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Abstract: In the traditional performance assessment method, different modes of data are classified
mainly by expert knowledge. Thus, human interference is highly probable. The traditional method is
also incapable of distinguishing transition data from steady-state data, which reduces the accuracy of
the monitor model. To solve these problems, this paper proposes a method of multimode operating
performance visualization and nonoptimal cause identification. First, multimode data identification is
realized by subtractive clustering algorithm (SCA), which can reduce human influence and eliminate
transition data. Then, the multi-space principal component analysis (MsPCA) is used to characterize
the independent characteristics of different datasets, which enhances the robustness of the model
with respect to the performance of independent variables. Furthermore, a self-organizing map (SOM)
is used to train these characteristics and map them into a two-dimensional plane, by which the
visualization of the process monitor is realized. For the online assessment, the operating performance
of the current process is evaluated according to the projection position of the data on the visual model.
Then, the cause of the nonoptimal performance is identified. Finally, the Tennessee Eastman (TE)
process is used to verify the effectiveness of the proposed method.

Keywords: multimode process; performance assessment; subtractive clustering; multi-space principal
component analysis; self-organizing map

1. Introduction

With the advancement of society, industrial production relies heavily on efficient processes that
can generate a variety of products. Changes in production schedules or product types result in multiple
operating modes with different characteristics in the production process, including multiple stable
production modes and different transition modes. The multimode process has gradually become the
dominant production mode of modern industries. To obtain comprehensive economic benefits in
the production process, academia and industry have increasingly focused on multimode operating
performance monitoring technology [1,2].

At present, scholars have conducted extensive research on the monitoring of process operating
performance [3–7]. Data-driven multivariate statistical process detection methods are most commonly
and widely used because the mechanism model of the industrial process is highly complex; these
methods include principal component analysis (PCA) [8–10] and partial least squares (PLS) [11–13],
which can extract key information from the process. Through these methods, a single feature model of
the whole production process can be obtained; however, in the multimode process, different production
modes have different features, thus, it is impossible to describe different modal characteristics with one
model. Therefore, these methods cannot be directly applied to the multimode process. To achieve
the monitoring of multimode process, Ye et al. [14] used the Gaussian mixture model (GMM) to
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describe data distribution characteristics of multiple stable modes, which puts all the modes together
to create a large hybrid model and does not require modal recognition. However, this method does not
consider the transition modes of the multimode process and may provide inaccurate results during the
monitoring process.

To solve this problem and establish the relationship between multimode processes and economic
benefits, obtaining description models of various production modes is necessary. Zhao et al. [15]
proposed using the multi-space principal component analysis (MsPCA) algorithm to obtain common
information among all production modes, where each mode is divided into a common subspace
and an independent subspace. Zhou et al. [16–18] proposed the total projection to latent structures
(T-PLS) method, which uses the output data of the process to fully decompose the input space. Liu
et al. [19,20] divided process data into multiple datasets based on comprehensive economic indicators,
each corresponding to a performance grade. They believed that the process characteristic information
contained in different performance grades are different, and then used the feature extraction methods,
such as PCA or T-PLS, to extract the process features of each grade for performance assessment.
In addition, different production modes can be distinguished by time-series analysis [21,22]. Although
these methods can solve the impact of the transition modes, the multimode data need to be classified
first in application. Therefore, the modal division and recognition of offline modeling data are
prerequisites for monitoring the operating performance of multimode processes. The problems with
the above methods are as follows: (1) Classification of offline data through expert knowledge, which
means that no clear classification standard exists, and different classification results are generated
for the same process due to different operator experience. (2) Although the data can be divided into
different classes, distinguishing stable-mode data and transition-mode data in different datasets is
infeasible, which reduces the accuracy of description models for different production modes. (3) In
online monitoring processes, the process operating performances are not displayed through the visual
form, which is inconvenient for the operator to observe.

