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Abstract: The exploitation of reserves with a high CO2 content is challenging because of the need for
its separation and the environmental impact associated with its generation. In this context, a suitable
use for the generated CO2 is its reinjection into the reservoir, and subsea CO2 separation improves the
efficiency of this process. The main objective of this work is to investigate the health-aware control
of a subsea CO2 separation system. Previously identified linear models were used in a predictive
controller with Kalman filter-based state estimation and online model update, and simulations were
performed to evaluate the controller tuning. Regarding prognostics, a stochastic model of pump
degradation, sensitive to its operating conditions, was proposed, and a particle filter was implemented
to perform online degradation state estimation and remaining useful lifetime prediction. Finally,
a health-aware controller was designed, which could extend the life of the process by four months
when compared to operation with a conventional model predictive controller. Some difficulties in
combining reference tracking and lifetime extension objectives were also investigated. The obtained
results indicate that dealing with the control problem through the multiobjective optimization theory
or addressing the lifetime extension in an optimization layer may improve its performance.

Keywords: predictive control; equipment reliability; remaining useful lifetime; statistic inference;
subsea processing

1. Introduction

In the context of process systems engineering, plant automation extends control possibilities
and allows for operations in places virtually inaccessible to humans. The subsea environment is a
classic example of an inaccessible place in which process operation is performed, mostly related
to oil and gas exploitation in deep and ultradeep waters. Another issue that arises with low
accessibility is maintenance planning, which needs to be done in order to prevent process interventions
and production downtime, but also needs to take into account the difficulty of performing such
maintenance. For this, reliability analysis aims to quantify rate or probability of casualties, in order to
aid in the decision-making process [1].

In the early industrial periods, maintenance was done only at process breakdown (“run-to-failure
maintenance”). This behavior often leads to major financial losses, so this kind of maintenance
has mostly given way to preventive maintenance, in which parts are repaired or replaced based on
historical data. As competition in the industries became tighter, the time between repairs became a
critical variable. If this time interval is too high, the chances of a process breakdown rise. If it is too low,
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maintenance costs become unfeasible. Traditional reliability-based preventive maintenance focused on
the equipment population data, not on specific units with specific operational routines [2]. In order to
assess these issues, the condition-based maintenance (CBM), a new paradigm of process maintenance,
arises: interventions are made only when necessary, and equipment conditions are monitored in order
to define if maintenance is necessary or not [3].

In the established CBM philosophy, the analyst essentially aims to estimate the remaining useful
lifetime (RUL) of equipment. To attain this, health indicators are constructed from available system
data, and with predefined degradation stages and failure thresholds, the indicators are projected into a
time horizon [4]. The RUL of a given piece of equipment is defined as the time instant in which the
respective health indicator exceeds its failure threshold, and prognostics is defined as the prediction of
this RUL from process data [5].

This definition is well behaved in deterministic frameworks; however, as the reliability analysis
deals with stochastic events, reliability metrics such as RUL are best described by probability
distribution functions (p.d.f.) [6]. Therefore, the analyst should be aware that health monitoring
information is inherently linked to a confidence level, and inappropriate confidence level selection can
lead to false-positive or false-negative results.

Lei et al. [4] emphasize that Bayesian filtering algorithms are useful tools for characterizing
uncertainty of the estimated health status and predicted RUL, being applicable to many prognostics
strategies. However, Bayesian filtering needs to be used in tandem with a dynamic model, to enable
propagation of the current estimated state through time to the critical state of the system. Particle
filtering applied to prognostics is a recent trend in the literature. In 2006, Kothamasu et al. [7]
performed a prognostics and health monitoring review, and particle filter use was not reported.
Ten years later, Jouin et al. [8] reported the application of particle filters in prognostics and health
monitoring, highlighting their generality in the face of nonlinear dynamic models and non-Gaussian
probability distributions.

Reserves with high CO2 content represent over 10% of the world’s proven reserves.
The exploitation of these fields generates major CO2 quantities, which have low economic value
and are an environmental burden, and must be separated in order to recover the main products with
the required specifications. In this context, a suitable destination for CO2 is its reinjection into the
reservoir, in order to increase the oil recovery factor and thus oil production over the years [9].

