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Abstract: Municipal solid waste (MSW) gasification could be a novel method that shows the
various advantages over traditional MSW treatments in China. Other research concluded that MSW
gasification was operating by the assistant heat, and the gasification may occur under medium
temperature. So, this study is aimed to investigate MSW gasification and pyrolysis behavior and
analyze the syngas evolution and reaction mechanism. The MSW samples were collected in daily life
and the experiments were carried out in a fixed tubular reactor below 650 ◦C. The effects of medium
temperature and oxygen content on syngas quality were elucidated in depth. The results have shown
that temperature can promote the syngas quality in the range of 550–650 ◦C, because the increasing
temperature strengthens the reaction rate. The oxygen content should be controlled in a certain range,
or oxidation reactions will be more prominent during gasification. The optimal gasification condition
in this study was obtained at 650 ◦C and an oxygen concentration of 1.25%, the combustible gas
yield and the lower heating value (LHV) of syngas of this condition were 0.296 L/g and 10.98 kJ/L,
respectively. This study provides insights for MSW gasification under medium temperature, and a
practical gasification system can be designed under a certain condition.

Keywords: oxygen content; syngas quality; syngas evolution; energy efficiency

1. Introduction

Rapid population growth and economic development have led to serious environmental problems
in recent years, such as enormous solid waste generation and pollutant discharge, negatively impacting
the quality of life. The amount of national municipal solid waste (MSW) transportation in 2017 reached
an astonishing 210 million tons in China, maintaining an annual growth rate of 6% in the past five
years [1]. Therefore, the harmless treatments of MSW have been particularly significant and urgent.

Traditional MSW disposal treatments, such as landfill, incineration, composting, recycling, and
others, have various drawbacks. For instance, the disposal period of landfill is long and it takes up too
much available space, which is not suitable as a long-term solution [2,3], composting and recycling
are inefficient and the handling capacity is limited, and other methods need to be developed [4].
Although incineration can efficiently recover energy of solid waste and reduce the weight and volume
of MSW, the pollutants, e.g., NOx, HCl, dioxins, and heavy metals, still restrict its development [3,5].
Gasification is defined as the process of converting material into gaseous, liquid, and solid products in
the atmosphere of partial oxygen through thermochemical reactions, and the biogas is the most widely
used product [6]. With the development and application of gasification, a gasification method suitable
for MSW has emerged [7], which has produced less dioxins and pollutant emissions.
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In the past few years, a number of studies have begun to investigate the novel waste-to-energy
(WtE) treatments: pyrolysis (no oxygen) and gasification (partial oxygen). Then, MSW gasification was
tested in various facilities, such as a semi-industrial fluidized bed plant [8,9], a “two-step” facility [10],
a downdraft gasifier [11], a fixed bed gasifier [12], and a pilot plasma furnace [13], and all of the MSW
gasification research was operated above 700 ◦C, and even higher in the plasma [13]. The research in
Reference [14] has indicated that the economic and environmental performances of MSW gasification
had some advantages, and MSW gasification can also be operated commercially. The best example is
MSW gasification commercial power plants in Japan [10], where the carbon conversion was higher
than 91.7% and the concentration of heavy metals and dioxins were lower than the limits.