In this study, a multimode operating performance visualization and nonoptimal cause identification
method is proposed. First, historical data are clustered according to similarities across the data using
subtractive clustering. This approach can automatically divide the data into multiple datasets with
different characteristics and set a similarity threshold in the classification process to eliminate the
transition-mode data. Then, the method calculates the comprehensive economic indicators of each
dataset to determine the performance grade, so that the classification of the data is more general
and scientific, which improves the accuracy of models for different stable modes. Thereafter, the
common features among the datasets are obtained by MsPCA. Each common feature is removed
from each dataset to obtain performance-dependent features, thereby improving the robustness
of the established model to performance-independent variables. Then, the obtained features are
visualized by a self-organizing map (SOM) neural network [23,24], and the corresponding areas of
each performance grade are marked in the visualization, so that the monitoring results of the process
operating performances are more concise and intuitive. Proposed by Kohonen et al. [25], SOM is a
non-tutor learning network that can project data from high-dimensional space into low-dimensional
space, with good classification and visualization effects, and can map data in a two-dimensional (2D)
plane. When an online process is monitored, the operating performances of the current process are
determined according to the projected position of the online data on the plane. The monitoring model
not only evaluates the performance grade of different steady-state processes but also determines
whether the process is in a transition mode. For data in nonoptimal performance, the correlation
variables with nonoptimal result are identified by calculating the relative contributions of their process
variables. Finally, the proposed method is applied to the Tennessee Eastman (TE) process and the
effectiveness of the method is verified.

The rest of the paper is organized as follows. In Section 2, the realization process of the visual
monitoring model for multimode operating performance is introduced. Subsequently, the method of
online process operating performance assessment and the cause identification approach for nonoptimal



Processes 2020, 8, 123 3 of 15

performance grades are developed in Section 3. In Section 4, a case of TE process is studied to
demonstrate the feasibility and efficiency of the proposed method. Finally, conclusions are provided in
Section 5.

2. Visual Monitoring Model for Operating Performance of Multimode Process

2.1. Multimode Data Recognition Based on Subtractive Clustering

To obtain a visual monitoring model for multimode operating performance, identifying data of
different modes in the collected historical data and obtaining datasets corresponding to each operating
mode are necessary. Subtractive clustering algorithm can effectively reflect the data distribution
according to the data density principle and can automatically determine the number of clusters and
cluster center [26]. Most of the production process is in normal operation; thus, the cluster centers can
reflect the data characteristics corresponding to different stable modes in the normal state.

The offline modeling data are assumed to be X = {x1, x2, . . . , xM} ∈ RM×N, where M is the number
of samples and N is the number of variables. The specific steps for different stable modes of data
partition and transition mode data elimination in offline data are as follows:

(1) For offline data, the data are normalized with the mean and standard deviation. For convenience
of description, it is still indicated by X.

(2) Each data point is considered as a potential cluster center, and a measure of the potential of data
point xi is defined as:

Pi =
M∑

j=1

e−α‖xi−x j‖
2
, i = 1, . . . , M, (1)

where α = 4/r2
a and ra(5 < ra < 15) is a positive constant, which defines the radius of the

neighborhood and affects the number of clusters. Data points outside this radius have minimal
influence on the potential. The data point with many neighboring data points have a high
potential value. After the potential of every data point has been computed, the data point with
the highest potential is selected as the first cluster center.

(3) Let x∗1 be the location of the first cluster center and P∗1 be its potential value. Then, the potential of
each data point xi can be updated by the following formula:

Pi = Pi − P∗1e−β‖xi−x∗1‖
2
, i = 1, . . . , M, (2)

where β = 4/r2
b and rb is a positive constant, generally defined as rb = 1.5ra [19]. Then, the data

point corresponding to the maximum value in Pi is selected as the second cluster center and
iterated through the above formula until the C cluster centers are obtained, so that P∗k < εP∗1, ε(0 <

ε < 0.5) is a small fraction and its size determines the number of cluster centers. As ε increases,
the number of cluster centers will decrease.