In this sense, the early separation of CO2 from the oil stream is beneficial, because downstream
equipment can be sized for lesser flow rates, and produced CO2 can be readily reinjected into
the reservoir. This strategy, known as HISEPTM, was first addressed by Petrobras. Passarelli [10]
and Passarelli et al. [11] proposed a subsea CO2 separation process that takes advantage of mixture
thermodynamic properties in well conditions to ensure phase separation and good hydrocarbon
recovery to the topside. Souza [12] and Souza et al. [13] analyzed the technical feasibility of this process
and developed a dynamic model inspired by it.

CO2 reinjection requires the use of a submersible pump able to promote a considerable pressure
rise. Therefore, as this piece of equipment operates under the harshest conditions, it is reasonable to
assume that process failure is most likely to happen in the pump, and thus, degradation modeling
efforts in this work shall be directed towards it.

The general objective of this work is to investigate the main aspects of the development of a
health-aware control (HAC) tool, which performs control, prognostics, and optimization, applied to a
subsea CO2 separation system model. More specifically, this work aims to assess the process control
and prognostics, and how they can be combined. This paradigm is new in the literature, and although
some effort has been put into dealing with these issues (see [14–19]), there is no consensus on how to
optimally solve HAC problems.

The present work intends to present contributions in terms of control, prognostics, and application.
The developed HAC approach is innovative in terms of its formulation, expanding the traditional
model predictive control algorithm to include an explicit health-aware compromise. Additionally,
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the introduced prognostic is based on a new, original stochastic dynamic degradation model, and a
particle filter, which performs online state estimation based on the model. Finally, the application
focuses on a new HISEPTMprocess of high CO2 percentage separation. There are no published works
in the open literature of HAC of this process, as it is a technology that is being developed right now.

2. Methodology

In this section, the studied process and the methods related to its control and prognostics are detailed.

2.1. Process Description

The process flow diagram (PFD) for the process considered in this work is displayed in Figure 1.
This PFD is based on a process conception developed by Passarelli [10] and further analyzed
by Souza [12] and Souza et al. [13].
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Figure 1. Process diagram, emphasizing correspondent variables [20].

In this process, the crude oil in reservoir conditions is submitted to heat exchange with a hot
stream from the process, which provides part of the heat necessary for separation. This stream is
then sent to a separator drum, in which the remaining heat necessary for separation is provided.
The CO2 rich stream, withdrawn at the top outlet, is cooled, elevating its density so that it becomes
adequate for pump operation. The pump elevates the fluid pressure, allowing its reinjection, but it
also significantly raises the fluid temperature. This temperature elevation enables heat integration
between this stream and the crude oil extracted from the reservoir. After heat integration, the CO2 rich
stream is sent to the reinjection section. The separation drum bottom stream is then sent to topside
processing. In addition, to stabilize the process, a proportional integral (PI) controller is implemented
to control the flash drum liquid content by manipulating the bottom valve opening.

The dynamic model for the system studied in this work and the process variables are detailed
in Appendix A. Simulations were carried out in Python 3.7 [22]. The CO2Therm package developed
by Souza [12] was interfaced to Python using the Boost:Python library [21]. Differential-algebraic
equation system integration was performed using the Implicit Differential-Algebraic (IDA) algorithm
from the Assimulo package [23].

2.2. Setpoint Tracking Control System

A discrete linear state-space dynamic model, with a sampling time of 10 s, was identified.
The interested reader may find all the details of the linear identification in [20]. The identified
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model was used as the internal model for the model predictive control (MPC) framework, in which
the controlled variables were selected as y = [Fin, Pf lash, Tf lash, T2], and the manipulated variables
were selected as u = [xv,t, xv, Q f lash, Qcool , W]. This choice of controlled and manipulated variables
was made according to a previous work [13], in which unconstrained MPC was compared with
feedback control.

The implemented MPC framework comprises a discrete Kalman filter (KF), which was used to
perform state estimation and model correction, and an optimizer used to calculate the optimal control
actions sequence.

