, so it is unreasonable to connect two
generators except one generator node carrying a heavy load. The newly added links cannot overlap
the original links. Moreover, the new network has to ensure that each community has at least one
generator node. In conclusion, three link-addition strategies are proposed to enhance the original
network connectivity and decrease the vulnerability.
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(1) Low-degree-node link-addition strategy (LDNLAS)

The strategy aims to optimize long-distance transmission line construction for solving the
long-distance electricity transmission of the large scale power systems. Based on the community
partition and node vulnerability of the original power system, the new links from one community
to other communities satisfy the average shortest path. If the most vulnerable node has leaf nodes,
new links are first added from them.

ELDNLAS =
∑
D1

Ests.t. δ(vs, vt) = 0, s ∈ D1, t ∈ N, D1 ∈ N, s , t,min Lnew =
1

N(N − 1)

∑
s,t

dst, (16)

where Est is an additional link, s the low-degree nodes, t the leaf nodes, and D1 the set of low-degree
nodes that satisfy the average shortest path Lnew.

(2) Nearest-neighboring-node link-addition strategy (NNNLAS)

The strategy aims to connect the nearest nodes to enhance the local network connectivity and
density. Based on breadth-first search algorithm, the new links find the shortest distance between
neighboring nodes. If new links have the same shortest distance, those who have the average shortest
path will satisfy the requirement.

ENNNLAS =
∑
D2

Est, s.t. neighbor(vs, vt), s ∈ D2, t ∈ N, D2 ∈ N, s , t,min dst, (17)

where Est is an additional link, t the leaf nodes, s the neighbor of leaf nodes that satisfy the shortest
path dst, and D2 the set of neighboring nodes.

(3) Max-load-node link-addition strategy (MLNLAS)

The strategy aims to alleviate the heavy burden of load centers and balance electricity supply
capacity. Combined with the community partition, the load centers get new electricity supply with
other generator by new links. Moreover, the new links satisfy the average shortest path. If the leaf
nodes are not generators, the new links will follow the LDNLAS.

EMLNLAS =
∑
D3

Est,s.t. s ∈ D3, t ∈ N, s , t,min Lnew =
1

N(N − 1)

∑
s,t

dst, (18)

where Est is an additional link, t the leaf nodes, s the heavy load node, and D3 the set of heavy load
nodes in order.

5. Simulation Results and Data Analysis

In this section, the present study experiments with the data of IEEE 39-bus power system and
establishes the simulation results in detail. The power flow calculation and the isolated island problems
are solved using the MATPOWER 6.0 toolkit in MATLAB R2016a [35]. Based on the graph theory,
the directed graph gets the average degree D = 2.359, cluster coefficient C = 0.0385, and average
path length L = 4.749, while the random network with the same D, Crand ≈ D/N = 0.0605 and
Lrand ≈ ln(N)/ ln(D) = 4.2687. The graph includes generator nodes ranging from 30 to 39, and it
is partitioned into 5 communities according to the Fast–Newman algorithm. The modularity is
Q = 0.6125, which indicates good community partition of this graph. Each community contains at
least one generator node, which is shown as follows.

In Figure 1, communities are labelled by numbers and surrounded by an ellipse. Community 1 is
the area of blue solid circles, community 2 the area of red squares, community 3 the area of magenta
snowflakes, community 4 the area of green rhombuses, and community 5 the area of black stars.
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5.1. Generating Network

According to the principle of link-addition strategies, IEEE 39-bus system has 9 one-degree nodes
ranging from node 30 to node 38. These leaf nodes without heavy loads are unnecessary to connect to
each other, because they are all generator nodes. Therefore, the network has to add 9 additional links
to get Dnew = 2.8205.

(1) LDNLAS Network

From Figure 1, the node importance of the original network is obtained to find the most vulnerable
node 16 and 2 leaf nodes based on the Equation (9) in the same community. The low-degree nodes are
randomly chosen to connect with these leaf nodes to find the average shortest path length. Following
the rule, 9 links are added to the original network. In each step, the network can be partitioned into
valid communities. The total cost of additional links is 53. See Table 1 for details.

Table 1. Connectivity link addition of LDNLAS.

New Link Q Community C L d

35–7 0.6098 6 0.0385 4.5128 9
34–28 0.5920 5 0.0214 4.4143 7
32–9 0.5537 4 0.0214 4.3374 6
36–1 0.5176 4 0.0214 4.1916 8

38–15 0.4998 3 0.0214 4.0229 6
31–12 0.5229 4 0.0214 4.004 3
30–20 0.4664 3 0.0214 3.9096 7
33–21 0.4911 4 0.0214 3.8866 3
37–18 0.5127 4 0.0214 3.8475 4

The LDNLAS network detects 4 communities in Figure 2. Community 1 with 9 nodes is the area
of blue solid circles, community 2 with 4 nodes is the area of red squares, community 3 with 15 nodes
is the area of magenta snowflakes, and community 4 with 11 nodes is the area of green rhombuses.