(4) After each cluster center is obtained, different datasets are divided by calculating the similarity
between each data point and each cluster center. The calculation formula is as follows:

µi, j = µ(xi, x∗j) = e−α‖xi−x∗j‖
2

, i = 1, . . . , M, j = 1, . . . , C, (3)

(5) The larger µi, j is, the closer the data point is to the cluster center. According to the maximum
similarity of each data point corresponding to the cluster center, all data are divided into C datasets,
and a similarity threshold δ (0.5 < δ < 1) is set. When the maximum similarity corresponding to
the data point is less than δ, it is considered to be transition mode data and is removed from the
dataset. In this way, only datasets that contain a steady-state process of different operating modes
are obtained. In this paper, the values of ra, ε, and δ are determined in Section 4.1.
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2.2. Feature Extraction of Multimode Data

A certain similarity exists among different operating-mode data because the multimode process is
in normal operation most of the time. In this paper, the MsPCA is used to extract variation information
related to performance of different operating modes. Compared with PCA, MsPCA can obtain the
common variable relationship among datasets, by removing these common variables, the independent
features of each dataset can be obtained; PCA is used to obtain the feature information of single dataset,
thus, it is more suitable for the cases when the variation information contained in the process data is
already closely related to performance.

The extraction process of the common variable relationship by the MsPCA is divided into two
steps [27]. C datasets are assumed, and the cth dataset is denoted as Xc = [xc,1, xc,2, . . . , xc,Mc ]

T
∈ RMi×N,

where Mi is the number of samples and N is the number of process variables.
The first step is to calculate the following formula:

C∑
c=1

(XT
c Xc)pg = λgpg, (4)

pc = XT
c α

c =
1√
λc

XT
c Xcpg, (5)

where λc = pT
g XT

c Xcpg. From the above formulas, A sub-basis vectors of a dataset span a new

subspace Pc = [pc,1, pc,2, . . . , pc,A] ∈ RN×A, which is equivalent to picking A representatives out of the
Mc observations while keeping the dimension of variables fixed.

In the second step, Pc is substituted into the formula:

C∑
c=1

(P
T
c (PcP

T
c )
−1

Pc)pg = λgpg, (6)

where the obtained feature vector is the common variable correlation subspace Pg =

[pg,1, pg,2, . . . , pg,A] ∈ RN×A among the datasets.
On this basis, further analyzing the amplitude of the data space Xc on the obtained common basis

vector pg,a is necessary, as shown in Figure 1.
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Xc is projected to the basis vector pg,a, a = 1, 2, . . . , A and the variation information in that direction
is calculated as follows:

ta
c = Xcpg,a, c = 1, 2, . . . , C, (7)

Under the given parameter ϕ(0 < ϕ < 1), let ηa
c = ‖ta

c‖/‖ta
C‖, c = 1, 2, . . . , C− 1. If the condition

1 −ϕ < ηa
1, ηa

2, . . . , ηa
C−1 < 1 + ϕ is satisfied, then its corresponding basis vectors in Pg constitute the

basis vector subspace:
^
P g = [pg,(1), pg,(2), . . . , p

g,(
^
A)
] ∈ RR×

^
A , (8)
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The remaining basis vectors in Pg form the basis vector subspace:

P̃g = [pg,(1), pg,(2), . . . , pg,(Ã)] ∈ RR×Ã, (9)

where
^
A = A− Ã, and the independent feature vector space corresponding to each dataset is:

_
X

s

c = XcP̃gP̃T
g + Xc(I − PgPT

g ), c = 1, 2, . . . , C, (10)

_
X

s

c represents the performance related variations, based on
_
X

s

c, the traditional PCA is used to
remove the noise, and the main information is obtained as follows:

_
X

s

c = Ts
cPsT

c + Es
c, (11)

where Ts
c is the score matrix and represents the systematic process variations in

_
X

s

c; Ps
c is the loading

matrix and reveals the systematic variation directions specific to performance grade c; Es
c is the

residual matrix.