For the KF implementation, the temporal and measurement update equations were implemented
as in Equations (1) and (2), respectively [24].P−

k = FP+
k−1FT + Q

x̂−k = Fx̂+k−1 + Guk−1 + wk−1

(1a)

(1b)

Kk = P−
k CT(CP−

k CT + R)−1

P+
k = (I − KkC)P−

k

ϕk = Kk(yk − Cx̂−k − Duk)

x̂+k = x̂−k +ϕk

wk = wk−1 +ϕk

(2a)

(2b)

(2c)

(2d)

(2e)

The dynamic optimization problem for the control actions calculations was formulated as
in Equation (3). This optimization problem was solved using the scipy.optimize.minimize routine,
using the sequential least squares programming (SLSQP) method (tolerance f tol = 10−6) [25].
Tuning parameters for the control system were selected based on the literature for the MPC [26]
and simulation tests. The used parameters are presented in Table 1.

min
∆uk+j

J =
Ny

∑
i=1

Np

∑
j=1

qi
2(ŷi,k+j − ysp

i,k+j)
2 +

Nu

∑
i=1

Nc−1

∑
j=0

si
2(∆ui,k+j)

2

subject to: umin
k+j ≤ uk+j ≤ umax

k+j , j = 0, · · · , Nc − 1
−∆umax

k+j ≤ ∆uk+j ≤ ∆umax
k+j , j = 0, · · · , Nc − 1

xk+j = Fxk+j−1 + Guk+j−1 + wk, j = 1, · · · , Np

ŷk+j = Cxk+j + Duk+j, j = 1, · · · , Np

(3)

Table 1. Kalman filter (KF) and model predictive control (MPC) tuning parameters (units consistent
with values of Tables A2 and A3).

Q R
qi

si Np Nc
Fin Pf lash, Tf lash, T2

I diag(0.001 yss) 10 1 10 75 10

With this setup, closed-loop simulations were performed to evaluate the performance of
the controller with the proposed tuning. All dynamic simulations had the nominal steady state,
described in Appendix A, as the initial condition, and at t = 0, a change in the flash drum pressure
setpoint of +0.5 MPa was implemented.



Processes 2020, 8, 148 5 of 22

2.3. Prognostics Module

The implemented prognostics module comprises a stochastic dynamic model, which represents the
pump degradation process as a function of its operating point, and a sequential importance resampling
(SIR) particle filter, which performs online state estimation based on the degradation model [27].

The degradation state evolution (λ) was modeled inspired by Paris’ law for crack propagation [28]
and is given by Equation (4), in which the p.d.f. corresponds to a Gamma(k, θ) distribution as defined by
Equation (5), and Wk represents the pump operating power at time k.

λk+1 = λk + ∆ fk λn
k , ∆ fk ∼ Gamma(θ1Wk∆t, θ2) (4)

Gamma(x|k, θ) =
xk−1

Γ(k)θk e
−

x
θ (5)

The considered observation for the degradation system is the degradation state, corrupted by
white noise, according to Equation (6).

ηk = λk + εk, εk ∼ N (0, σ2) (6)

Table 2 presents the parameters for the degradation model. For this set of parameters,
the operational degradation limit was fixed as λlim = 1.0.

Table 2. Degradation model parameters.

λ0 ∆t θ1 (M J−1) θ2 n σ

0.001 0.05 year 5× 10−7 0.01 0.7 0.0001

The particle filter was implemented with the same model and parameter set as the considered
degradation process, except from the standard deviation, which was considered to be σ = 0.001.
The algorithm was based on Speekenbrink [27], and is further described in Appendix B. The number
of particles was Npart = 100, the resampling rate was c = 0.5, and particles at time k = 0 were sampled
from N (0.001, 10−10). All statistical operations were performed using the scipy.stats algorithms.

Simulations of the degradation process were performed considering a planned horizon for the
manipulation of the pump power W. Using the filter results, a prediction of RUL was made at each
measurement. To evaluate prediction performance, this was compared to the actual end-of-life time in
the simulation.

2.4. Health-Aware Control System

By combining the setpoint tracking control system and the prognostics module, an HAC structure
was implemented. It consists of an MPC, with the objective function written as in Equation (7),
with wHAC being the weighting factor between RUL extension and control objectives, and RUL being
the average of RUL between the propagated particles. Tuning parameters were kept as in Table 1.