The classification of MSW has been implemented in China since 2010, thus the composition of
MSW was more complex. The high content of kitchen residue and moisture are not suitable for MSW
gasification at high temperature. However, the pilot applications or demonstration plants of MSW
gasification have not yet been reported in China to date. Meanwhile, several basic research studies have
proceeded to investigate the thermal characteristics and pyrolysis/gasification performance of MSW.
The thermogravimetry (TG) research of typical MSW components has been studied in depth [15–18].
Twenty-six typical wastes were classified into six types by cluster classification from thermogravimetric
experiments [15]. Given the thermogravimetric analysis, the thermal characteristics and kinetics
parameters of MSW components were clear. Additionally, the MSW gasification needed a more
comprehensive study: tests should be carried out on various scales to obtain enough results. Four
different waste materials were gasified separately in a fixed-bed reactor between 700 and 900 ◦C [19].
Liu et al. used a two-stage fluidized bed to investigate the effects of temperature (700 to 900 ◦C) on
syngas quality [20]. Dong et al. investigated pyrolysis and gasification of simulated MSW in a fluidized
bed reactor between 550 and 850 ◦C [21]. Reforming technology, such as catalytic gasification [22,23]
and steam gasification [24], were used to obtain better syngas, and the experiments were also carried
out over 750 ◦C. The H2 and CO yields were largely improved by the catalysts, because the tar
cracking reaction was promoted under the catalyst [22,23]. However, it should be observed that in
the research listed above [20–25], conducted at high temperatures, there was little discussion about
MSW gasification at medium temperature (below 700 ◦C). The study in Reference [26] indicated that
the chamber stabilized above 1000 ◦C by burning liquefied petroleum gas (LPG), and temperature
fluctuated between 600 and 800 ◦C during the MSW gasification, but it still needed to burn syngas
for maintaining the gasification temperature. It is difficult to stabilize at high temperature without
assistant heat when the auto-thermal gasification is proceeding. The heavy metals (Cu, Cd, Pb) will
volatilize to the syngas under high temperature [27]. So, the investigations of MSW pyrolysis and
gasification under medium temperatures are particularly important.

However, these previous studies primarily focused on thermal characteristics of MSW typical
components and MSW gasification under high temperatures. Demonstration pilot gasifiers for biomass
were built and successfully operated [28,29] and the fluidized gasifier operated steadily in the range
of 650–700 ◦C, otherwise the gasification was uncontrollable and shut down rapidly. Little efforts
have been made so far in revealing gasification of MSW at medium temperatures. In this study, the
MSW sample was collected in daily life, the major components were rice, used paper, fallen leaves,
polyethylene (PE), and others, then the experiments were performed in a fixed tubular reactor. The
MSW gasification was carried out below 650 ◦C, lower than other studies; meanwhile, the syngas
evolution was recorded, and the variation of syngas and the mechanism were discussed. Common
gasification indexes (gas composition, combustible gas yield, the lower heating value (LHV) of syngas,
and energy efficiency) were introduced to assess the gas quality, and the energy efficiency was calculated
by the counter-balance method, which was a novel attempt. The study aims to get the effects of
medium temperature and oxygen content on syngas quality of MSW gasification. The main advances
include: exploring the feasibility of medium temperature (550 to 650 ◦C) gasification, analyzing the
syngas evolution and the interaction between MSW composition, evaluating the syngas quality, and
obtaining an optimal gasification condition.
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2. Experiment

2.1. Material

MSW consists of different kinds of waste, including kitchen residue, plastic, waste-paper, old
clothes, biomass, glass, rubber, etc., and some of them have combustible fractions. The average physical
composition in recent years was extracted by a statistical analysis (Supplemental Material). Therefore,
we prepared the MSW samples based on the average value of the composition (the average value was
in Table S1), rice was used to represent kitchen residue, polyethylene (PE) and polyvinyl chloride (PVC)
represented plastic, fallen leaves and rice husk were the biomass which were easy for us to obtain,
and about 5 wt% of non-combustible waste was replaced by leaves and paper. So, the composition
of the simulated MSW is rice (58 wt%), used office paper (15 wt%), polyethylene (PE) and polyvinyl
chloride (PVC) (15 wt%), textile (3 wt%), fallen leaves and rice husk (6 wt%), and bottom ash from
households (3 wt%). The samples were not dried, and we wanted to conduct experiments with the
as-received samples. After grinding the hard-crude materials and cutting the soft materials (used
paper and textile), the waste was then well blended.

The proximate analysis was analyzed according to the Chinese national standard GB/T 28731-2012,
and the values of moisture, ash, volatile matter, and fixed carbon were 11.71 wt%, 6.89 wt%, 73.79 wt%,
and 7.61 wt%, respectively. The ultimate analysis (elemental analyzer) data was C 40.7%, H 6.48%,
O 33.16%, N 0.76%, and S 0.2% (wt% on as-received basis), and the LHV was 20.8 MJ/kg.