The modularity of the LDNLAS network is Q = 0.5127 ∈ [0.3, 0.7], which indicates the community
partition is effective. C = 0.0214 is less than that of the original network, and L = 3.8475 is reduced to
about 19%. Although the LDNLAS network reduces the aggregation degree than that of the original
network, it improves the connectivity obviously.



Processes 2020, 8, 126 8 of 16

Processes 2020, 7, x FOR PEER REVIEW 8 of 17 

The LDNLAS network detects 4 communities in Figure 2. Community 1 with 9 nodes is the area 

of blue solid circles, community 2 with 4 nodes is the area of red squares, community 3 with 15 nodes 

is the area of magenta snowflakes, and community 4 with 11 nodes is the area of green rhombuses. 

 

Figure 2. Communities of LDNLAS network. 

The modularity of the LDNLAS network is 0.5127 [0.3,0.7]Q   , which indicates the 

community partition is effective. 0.0214C   is less than that of the original network, and 3.8475L   

is reduced to about 19%. Although the LDNLAS network reduces the aggregation degree than that 

of the original network, it improves the connectivity obviously. 

(2)  NNNLAS Network 

Firstly, the neighbors of the leaf nodes are found. Owing to the symmetrical structure, several 

leaf nodes have the same shortest distance to their neighbors. The total cost of additional links is 22. 

See Table 2 for details. 

Table 2. Connectivity link addition of NNNLAS. 

New Link Q  Community C  L  d  

35–21/36–24 0.6137 6 0.1239 4.6572 4 

34–15 0.6122 5 0.1239 4.5466 4 

30–1/31–7 

33–20/38–28 
0.6216 5 0.2692 4.529 8 

32–12/37–27 0.6393 5 0.2692 4.4872 6 

In Figure 3, the NNNLAS network detects 5 communities. Community 1 with 7 nodes is the area 

of blue solid circles, community 2 with 4 nodes is the area of red squares, community 3 with 12 nodes 

is the area of magenta snowflakes, community 4 with 7 nodes is the area of green rhombuses, and 

community 5 with 9 nodes is the area of black stars. 

 

Figure 3. Communities of NNNLAS network. 

Figure 2. Communities of LDNLAS network.

(2) NNNLAS Network

Firstly, the neighbors of the leaf nodes are found. Owing to the symmetrical structure, several
leaf nodes have the same shortest distance to their neighbors. The total cost of additional links is 22.
See Table 2 for details.

Table 2. Connectivity link addition of NNNLAS.

New Link Q Community C L d

35–21/36–24 0.6137 6 0.1239 4.6572 4
34–15 0.6122 5 0.1239 4.5466 4

30–1/31–7
0.6216 5 0.2692 4.529 833–20/38–28

32–12/37–27 0.6393 5 0.2692 4.4872 6

In Figure 3, the NNNLAS network detects 5 communities. Community 1 with 7 nodes is the
area of blue solid circles, community 2 with 4 nodes is the area of red squares, community 3 with 12
nodes is the area of magenta snowflakes, community 4 with 7 nodes is the area of green rhombuses,
and community 5 with 9 nodes is the area of black stars.
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The modularity of the NNNLAS network is Q = 0.6393 ∈ [0.3, 0.7], which indicates the community
partition is highly effective. C = 0.2692 is 7 times the original network, and L = 4.4872 is reduced to
about 5%. Although the NNNLAS network enhances the aggregation degree enormously than that of
the original network, it increases the connectivity level slightly.
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(3) MLNLAS Network

First, the loads of the original network are ordered to select the first 9 load nodes. Then, new links
are randomly added to the leaf nodes to satisfy the community partition principle and the average
shortest path length. The total cost of additional links is 58. See Table 3 for details.

Table 3. Connectivity link addition of MLNLAS.

New Link Q Community C L d

36–39 0.5776 4 0.0385 4.5304 9
34–8 0.5816 5 0.0385 4.363 9

38–20 0.5352 4 0.0385 4.1997 7
35–4 0.5272 4 0.0385 4.0513 6

32–16 0.5121 4 0.0385 3.8785 5
31–3 0.5274 4 0.0385 3.7787 4

37–15 0.4532 4 0.0385 3.6775 6
30–24 0.4458 3 0.0385 3.6086 6
33–29 0.4483 3 0.0342 3.5735 6

The MLNLAS network detects 3 communities in Figure 4. Community 1 with 13 nodes is the area
of blue solid circles, community 2 with 12 nodes is the area of red squares, and community 3 with 14
nodes is the area of magenta snowflakes.
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Figure 4. Communities of MLNLAS network.