JHAC = −wHACRUL +
Ny

∑
i=1

Np

∑
j=1

qi
2(ŷi,k+j − ysp

i,k+j)
2 +

Nu

∑
i=1

Nc−1

∑
j=0

si
2(∆ui,k+j)

2 (7)

The model proposed in Equation (4), however, cannot be directly used in a deterministic
optimization problem, due to its randomness. Furthermore, as the degradation model is represented in
discrete time, RUL has no direct correlation in continuous space. To address these issues, the strategy
used to calculate RUL during the optimization procedure is as given in Algorithm 1.
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Algorithm 1: RUL calculation

Data: λ
(i)
0 (i = 1, · · · , Npart), λlim, µ

(i)
k (i = 1, · · · , Npart, k = 0, · · · ), Wend

Result: RUL

1 for i← 1 to Npart do

2 k← 0 ;

3 while λ
(i)
k < λlim do

4 ∆ f (i)k ← Q(µ
(i)
k , Wend) ;

5 λ
(i)
k+1 ← λ

(i)
k + ∆ f (i)k (λ

(i)
k )n ;

6 k← k + 1 ;

7 end

8 RUL(i) ← k−
λ
(i)
k − λlim

λ
(i)
k − λ

(i)
k−1

;

9 end

10 RUL← ∑
Npart
i=1 RUL(i)/Npart ;

In Algorithm 1, µ
(i)
k represents the quantile associated with the k-th evolution of the i-th particle,

Wend represents pump power at the end of the control horizon, and Q(·) represents the inverse
cumulative distribution function associated with the distribution in Equation (4), depending on the
pump power which varies along the optimization. The set of µ

(i)
k is sampled from a standard uniform

distribution, and kept constant in the optimization course. As a result of the difference between
timescales, Wend was considered as the dominant effect in the degradation pattern, and the variation
during the control horizon can be neglected.

For simplicity, the MPC internal model was considered to be representative of the process,
being used as the process model. The used MPC tuning was the same as described in Table 1,
except for the control horizon, which was Nc = 2. For higher control horizons, the optimization
problem is ill-posed.

Closed-loop simulations were performed to evaluate the influence of the number of particles
(Npart) and the value of wHAC, in Equation (7), over the controller performance.

3. Results and Discussion

3.1. Setpoint Tracking Control System

In order to attain the main objective, which is to develop an HAC tool, first it is necessary to
evaluate the system control separately. Guaranteeing that the controller is well tuned is fundamental
before adding complexity to the control framework. Furthermore, these results serve as a benchmark
for the proposed HAC framework.

Figure 2 presents the closed-loop simulation results for a setpoint change of the flash drum
pressure. System settling occurred at around 600 s, which justifies the chosen prediction horizon of
750 s. The implemented controller produced no offset, even though there is a mismatch between the
controller internal model and the plant. This result is due to the KF-based model update translated
in the variable w. For comparison, the same simulation without the model update, i.e., wk = 0 ∀k,
is also displayed, in which an offset can be observed. This highlights the importance of feedback,
not only in state estimate, but in the process internal model in order to attain a good performance
in the control strategies. The adopted model update, although simple, was enough to represent the
process nonlinearities that come with the steady state change.
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Figure 2. Closed-loop simulation of the flash pressure setpoint change: effect of the KF model update.
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3.2. Prognostics Module

Using a representative model of the degradation process, online state estimation was performed
using a particle filter. Despite the fact that a simple tool such as the Kalman filter was used for the
process control problem, the prognostics problem requires a more sophisticated tool. This is due to the
absence of a representative linear model of the degradation process, and the importance of keeping the
statistical information of the model.

In the first set of simulations, a constant pump power corresponding to its nominal value (W(t) =
4.246 MW) was considered. Figures 3 and 4 present the results of the SIR filter implementation for
the a priori and a posteriori distributions, respectively. It can be seen that the distributions remain
well conditioned throughout the simulation due to the resampling step. Furthermore, as expected,
the measurement update effectively narrows the sample distribution a posteriori, as the a priori
information is combined with the measurement likelihood function, leading to smaller confidence
regions for the degradation state.

0 1 2 3 4 5
t (years)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 True state
SIR estimate

Figure 3. Degradation state online estimation—a priori distribution (dot size represents particle weight).

All parameters from the stochastic model were implemented in the particle filter as their actual
values, meaning that no influence of modeling error was considered in this implementation. Only
the likelihood function standard deviation was changed to σ = 0.001, solely due to numerical issues
related to the very narrow actual likelihood function. This led to a more permissive filter, which means
that a posteriori distributions are wider than necessary to describe the state.