2.2. Experiment Procedure

Figure 1 is the schematic diagram of the experimental facility. A lab-scale fixed bed tubular reactor
(Botaoyuan factory, Nanjing, China) was employed in this study. A quartz tube with an inner diameter
of 40 mm was used as a gasification chamber. Two K-type thermocouples were connected with the
temperature controller. One was placed above the sample to monitor the real-time temperature inside
the tube, and the other was used to control the temperature of the heating reactor. The upper part of
the quartz tube and the gas outlet pipe were equipped with a heating tape for keeping the temperature
above 240 ◦C, which prevented tar condensing in the gas pipe. The simulated MSW of 3 g was fed
into the reactor for every experiment after several preliminary trials. The gasifying agent (carrier gas),
controlled by a mass flowmeter, was simulated by nitrogen (Nanjing Shangyuan Industrial gas plant,
Nanjing, China) and 5% O2/N2 (Nanjing Shangyuan Industrial gas plant, Nanjing, China) mix gas,
thus the oxygen content was determined by the oxygen concentration of the carrier gas. Syngas was
purified and dried by flowing though the gas clean system (the substances in impinge bottles from the
left were: isopropanol (Chengdu Chron chemical CO., Ltd., Chengdu, China), water, silica gel (Suzhou
Longhui desiccant Co., Ltd., Suzhou, China), and activated carbon (Chengdu Chron chemical CO.,
Ltd., Chengdu, China)), arranged at the tail of the facility. Then, syngas was collected in gas bags
for examining.

There existed a temperature gradient through the quartz tube, the difference of temperatures
between the inner and the outer tube was nearly 94 ◦C. It should be clear that the inner tube
temperatures were set to 550, 600, and 650 ◦C, and the heating rate of the reactor was 30 ◦C/min. After
calculation and initial tries, N2 was used for the pyrolysis condition and 5% was the maximum oxygen
concentration. An oxygen concentration series of 0%, 1.25%, 2.50%, 3.75%, and 5.00% in the carrier
gas was selected. The pressure of the gas cylinder outlet and syngas outlet were 0.15 MPa and 0.1
MPa, respectively. When the temperature of the inner tube rose to 130 ◦C, syngas began to collect into
gas bags and the experimental time lasted for 3 h. After each experiment, solid residue was collected
to weigh the unreacted component and gas volumes were recorded in a gas meter. To ensure the
independence and reliability of the experimental data, each experiment was duplicated three times
under the same conditions.
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the solid residue in an elevator furnace (Yixing Feida electric furnace Co., Ltd., Yixing, China) at 900 
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Ltd., Chengdu, China) located in an ice bath. The impinge bottles were washed with ethanol 
(Chengdu Chron chemical CO., Ltd., Chengdu, China), and then the isopropanol solution and 
washing liquid were mixed. The liquid mixture underwent a standard rotary evaporation process (80 
°C, 0.03 MPa) until the mass didn’t change. Finally, the tar weight was calculated from the mass 
difference of the bottle before and after evaporation. 

3. Results and Discussion 

The experimental conditions and the results of products yield are summarized in Table 1, and it 
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system. 

The Waterloo concept is widely recognized during the biomass pyrolysis process [33]. Thermal 
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Figure 1. Diagram of the experimental facility: (1) gas cylinder, (2) mass flowmeter controller,
(3) temperature controller, (4) quartz tube, (5) tubular furnace, (6) thermocouples, (7) heating tape,
(8) ice water bath, (9) gas meter.

2.3. Analysis Method

The main syngas composition was CO, CH4, CO2, and H2 [7,11,25,28], which were analyzed by
an ecom J2KN Pro gas analyzer (Ecom GmbH, Iserlohn, Germany) in the present study, and the total
gas volumes were obtained by integral calculation. A further devolatilization test was conducted for
the solid residue in an elevator furnace (Yixing Feida electric furnace Co., Ltd., Yixing, China) at 900 ◦C.
The liquid product was captured into the isopropanol solution (Chengdu Chron chemical CO., Ltd.,
Chengdu, China) located in an ice bath. The impinge bottles were washed with ethanol (Chengdu
Chron chemical CO., Ltd., Chengdu, China), and then the isopropanol solution and washing liquid
were mixed. The liquid mixture underwent a standard rotary evaporation process (80 ◦C, 0.03 MPa)
until the mass didn’t change. Finally, the tar weight was calculated from the mass difference of the
bottle before and after evaporation.