2.3. Visualization of Different Operation Mode Features

The self-organizing map neural network (SOM) can autonomously train and evaluate input
patterns, and finally map different types of data to different regions [25]. Compared with traditional
classification methods, SOM can be used to visualize data because it could project high-dimensional
data into a 2D grid. The topology is shown in Figure 2.
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The ith sample of input dataset X is assumed as xi = {xi1, . . . , xin, . . . , xiN}, where N is the number
of process variables. The SOM is an ordered collection of neurons, each having a weight vector
m j =

{
m j1, . . . , m jn, . . . , m jN

}
associated with the input layer. An SOM with J neurons is considered

to train to represent and visualize X, because the size of J affects the accuracy and generalization
capabilities of SOM, which generally satisfies the following [28]:

J = 8
√

N, (12)

When training the neural network, the Euclidean distance between xi and m j is calculated to
obtain the best matching unit (BMU) [29]:

bi = argmin
j
‖xi −m j‖∀i ∈ [1, N],∀ j ∈ [1, J], (13)

Then, the weight vector of the input and output layers are updated by:

m j(t + 1) = m j(t) + α(t)hbj(t)‖xi(t) −m j(t)‖, ∀ j ∈ [1, J], (14)
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where α(t) is the learning rate factor and hbj(t) is the neighborhood function, which is generally chosen
as a Gaussian function. The position of the jth neuron is defined on the output layer as r j, and rbi is the
position of the winning neuron. Then:

hbj(t) = exp(−
‖rbi − r j‖

2

2σ2(t)
), (15)

where σ(t) is the width of the neighborhood. To achieve convergence, the initial values of σ(t) and α(t)
are generally large and then decrease over time. When t→∞,α(t)→ 0 , σ(t) approaches 1.

When the number of iterations exceeds a predetermined value, the training phase ends, and the
input data are marked on the final output map by searching each input vector for their wining neurons
and marking their name on the winning neurons.

2.4. Realization of Visual Monitoring Process for Multimode Operating Performance

To eliminate the human interference generated in multimode data recognition, improve the
accuracy of the process operating performance monitoring model, and reduce the influence of the
performance-independent variables in the operating performance assessment, visualization of the
multimode operating performance monitoring needs to be realized. First, the standardized data are
divided by subtractive clustering method to obtain the datasets corresponding to different operating
modes. Then, the data of the transition process are eliminated, so that only the data of the steady-mode
process are included. Furthermore, the economic performance indicators of each of the obtained
datasets are calculated to determine the performance grade corresponding to each dataset. Some of the
data features among them are the same because the datasets obtained by the classification are in the
normal operating mode of the multimode process. To effectively identify the characteristics among
different performance-grade data, the MsPCA algorithm is used to remove common features that are
unrelated to performance grades to obtain unique features. Then, through the SOM algorithm, the
obtained features are mapped into a 2D grid for classification, and the feature model is visualized. The
specific steps are as follows, and the method flow is shown in Figure 3.

(1) The collected historical data in the normal running state of the production process are normalized
to the value of [0, 1].

(2) Through subtractive clustering, different cluster centers are obtained according to Equations (1)
and (2), and then all data are classified according to Equation (3), and the transition process data
are eliminated. The economic benefits of the classified datasets are then calculated based on the
process knowledge to determine the performance grade of each dataset (e.g., optimal, average, or
poor).

(3) The common variable correlation subspace Pg between each dataset classified in step (2) is
extracted by the MsPCA algorithm using Equations (4)–(6). Then, the amplitudes of all datasets
on Pg is calculated according to Equation (7), and the sub-vectors that make their amplitudes
different from P̃g are obtained. Finally, the unique feature vectors Tc

s related to the performance
grade of each dataset are obtained by Equations (10) and (11).