The modularity of the MLNLAS network is Q = 0.4483 ∈ [0.3, 0.7], which indicates the community
partition is reasonable. C = 0.0342 is close to that of the original network, and L = 3.5735 is reduced to
about 25%. Although the MLNLAS network decreases the aggregation degree than that of the original
network, it increases effectively the connectivity level.

Three networks of the same additional links decrease the APL and increase the connectivity
than that of the original network. NNNLAS network significantly improves the aggregation degree
at the lowest cost; LDNLAS network effectively increases the connectivity with a higher cost than
that of NNNLAS network; MLNLAS network dramatically improves the connectivity and alleviates
the burdens of load centers, while the cost is the highest one of three strategies, and the community
partition and aggregation degree are relatively weak.

5.2. Network Robustness Analysis

The robustness of networks is analyzed under three attack scenarios. Random node attacks
and high-degree-node-based attacks are regarded as simultaneous attacks, while vulnerability-based
attacks are sequential attacks. For reducing the influence of network capacity, this study assumes the
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universal system tolerance parameter α = 2. Under the simultaneous attack scenarios, the component
ratios are graphed with the distribution interval, median, 5%–95% position and mean at various attack
ranges. Under the sequential attack scenarios, the component ratio curves are plotted by the number
of attacks, and all remaining survival islands are demonstrated as directed graphs.

(1) RA Scenario

Random attack groups are C4
39, C8

39, C12
39, C16

39, C20
39, C24

39, C28
39, C32

39, C36
39, according to the attack ranges

respectively. In one attack range, 1000 groups of data are selected to attack 4 networks, which is
executed for 50 times to obtain the corresponding results.

From the distribution intervals of Figure 5, the maximum component ratios of the original network
are all less than or equal to three new networks of any attack range. The less the range of distribution
intervals, the more stable the cascading propagation; the greater the mean value, the better the network
robustness. For further comparison, the mean and median values are shown in Figure 6.
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Observing the mean histogram and the median curve of Figure 6, the original network lefts
fewer nodes when the attack range is up to 60%. The LDNLAS and NNNLAS networks survive up
to 70% attack range, while the MLNLAS network can preserve in 80% attack range. Combined with
the distribution intervals of Figure 5, the robustness of 4 networks orders is as follows: MLNLAS >

LDNLAS > NNNLAS > original.

(2) HDNA

The nodes of networks are ordered in degrees. The attack range selects the nodes from the high
degrees to the low ones. As the nodes with the same degree have a number of attack groups, the results
can be obtained by traversing all attack groups of each attack range.

In Figure 7, when the attack range is up to 50%, the original network totally collapses, and the
MLNLAS network lefts a few nodes. In contrast, the LDNLAS and NNNLAS networks remain a large
number of nodes. Owing to the impacts of the highest degree nodes on the connectivity, the NNNLAS
network losses the maximum nodes at 10% attack range of 4 networks. For further analysis, the mean
and median values are shown in Figure 8.
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Combined with Figures 7 and 8, when the attack range reaches 20%, although the mean value
of the LDNLAS network is smaller than that of the NNNLAS network, both the maximum value
and the median value of the former are larger than the latter, which indicates that the mean value
is smaller due to the influence of extreme value. Thus, the overall data should be larger than the
latter. Attacking more than 20%, the robustness of the LDNLAS network is obviously superior to other
3 networks. Influenced by the community partition, when the attack range is more than 10%, the
robustness of 4 networks orders as follows: LDNLAS > NNNLAS>MLNLAS > original.

(3) VSA

Based on the node vulnerability, one node is attacked each time. For comparing with the original,
the attack originates from the most vulnerable node 16. The attack sequence of the original network
is: 16–26–3–8–6; the attack sequence of the LDNLAS network is: 16–23–7–20–2–9–5–14; the attack
sequence of the NNNLAS network is: 16–14–6–26; and the attack sequence of the MLNLAS network
is: 16–13–6–8–26–3–22–2.