3. Results and Discussion

The experimental conditions and the results of products yield are summarized in Table 1, and it is
clear that temperature and oxygen content are the crucial factors during MSW gasification. Therefore,
how temperature and oxygen content affected the gasification are discussed here, and also, the effects
of temperature and oxygen content on product yield and syngas composition are analyzed in detail.
It is worth noting that the acid gas emission, such as HCl, SO2, and other pollutants were produced
during the gasification. According to the research results [30–32], activated carbon performed well in
disposing of these pollutants, the acid gas dissolved in water or part of the acid gas was absorbed by
the activated carbon. It was believed that the syngas was pure after the gas clean system.

The Waterloo concept is widely recognized during the biomass pyrolysis process [33]. Thermal
decomposition of biomass first takes place during the increasing temperature, the product contains
syngas, tar, char, and steam, then part of the tar converts into extra char and gas because of the
secondary reaction. At last, tar and steam condense at low temperatures and the reactions during the
solid waste gasification process are essentially the same as the biomass gasification [7,34]. Because we
conducted the experiments by using the as-received samples, the water was not only moisture from the
simulated MSW, but also was produced by oxidation reactions. After a standard rotary evaporation at
80 ◦C, we thought tar remained while water evaporated. However, the aim of this study was to analyze
the syngas, tar and char were weighed so as to calculate the energy efficiency, thus the water yield was
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not tested in this study. From Table 1, it can be observed that higher oxygen concentration negatively
impacted the yields of tar and char, which decreased from 0.365 g to 0.142 g and 0.59 g to 0.19 g. The
possible explanation would be that char combusted with the increasing oxygen and converted into gas,
then, the tar thermal cracking and partial oxidation happened [34,35]. These reactions were promoted
by the O2 and high temperature.

Table 1. Gasification operating conditions and product distribution.

Temperature (◦C) Oxygen Concentration (%) Product Distribution

Syngas (L) Char (g) Tar (g)

550

0 0.588 0.679 0.532
1.25 0.948 0.615 0.496
2.5 1.224 0.489 0.410

3.75 1.615 0.347 0.322
5 1.849 0.24 0.256

600

0 0.77 0.639 0.431
1.25 1.109 0.56 0.391
2.5 1.401 0.448 0.314

3.75 1.755 0.322 0.228
5 2.007 0.216 0.167

650

0 0.898 0.59 0.365
1.25 1.366 0.544 0.329
2.5 1.609 0.437 0.266

3.75 1.881 0.316 0.195
5 2.111 0.19 0.142

The data in Table 1 is the averages of three duplicated experiments.

3.1. Evolution of Syngas Components

Figure 2 shows the evolution of syngas at 650 ◦C during MSW pyrolysis. Basically, the syngas
evolution of different operating conditions is similar. When the temperature is stable, samples will
have enough time to release volatile matter.
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Figure 2. Evolution of syngas composition during the pyrolysis process at 650 ◦C.

Figure 2 suggests that the release of syngas was a slow process, CO was first released and then
H2, until the temperature reached 200 ◦C. The concentrations were continuously increasing to the
peak, and the similar trends of CO and H2 were found in Niu’s study [19]. The highest content of
the MSW sample was rice, so it was presumed that the decomposition of rice started first, and the
pyrolysis characteristic temperature confirmed the inference [36,37]. Likewise, fallen leaves and rice
husk (the main composition is hemicellulose) were easy to decompose, and CO and H2 were produced
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from the decomposition of these components [38]. The thermogravimetric research of typical MSW
components revealed that the mass loss of food residue and woody waste begun at 200 ◦C [37], and
the pyrolysis temperature interval for the protein, starch, and hemicellulose, which were 220–500 ◦C,
269–345 ◦C, and 225–350 ◦C respectively [39], meanwhile released CO [15,16]. It should be clear that
the release temperature of CO was not affected by the mixture of waste [16,37]. With the temperature
increasing, more O content was released from the decomposition of wastes, which led to the decrease
of CO. When the temperature exceeded 500 ◦C, PE and PVC began to decompose [37,39], so a second
peak of CO and H2 appeared. The pyrolysis of plastic is the degradation of large molecule polymer,
so tar was not produced during the plastic decomposition. Another possible explanation was that the
primary tar began to reform into second tar and light gases (CO, CO2) above 500 ◦C [35].