Using the particle filter framework, RUL predictions can be performed. However, as RUL
prediction generally involves a high number of state transitions, leading to high-dimensional statistical
problems, it is known that a distribution reconstruction using importance sampling is nearly infeasible.
The chosen strategy, then, was to retrieve information about the distributions by standard Monte Carlo
sampling. As a discrete-time state transition model was used, predicted RUL belongs to a discrete
set. Thus, the very number of occurrences of each realization was considered as representative of
the probability.
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Figure 4. Degradation state online estimation—a posteriori distribution (dot size represents particle weight).

Results of RUL prediction for the SIR filter are presented in Figure 5, in which predicted RUL
is displayed in terms of the number of discrete model evolution steps. It can be seen that SIR filter
RUL distribution narrows around the true RUL as time passes. This is due to the resampling step,
which redistributes particles in the most likely state values.

0 1 2 3 4
t (years)

0

20

40

60

80

100

RU
L 

(s
te

ps
)

True RUL
SIR RUL estimate

Figure 5. Remaining useful lifetime (RUL) prediction—sequential importance resampling (SIR) filter
(dot size represents probability).

A simulation with time-varying pump power was also performed (W(t) = 10.615× (5− t)/5 MW,
t in years). Figures 6 and 7 show results for the sequential importance resampling (SIR) filter in the
cases of a priori and a posteriori estimates, respectively. It can be seen that, for the a priori estimates,
the distribution starts to degenerate when lower pump power is applied. This is due to the lack
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of degradation in this region. Nevertheless, a posteriori weights are normalized and this effect
is counteracted.

0 1 2 3 4 5
t (years)

0.0

0.5

1.0

1.5

2.0

2.5

3.0 True state
SIR estimate

Figure 6. Degradation state online estimation with time-varying pump power—a priori distribution
(dot size represents particle weight).
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1.0
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2.5

3.0 True state
SIR estimate

Figure 7. Degradation state online estimation with time-varying pump power—a posteriori distribution
(dot size represents particle weight).

Regarding the RUL prediction for this case, results for the SIR filter are given in Figure 8.
Even though RUL prediction in early states is biased, as new measurements are incorporated, the
predictions progressively become more accurate. This result encourages the use of particle filters as
auxiliary tools in RUL prediction, even in the presence of modeling errors.
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Figure 8. RUL prediction with time-varying pump power—SIR filter (dot size represents probability).

3.3. Health-Aware Control System

The HAC objective function described in Equation (7) aims to combine the health extension and
control objectives in the same optimization problem. As the control problem has four independent
controlled variables and five independent manipulated variables, there are enough degrees of freedom
to find an operating point which satisfies the control objectives with the maximum equipment RUL. It is
evident from the models that one should aim for the maximum top valve opening (xv,t) to minimize
pump effort and thus extend its lifetime.

The influence of wHAC over the HAC strategy is explored in the simulations presented in
Figures 9 and 10, with lower and higher values of wHAC, respectively. As a result of the randomness of
sampling µ

(i)
k at each control step, the RUL estimate (RUL) fluctuates at each control action calculation,

which changes the optimization problem at each time step and thus makes the attainment of a steady
state impossible. As expected, the variable xv,t is brought to its allowed maximum, and W is minimized
to some extent in all cases. In the case with lower wHAC, even though the control objectives are not
ignored, an offset is produced. As the operation reaches a point where health and control objectives
compete against each other, the obtained solution is a compromise between these objectives. In the
case with higher wHAC, the optimization problem prioritized the RUL extension objective over the
control objective to the point where the system diverges from the reference trajectory.

When stochastic problems are solved by sampling strategies such as particle filters, the number of
samples is a key tuning parameter to attain an acceptable performance. As such, strategies to reduce
the noise associated with sampling were investigated, and the results are summarized in Figure 11.
By increasing the number of particles from 3 to 20, some reduction in the oscillation amplitude of RUL
is observed. This means that the number of particles needs to be raised some orders of magnitude to
attain a representative mean value that stays constant with the resetting of quantile samples.