In Figure 9, the original network sequentially attacks 5 nodes (about 10%) splitting into 4 islands,
and Soriginal = 2.564. The LDNLAS network sequentially attacks 8 nodes (about 20%) splitting into
3 islands, and SLDNLAS = 3.0768. The NNNLAS network sequentially attacks 4 nodes (about 10%)
splitting into 3 islands, and SNNNLAS = 1.9488. The MLNLAS network sequentially attacks 8 nodes
(about 20%) splitting into 4 islands, and SMLNLAS = 4.9232.Processes 2020, 8, 126 26 of 17 
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The remaining islands of sequential attacks are shown as follows.
From Figures 9 and 10, it is observed that the MLNLAS network is the most robust one of 4

networks. The LDNLAS network exhibits the difficulty of sequential attacks, while it is weak in
islanding operations. The NNNLAS has the worst survivability under sequential attacks. In the
sequential attack process, the more the attacks, the more difficult the implementation, and the more
robust the network. Moreover, the network with few communities, a small CC and a short APL can
resist the sequential attack more efficiently. Therefore, the robustness of 4 networks orders as follows:
MLNLAS > LDNLAS > original > NNNLAS.
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From the above analysis, LDNLAS gets the second largest link-addition cost of the three proposed
strategies. The LDNLAS network obtains a shorter APL and smaller CC than the original network,
which alleviates the depth of the cascading failure propagation. In fact, this network exhibits the best
robustness against HDNAs, and the second best robustness against RAs and VSAs. Although this
strategy requires slightly larger investments, it can resist both simultaneous attacks and sequential
attacks, and enhance the connectivity of the long-distance transmission structure power system.

MLNLAS obtains the largest link-addition cost of the three proposed strategies. The MLNLAS
network with the shortest APL enormously enhances the connectivity than that of the original network.
Moreover, this network presents the best performance against RAs and VSAs. Although this strategy
requires more investments, it optimizes the electricity supply to greatly alleviate the burdens of load
centers. As Ref [36] says, it is difficult to gain the high robustness with the minimal cost simultaneously.

NNNLAS has the smallest link-addition cost of the three proposed strategies. The NNNLAS
network with the largest CC improves the centralization of local area management and is robust to the
simultaneous attacks. However, it cannot effectively decrease the network vulnerability against VSAs.
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6. Conclusions

Cascading failure propagation can be alleviated by optimizing the network topology. Based on
the community partition of the original network, three link-addition strategies are proposed to meet
the requirements of engineering practices. It is thus useful to guide the power system planning to
improve the network robustness.

From the analysis of simulation results, the three proposed strategies can improve the network
connectivity by adding the same number of links. The MLNLAS network exhibits good robustness
under RAs; the LDNLAS shows better performances than other networks under HDNAs; the MLNLAS
network reveals highly survivability under sequential attacks.

In this study, the proposed strategies are beneficial for improving the robustness of the original
network. The focus is on the influence on the power system. In the future work, the authors will
continue to study optimal strategies to mitigate cascading failures and improve the robustness of
smart grids.
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Nomenclature

Indices
i, j, s, t Index for node numbering.
x Number of islands.
τ Number of sequential attacks.
m Number of links.
Constants
N Numbers of system nodes.
α System tolerance parameter.
Variables
Pi Real power injection at the power node i.
Qi Reactive injection at the power node i.
Pi j Real power flow from node i to node j.
Qi j Reactive power flow from node i to node j.
V Voltage magnitude.
θi j Difference in the phase angle between power nodes i and node j.
Bi j Admittance matrix.
Gi j Susceptance matrix.
Pout f low,i j(i) Out flows of node i.
Lload(i) Local loads of node i.
Ei Links of node i.
ni Neighbors of node i.
C(i) Cluster coefficient of node i.
di j Shortest path from the source node i to the destination node j.
N′ Numbers of nodes of the remaining components.
r(i) Single loop location of node i.
Ir(i) Node importance of node i.
ki Degrees of node i.
A Adjacent matrix.
vi Vertex i.
Est Additional link from the node s to the destination node t.
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Sets and Functions
GP Directed graph of power system.
VP Power node set.
EP Power line set.
CPF Power flow capacity function.
Cgen,i Generation capacity function.
CNode,i Node capacity function.
Cp System capacity function.
C Cluster coefficient function.
L Average path length function.
length Length function of a single loop.
ϕ Nodes with the same vulnerability set.
I Island ratio function.
Θ Survival islands set.
S Evaluation indicator.
Q Community modularity function.
δ Judging community function for two nodes.
ELDNLAS Low-degree-node link-addition strategy function.
D1 Set of low-degree nodes that satisfy the average shortest path Lnew.
ENNNLAS Nearest-neighboring-node link-addition strategy function.
D2 Set of neighboring nodes
EMLDLAS Max-load-node link-addition strategy function.
D3 Set of heavy load nodes in order.
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