The peak mass loss rate of typical MSW components occurred after 300 ◦C [15,17], thus more
volatile matter was released. The mechanism for producing CO2 was a homogeneous oxidation
and devolatilization process, and there were two explanations for the CO2 increase. O from
self-decomposition participated in oxidation reactions, and this resulted from the fact that CO2

was increasing while CO was inhibited. But the production of CO2 was not only relied on the O content
of samples, but also from the decarboxylation process during the decomposition. Compared with CO,
H2, and CO2, CH4 was the last released gas, and a similar conclusion has been obtained [39], but the
trend of CH4 was different, maybe it was caused by the different experiment conditions. The amount
of CH4 was still less, meaning that CH4 was more difficult to produce than CO and H2, because CH4

was primarily recognized as a product of pyrolysis [34]. The condition in this study was not beneficial
to hydrogasification reactions. The major mass loss of the typical MSW was occurring between 200
and 500 ◦C [15–17], and CO, H2, CH4, and CO2 were released with the fast weight loss rate. After that,
syngas was decreasing and the reaction may be finished at these temperatures. On the other hand,
tar and char may increase. The trend of syngas in Figure 2 was generally in line with the TG curves
of other thermogravimetric research. It can be seen that the mass loss process was influenced by the
mixture of different components, but the loss value remained unchanged, so it does seem that there
were a few influences on the syngas composition.

When the reactor was cooling down, low concentrations of CO and H2 were still observed, but
the concentration continued to decrease, because the mass loss of some components did not finish
at 650 ◦C, and this was still happening in the differential thermogravimetry (DTG) curves of food
residue and paper [37]. This can explain why the solid residue still lost mass during pyrolysis at 900 ◦C,
also suggesting that the residue contained unreleased volatile matter (macromolecular hydrocarbons).
Compared with other components, CO2 was less under the pyrolysis condition. The main reason was
that pyrolysis occurred in the absence of oxygen, and the O used for oxidation reactions only relied on
sample self-decomposition. The introduction of O2 could promote oxidation reactions and cause the
significant increase of CO2 volume, which is discussed in the next section.

3.2. Effects of Temperature and Oxygen Concentration

The variation of components with temperatures at an oxygen concentration of 1.25% is shown
in Figure 3, the dilution of N2 is not considered in the volume fraction of components. It is clear
that the combustible components are promoted by a higher temperature, ranging from 550 to 650 ◦C,
because the decomposition reactions during the gasification process are strengthened by increasing
temperatures. As the temperature increased, it would favor MSW converting to the syngas, so the gas
yield obviously increased, the increase of CO is more prominent than others. There are two possible
explanations for the increase in combustible gases (CH4, H2, and CO). First, the extent of secondary
reactions, such as decomposition reactions of tars and hydrocarbons, are affected by temperature,
second, the partial oxidations (R1, R2) are promoted by the proper O2. These are the main factors
for the increase of CO and H2. The reactions of CH4 promotion occur at higher temperatures, so the
yield of CH4 in this study is poor. Since the O2 was introduced in gasification, the O derived from the
decomposition of partially oxygenated organic compounds was less than the introduction amount and
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the volume of CO2 increased largely. This phenomenon indicates that the promotion of temperature
is more evident than O2 in lower oxygen concentrations. Although there were few studied on MSW
gasification under medium temperatures, the trends of the syngas components were similar with
MSW gasification research [11,20,21]. The volume fractions of syngas components at 650 ◦C were
in agreement with Dong’s research [21], lower than the pilot gasifier [11], slightly better than that
in Liu’ study [20]. The CO yield was less than that found in other research, because the Boudouard
reaction R3 occurred above 700 ◦C, the maximum temperature in this study did not meet the reaction
requirement [24,40]. Therefore, the combustible gas can be improved by some treatments, such as
catalyst gasification, syngas refinement, etc.