As the elevation of the number of particles proved to be not very effective in stopping oscillatory
behavior, a different strategy was adopted. Instead of resetting the values of µ

(i)
k at each control

step, these values were kept constant throughout the closed-loop simulation. For this approach,
the attainment of a noise-free steady-state value for the manipulated variables is evidenced, at the
expense of a biased RUL.
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Figure 9. Health-aware control (HAC) simulation—wHAC = 5, Npart = 3.
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Figure 10. HAC simulation—wHAC = 100, Npart = 3.
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For comparison purposes, the results presented in Figure 2, which correspond to an HAC
controller with wHAC = 0, are complemented with the corresponding RUL presented in Figure 11.
The difference between the steady RUL of HAC and MPC highlights the RUL extension capability of
the HAC strategy.
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Figure 11. RUL corresponding to the MPC simulation (Figure 2).

In all of the presented HAC simulations, it was not possible to eliminate the offset when the
health extension objective conflicts with the reference tracking objective. This suggests that a different
approach is necessary to attain both objectives.

4. Conclusions

In this work, motivated by the recently developed process of subsea CO2 separation, process
modeling, control strategies, and equipment prognostics were assessed.

The control strategies employed in this work were the PI controller, whose main role was to
stabilize plant dynamic behavior, in parallel with an MPC controller, with a linear internal model
identified from the PI-stabilized plant, and a KF, used to correct state estimates and model bias.
This strategy was successful, highlighting the importance of filter-based model correction in cases of
model–plant mismatch.

A pump wear model was proposed, which reunited most of the desired characteristics in an
equipment wear model (monotonicity, time independence, dependence with important operational
variables). Using the stochastic processes mathematical formulation, particle filters were successfully
used to estimate states and predict the remaining useful lifetime. The development of this kind
of model is challenging mainly because of the scarcity of quality data regarding all of the relevant
variables. This development was however very encouraging because of the positive impact it can have
on process reliability and optimization.

The main achievements of this work were then consolidated in the deployment of an HAC tool to
solve the proposed case study. For the case with wHAC = 10 (Figure 12), the tool was able to extend
the lifetime of the process by roughly 4 months, compared to the same operation with a conventional
MPC (Figure 11) when the process is still under healthy conditions. Even though consistent results
were obtained, some limitations of the proposed method were noted, most of them concerning the
contraposition of health and control objectives.

The unstable behavior seen with the high RUL extension priority is a known issue which has
been explored in the development of economic MPCs. For this class of control problem, stability can
be guaranteed under some assumptions and modifications of the optimization problem [29].

As any optimization problem with multiple conflicting objectives, the most accurate way to
express it mathematically is as a multiobjective optimization problem. The objective function
formulated in Eq. (7) can be seen as simply the multiobjective problem solved using the weighted
sum approach. Therefore, the treatment of this generic problem using other tools, such as the goal
attainment method [30], can result in more reasonable control policies.
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Figure 12. HAC simulations—evaluation of sampling noise (wHAC = 10).
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Although this problem was solved in an one-layer control framework, the complexity of the
methods necessary to describe the degradation phenomenon suggests that this issue could in future
investigative works be addressed in a higher control layer and a systematic comparison could be
performed. With this, a higher number of particles could be used, resulting in not only a more reliable
RUL estimation, but in an estimate of the RUL p.d.f. itself. This is expected to enable the analyst to
work with the constraints related to the confidence level of the degradation process, resulting in a
more robust decision-making.
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Appendix A. Process Model

In this section, the model of the subsea CO2 separation system considered in this work is described.
It is considered that the reservoir contains CO2, water, methane, and heavy hydrocarbons modeled as
pseudocomponents F1, F2, F3, and F4. The interested reader is encouraged to consult Bernardino [20] for
a more thorough process description, and Souza [12] for the description of the thermodynamic package
CO2Therm.

Appendix A.1. Valves

A scheme which emphasizes variables of the valve model is presented on Figure A1.

P2, T2

Kv, xv, A

P1, T1 
 
z 

Figure A1. Valve scheme, emphasizing model variables.

For this model, it was assumed that the flow through a valve is an isenthalpic process, and that
the molar flow has a linear correlation with the valve opening, as in



H(T1, P1, z) = H(T2, P2, z)

F =
A

MM(z)
Kvxvρ̄m

√
∆P
ρ̄m

ρ̄m =
−1
∆P

∫ 2

1
ρmdP,

(A1a)

(A1b)

(A1c)

in which A represents the valve cross-section area, xv represents the valve opening, and Kv represents
the valve constant.