C + 1⁄2O2→ CO (R1)

CH4 + 1⁄2O2→ CO + 2H2 (R2)

C + CO2↔ 2CO (R3)

pCxHy→ qCnHm + rH2 + xCO + yCH4 (R4)
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A higher temperature has a positive impact on the syngas composition [23], but there is much
research about gasification research above 700 ◦C. The maximum temperature in this study was 650 ◦C,
we wanted to obtain more experience of MSW gasification at medium temperatures. More importantly,
the consensus is that Cu is the main catalyst for the formation of dioxins, because HCl converts to Cl2
under the Cu catalysis [41,42], and Cl2 is the crucial factor to the formation of dioxins. Also, the heavy
metals, especially Cd and Cu, escaped above 650 ◦C. Thus, the temperature below 650 ◦C can reduce
the possibility of dioxins production. Moreover, the higher the temperature, the more energy would
be consumed by keeping self-heat. Considering the operating experience of the pilot fluidized bed
gasifiers [28,29], this study focused on analyses for syngas from MSW gasification under 650 ◦C. So,
in view of these considerations, the upper temperature was set to 650 ◦C.

In this study, oxygen concentration was selected instead of equivalence ratio (ER) as the influencing
factor, because one aim of this study was to find the gas evolution process of MSW gasification. Therefore,
the oxygen content can only be varied by oxygen concentration, and then a conversion between oxygen
concentration and ER was calculated. The vigorous gasification reactions occurred in the first 30 min, the
conversions of ER were 0.195 and 0.75, respectively. This setting was similar to other researchers [21,43].

Figure 4 shows that the volume fraction of gas components changes over oxygen concentration at
650 ◦C. It is clear to see that the combustible components CO, CH4, and H2 show a similar trend, these
gases were consumed by excessive oxidation due to more oxygen content, while the trend of CO2

is the opposite. These results suggest that the gas composition in the syngas can be adjusted by the
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increasing oxygen content. The volume fraction of CO decreased slowly at lower oxygen concentration
then dropped rapidly when oxygen concentration reached over 2.5%. As described previously, CO was
a combination of the devolatilization process with partial oxidation [44]. So, the formation of CO was
more complicated and affected by the partial oxidation reactions (R1, R2) and water-gas shift reaction
(R5). The CH4 maintained the same oxygen concentration of 1.25% and then declined. It was probably
attributed to the tar cracking reaction, and the decrease of CH4 was caused by the partial oxidative
reforming reaction (R2) [45]. The H2 decreased with the increase in oxygen concentration. The gap of
the volume fraction of H2 between temperatures narrowed against the oxygen concentration, because
an oxygen concentration of more than 2.5% promoted the H2 oxidation reaction, R6. It was considered
that the combustion of H2 (R6) was more likely to happen than the water-gas shift reaction (R5) under a
higher oxygen content. Similar conclusions have been reported by other researchers [11,20,43,46]. The
trends of the syngas components with oxygen concentration were different from other research [43,46].
It should be noted that the comparison was started from gasification (oxygen centration over 1.25%).
The variations of CO and CH4 were in agreement with others [43,46], CO was unchanged with the
lower ER then decreased and CH4 was continuously decreasing. The trends of CO2 were similar with
Albany’s research [43] and the decrease of H2 agreed with Niu’s study [46].

CO + H2O→ CO2 + H2 (R5)

H2 + 1⁄2O2→ H2O (R6)

CO + 1⁄2O2→ CO2 (R7)

C + O2→ CO2 (R8)

CH4 + H2O→ CO + 3H2 (R9)

CH4 + CO2→ 2CO + 2H2 (R10)
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These conclusions were attributed to the increasing O2, which participated in gasification reactions.
In accordance with Le Chatelier’s principle, the reaction should forward to the direction of weakening
change. The increasing oxygen content stimulated the reactions R1 and R4, so more CO and H2 were
produced, but the oxygen content should be controlled in the proper range, otherwise it promotes the
oxidation reactions R6, R7, and R8, which led to the different results. The value of H2/CO and the gas
volumes were lower than those in other research [25,47]. The reason for this was that the temperature
of the research was 800 ◦C. First of all, high temperature stimulated the production of H2 and CO, such
as the decomposition reactions, tar cracking. Second, the Boudouard reaction (R3) and steam reforming
reaction (R9) could occur at high temperatures. It should be noted that CH4 was easily converted
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to CO, H2, H2O, etc., at high temperatures (above 700 ◦C) [48]. Obviously, CO2 volume was greatly
increasing, because the combustion happened more easily in the oxidizing atmosphere, so it appeared
as the trends in Figure 4. When oxygen concentration exceeded 2.5%, the effect of temperature became
insignificant due to the combustion intensification. Also, the effect of oxygen concentration on gas
volume was stronger than that of temperature and higher oxygen concentration made the gap more
obvious. Increasing the H2 yield and the value of H2/CO were the major topic, meanwhile, how to
reduce the dilution of CO2 and N2 can effectively improve the syngas uses.

3.3. Product Yield and Energy Efficiency

Figure 5 describes the syngas LHV and combustible gas yield as a function of the oxygen
concentration and temperature. The syngas LHV was calculated by Equation (1) without N2 dilution
and the combustible gas yield was obtained by the addition of CO, CH4, and H2.

LHV = 12.6CO + 35.8CH4 + 10.8H2 (kJ/L) (1)

where CO, CH4, and H2 are volume fractions of the components.
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The combustible gas yield at 650 ◦C rose to its maximum point at an oxygen concentration of 1.25%
and then declined, which was different from 550 and 600 ◦C because CH4 and H2 were consumed at
high temperatures, and the CO volume increment was not sufficient to offset the reduction. This trend
illustrated that temperature stimulated the oxidation reactions with the higher oxygen content, and it
caused the decrease of combustible gas yields. The variation of combustible gas was as discussed above.
The maximum combustible gas yield of gasification was 0.296 L/g, which is lower than that found in
other research [11,24,25,44]. The results revealed that low combustible gas yields were obtained in
high oxygen concentrations, this was not suitable for producing syngas from gasification. The highest
combustible gas yield should be attained at the range of oxygen concentration of 1.25%–2.5%, and
the corresponding conversion ER range was approximately 0.19–0.38, which was basically consistent
with other research [43,49]. Because of the dilution of CO2, the LHV of syngas was dropping. The
maximum combustible gas heating value was 15 kJ (without any dilution) and the syngas LHV of
this condition (including CO2) was 10.98 kJ/L, which was produced under an oxygen concentration
of 1.25% and a temperature of 650 ◦C. Obviously, the conversion LHV of syngas (including N2 and
CO2) was lower than the 4–6 MJ/NM3 mentioned in other literature [21,26]. It was attributed to the
less combustible gas yield and more CO2 yield.

We attempted to use the product of combustible gas yield and syngas LHV as a new index,
considering the heating value, combustible gas fraction, and MSW mass comprehensively. According
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to the calculation, the maximum value of 3.26 kJ/g was obtained from the condition of 650 ◦C and
1.25% oxygen concentration, and it was also the maximum combustible gas heating value condition.

The energy utilization efficiency was calculated by Equation (2), which was a counter-balance
method and consulted from the equation of the carbon conversion ratio in the literature [10]. The
following three reasons can illustrate why we chose the counter-balance method. First, it was difficult
to measure the energy consumed by combustion during gasification. Second, C2 hydrocarbons were
not tested. The last one is that all forms of sensitive heat can add together.

Energy efficiency = 1−
Etar + Echar

LHV
(%) (2)

where Etar and Echar are the chemical energy contained in unreacted tar and residue char, respectively.
The unconsumed energy during the gasification process (the chemical energy of unburned char

and condensed tar) is obtained from the calculation. Then, the energy utilization efficiency of MSW in
the process is calculated by the difference. The difference of energy efficiency between this study and
others is the inclusion of consumed energy and the tar heating value. Tar was not used in this study,
and the aim was to obtain syngas quality from MSW gasification at medium temperatures, thereby
excluding the tar heating value.