Appendix A.2. Heat Exchanger

The heat exchanger used for process integration was discretized into theoretical stages, as depicted
in Figure A2.
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Figure A2. Heat exchanger discretization scheme, emphasizing model variables.

By performing energy balances at each theoretical stage, the following equations apply:

dEc,k

dt
= Fc(Hc,k−1 − Hc,k) + UAk(Th,k − Tc,k)

dEh,k

dt
= Fh(Hh,k+1 − Hh,k)−UAk(Th,k − Tc,k)

Ec,k = Vc,kρc,k Hc,k

Eh,k = Vh,kρh,k Hh,k,

, k = 1, · · · , nst

(A2a)

(A2b)

(A2c)

(A2d)

with nst being the number of theoretical stages.

Appendix A.3. Flash Drum

The flash drum modeled in this work is schematized in Figure A3.

Fw

  , Hw

Fv

  , Hv

Fin

zres, HF

Pflash, Tflash,
N, Ue

Fl

  , Hl

Qflash

ν

α

γ

Figure A3. Flash drum scheme, emphasizing model variables.

The equation system that models this equipment is written as
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dNi
dt

= Finzi,res − Fvνi − Flαi − Fwγi, i = 1, · · · , nc

dUe

dt
= Fin HF − Fv Hv − Fl Hl − FwHw + Q f lash

Ue + Pf lashVf lash

Ntot
= βνHv + βα Hl + βγHw

Vf lash

Ntot
= βνV̄v + βαV̄l + βγV̄w

[βν, βα, βγ, ν, α, γ] = Flash3P(Tf lash, Pf lash, z)

zi =
Ni

Ntot

Ntot =
nc

∑
i=1

Ni.

(A3a)

(A3b)

(A3c)

(A3d)

(A3e)

(A3f)

(A3g)

The model for this equipment comprises the component material balances and the energy balance.
The thermodynamic package CO2Therm [12] supplies the algorithm Flash3P, that performs (P, T)
specified flash calculations. However, as the drum internal energy and volume are specified, algebraic
constraints are necessary to ensure consistency.

The drum level is obtained from the liquid volumetric fraction at drum conditions, given by

h f lash =
(βαV̄l + βγV̄w)Ntot

Vf lash
. (A4)

Appendix A.4. Pump

The scheme for the submersible pump employed in this virtual plant is shown in Figure A4.

Pd, Td

W, A

F, z

Ps, Ts

Figure A4. Pump scheme, emphasizing model variables.

The model for this equipment is composed of an energy balance (Bernoulli equation) and the
assumption of isentropic flow, given respectively by

W = F

{
MM(z)

[(
FV̄d
A

)2

−
(

FV̄s

A

)2
]
+
∫ Pd

Ps
V̄dP

}

H(Td, Pd, z)− H(Ts, Ps, z) =
∫ Pd

Ps
V̄dP.

(A5a)

(A5b)
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Appendix A.5. PI Controller

The PI controller was implemented using the following formulation, in which the integral term is
calculated through an auxiliary differential equation in time:

xv,b = kc

[
(hsp − h f lash) +

Ψ
τI

]

dΨ
dt

= hsp − h f lash, Ψ(0) =
xsteady

v,b τI

kc
.

(A6a)

(A6b)

The controller was tuned using rules proposed by Skogestad [31] based on the identified transfer
function of the pair xv,b x h f lash, with τc = 10 s.

Appendix A.6. Model Parameters

The parameters and variables presented in Tables A1 and A2 were used throughout all the
simulations. Using these, the obtained nominal steady state is described by the variables in Table A3.

Table A1. Parameters used in the simulation.

Parameter Value Unit Description

nst 3 - Number of heat exchanger theoretical stages
Kv 0.0982 - Inlet valve constant
Kv,t 0.0564 - Top valve constant
Kv,b 0.1589 - Bottom valve constant
D 0.3048 m Piping diameter

∆Ph 0 MPa Pressure drop of hot fluid (top stream)
∆Pc 0 MPa Pressure drop of cold fluid (inlet stream)
UA 0.153 MW/K Overall heat transfer coefficient

Vf lash 31.8086 m3 Flash drum volume
Vc 1.806 m3 Heat exchanger cold side volume
Vh 0.387 m3 Heat exchanger hot side volume
kc −31.127 - Proportional integral (PI) controller gain
τI 40 s PI controller integral time constant

Table A2. Fixed variables used in the simulation.