The variation of energy efficiency as a function of the oxygen concentration is shown in Figure 6.
The energy efficiency exceeded 70% (at 650 ◦C) where the oxygen concentration was larger than 2.5%.
The condition of maximum combustible gas yield was selected as the optimum instead of the highest
LHV of syngas because the highest LHV was obtained at pyrolysis, and the most tar and char were
produced, and syngas yield was not satisfactory. More importantly, pyrolysis needs an external heat to
take place, thus the economic performance of pyrolysis is poor, and it is difficult to expand on a larger
scale. After an appropriate method to separate CO2, this maximum combustible gas yield condition
shows great advantages and is considered to be the optimal one. Even in the best gasification condition,
the energy efficiency and gas carbon conversion were also 63.6% and 46.8% respectively, but lower than
in other literature [11]. Based on the results, the optimum operating condition for producing syngas
from gasification in this study was achieved at a temperature of 650 ◦C and an oxygen concentration
of 1.25%.
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Technically, oxygen content is negatively correlated with gas quality (combustible gas yield) in a
certain range, but positive with furnace temperature during gasification, and all of them keep a dynamic
equilibrium. The higher oxygen content the less LHV of syngas will be obtained and the syngas is
hard improve by refining. When the gasification occurs at low temperatures, the syngas can be refined
by catalysts or other additives [20,23,44,50]. The refined syngas can be used in internal combustion
engines or civil uses. According to thermal equilibrium, gasification keeps steady operation under
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specific conditions. It should be clear that the MSW auto-thermal gasification may not take place under
all of the conditions of this study, which will be solved in the future.

The operated MSW gasification plants in other countries show that the MSW gasification has
a good economic performance [14]. Now, the research about MSW gasification is focused on high
temperatures (above 700 ◦C or higher) under low ER, but the practical operating temperature of a MSW
incineration plant is 900–1000 ◦C, which means that even if all of the MSW combusts, the temperature
fluctuates in the range of 900–1000 ◦C. So, MSW gasification under low ER at high temperatures can
only be carried out with the assistant heat. This is also why there is no relevant application reported in
China. In order to achieve the auto-thermal gasification, it has to conduct MSW gasification under
medium temperatures (especially under 650 ◦C). The research of MSW gasification under medium
temperatures is particularly significant and this is the significance of this study. However, we have not
built the large-scale or pilot MSW auto-thermal gasification facility yet and it will be expanded after
obtaining sufficient research results. Although the LHV of syngas and energy efficiency in this study
are low, these disadvantages can be improved by refining syngas, and obtaining high LHV syngas is a
further aim. The MSW gasification can be conducted in the large-scale fixed bed reactor or fluidized
bed under medium temperatures in future studies, using the oxygen-rich air as the gasification agent.
Compared with incineration, the products from gasification are abundant and can be used in various
applications [3,6,43,51].

4. Conclusions

In this study, syngas from MSW gasification were investigated in a fixed-bed reactor. Here,
medium temperature and oxygen concentration were introduced to explore the syngas evolution and
syngas quality, which included syngas composition, combustible gas yield, and LHV of syngas. The
investigations can be summarized as follows.

It does seem that the influence of different MSW components on the syngas evolution and syngas
composition can be ignored. Temperature can promote the syngas quality in the range 550–650 ◦C,
because the increasing temperature strengthens the reaction rate. It was found that the promotion of
temperature on syngas quality was more evident than oxygen under lower oxygen concentrations
(less than 1.25%). The O2 accelerated the tar cracking and the decomposition of volatiles, and also
increased the combustible gas yield. The oxidation reactions were predominant with the increasing
oxygen content and this caused the combustion of combustible fractions and larger amounts of CO2.
Therefore, oxygen content should be controlled to a certain extent, which was at the range of oxygen
concentration of 1.25%–2.5% in this study.

By comprehensive consideration, the optimal operating condition of gasification was obtained at
an oxygen concentration of 1.25% and a temperature of 650 ◦C. Meanwhile, gas carbon conversion and
energy efficiency were 46.8% and 63.6%, respectively. The significance of this study was to explore
the feasibility of MSW gasification under medium temperatures and obtain adequate results for the
application of this concept. It can provide insights for expanding the scale of gasification facilities.
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