Parameter Value Unit Description

H2O 0.0100 -
CO2 0.7500 -
CH4 0.0480 -

zres F1 0.0543 - Reservoir composition
F2 0.0443 -
F3 0.0520 -
F4 0.0413 -

Tres 313.15 K Reservoir temperature
Pres 15 MPa Reservoir pressure

PBL,B 9 MPa Pressure at bottom side battery limit
PBL,T 59 MPa Pressure at top side battery limit
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Table A3. Nominal conditions.

Parameter Value Unit Description

1 −6.4567 107 J
Ec,k 2 −6.0425 107 J Cold-side energy holdup

3 −5.4825 107 J
1 −1.4160 107 J

Eh,k 2 −1.2629 107 J Hot-side energy holdup
3 −1.0557 107 J
1 314.132 K

Tc,k 2 315.602 K Cold-side stage temperature
3 317.773 K
1 326.389 K

Th,k 2 332.874 K Hot-side stage temperature
3 342.018 K

H2O 2.1638 kmol
CO2 162.3078 kmol
CH4 10.3863 kmol

N F1 11.74932 kmol Flash drum component holdup
F2 9.5855 kmol
F3 11.2516 kmol
F4 8.9364 kmol

Ue −2.2175 109 J Flash drum extensive internal energy
Tf lash 330.25 K Flash drum temperature
Pf lash 10 MPa Flash drum pressure

T1 312.971 K Inlet valve discharge temperature
T2 303.65 K Condenser outlet temperature
Pd 60 MPa Pump discharge pressure
Td 354.702 K Pump discharge temperature
Th,i 354.874 K Top valve discharge temperature
Tbot 329.368 K Bottom valve discharge temperature
W 4.246 MW Pump power

Q f lash 5.676 MW Drum heating rate
Qcool −5.462 MW Condenser cooling rate

xv 0.5 - Inlet valve opening
xv,t 0.49828 - Top valve opening
xv,b 0.50131 - Bottom valve opening

Appendix B. Particle Filter Algorithm

The particle filter algorithm implemented in this work is given by Algorithm A1. In this algorithm,
Xi

k and wi
k represent the i-th particle and its correspondent weight at time k, yk represents system

measurement at time k, ψj represents probability distribution of j-th parameter conditioned to the state
and previous parameters, f represents the state evolution law, g represents the likelihood function,
Npart is the number of particles, and c is the filter resampling rate. The resampling algorithm used was
the systematic resampling, described in Speekenbrink [27].
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Algorithm A1: PNRERB-MC-DDPG method Particle filter (adapted from Speekenbrink [27])

Data: [Xi
k−1, wi

k−1], yk, ψj (j = 1, · · · , nψ), f , g, Npart, c

Result: [Xi
k, wi

k]

// A priori calculations

1 for i← 1 to Npart do

2 pi
ψ ← 1; // initialize transition probability

3 for j← 1 to nψ do

4 Sample Ψi
k−1,j ∼ ψj(pj|Xi

k−1, Ψi
k−1,1, · · · , Ψi

k−1,j−1);

5 pi
ψ ← pi

ψψj(Ψi
k−1,j|X

i
k−1, Ψi

k−1,1, · · · , Ψi
k−1,j−1); // calculate joint probability of

sampled parameters

6 Xi
k ← f (Xi

k−1, Ψi
k−1,1, · · · , Ψi

k−1,nψ
); // propagate particle in sampled path

7 wi
k ← wi

k−1 pi
ψ; // update weight with probability of sampled path

8 ξ ← ∑
Npart
i=1 wi

k;

9 wi
k ← wi

k/ξ, i = 1, · · · , Npart;

// A posteriori calculations

10 wi
k ← wi

kg(yk|Xi
k), i = 1, · · · , Npart;

11 ξ ← ∑
Npart
i=1 wi

k;

12 wi
k ← wi

k/ξ, i = 1, · · · , Npart;

13 Ne f f ← 1/ ∑
Npart
i=1 (wi

k)
2;

14 if Ne f f < cNpart then

15 [Xi
k, wi

k]← Resample(Xi
k, wi

k);
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