(4) The unique feature vectors in step (3) are trained on the SOM. First, the number of neurons is
determined by Equation (12), and weights are initialized using Ts

c as the input of SOM. Then,
winning neurons are selected according to Equation (13), and weights are updated according to
Equations (14) and (15) until α(t)→ 0 . Finally, the training results are displayed on a 2D grid,
and a visual monitoring model is obtained so that the multimode operating performance can be
monitored in real time according to the model.
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3. Online Process Operating Performance Assessment and Nonoptimal Cause Identification

3.1. Online Process Operating Performance Assessment Method

In visual monitoring, because a single sample cannot fully reflect the development of the process
condition and is susceptible to process noise, a sliding time window of width H is introduced as the
basic unit of assessment. The online process operating performance assessment and nonoptimal cause
identification steps are as follows:

Step 1: A sliding data window Xon,k is constructed at time k.
Step 2: The Xon,k is normalized by using the mean and standard deviation of the datasets

corresponding to the respective performance grades, which are obtained when training the visualization
model to obtain Xon,k

c = [xon
c (k−H + 1), . . . , xon

c (k)]T.
Step 3: The score vector Tc

on,k for Xc
on,k is calculated corresponding to each performance grade

as follows:
Ton,k

c = (Xon,k
c )

T
Ps

c, (16)

Step 4: The obtained Ton,k
c is projected into a two-dimensional grid of the SOM, and the operating

performance of the current process is evaluated according to the performance grade marked by the
projected position.

This method not only determines which performance grade the process is in, but also identifies
whether the process is in transition mode. When the projection position is in a blank area between the
areas where the performance grades are located, the process is in transition mode.

3.2. Nonoptimal Cause Identification Method

When the operating performance of the process is nonoptimal, identifying the nonoptimal causes
and finding the key manipulated variables that cause nonoptimal performance are necessary. Only
the contribution rate of each manipulated variable when calculating the score vector with respect to
the optimal performance needs to be considered because the classification of the process operating
performance is determined by the score vector Ton,k

c of each dataset. The variable with a large
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contribution rate is the key variable that causes the process to be nonoptimal. Based on the assumption
that the optimal performance grade c∗ is used as a reference and the score vector in the optimal
performance is Ts

c∗, the specific calculation steps of the contribution rate of each manipulated variable
are as follows:

Step 1: The mean value of the contribution of each m variable to the score matrix Ts
c∗. is calculated

in all modeling data in the optimal performance grade. The formula is as follows:

Cl =

Mc∗∑
m=1

∣∣∣∣∣∣∣∣xl
c∗(m)ps,l

c∗

∣∣∣∣∣∣∣∣2/Mc∗ , (17)

where l = 1, 2, . . . , L is the number of manipulated variables; xl
c∗(m) is the lth manipulated variable

of the mth sample in Xc∗; Mc∗ represents the number of samples at grade c∗ and ps,l
c∗ is the row vector

corresponding to the lth manipulated variable in Ps
c∗.

Step 2: The contribution value of nonoptimal performance data to Ts
c∗ is calculated as follows:

Contrraw
l =

∣∣∣∣∣∣∣∣xk,lps,l
c∗

∣∣∣∣∣∣∣∣2, (18)

where xk,l represents the measured value of the lth manipulated variable at the kth time. Finally, the
contribution rate of the variable is:

Contrl =
Contrraw

l

Cl
, (19)

The manipulated variable with a large contribution rate is the causal variable that causes the
process to be nonoptimal.

4. Simulation Study of Tennessee Eastman Process

4.1. Process Description and Experimental Setting

The Tennessee Eastman (TE) process, which was proposed by Downs et al. [30], is a simulation
system based on real industrial processes. This process is widely used in fields such as fault diagnosis,
monitoring, and optimization. In this paper, this simulation system is used to obtain production
process data with different performance grades.

The TE process generates two main products from four reactants, including five main units:
reactor, condenser, compressor, separator, and stripper. Six different modes of operation are available
depending on the mass ratio of the final product as shown in Table 1.

Table 1. Six operation modes.

Mode G/H Mass Ratio Production Rate

1 50/50 7038 kg/h G and 7038 kg/h H
2 10/90 1408 kg/h G and 12,669 kg/h H
3 90/10 10,000 kg/h G and 1111 kg/h H
4 50/50 maximum production rate
5 10/90 maximum production rate
6 90/10 maximum production rate

The process has 42 measured variables and 12 manipulated variables. The operating mode of the
TE process can be switched by changing the data of the manipulated variable as shown in Table 2.

According to the simulation model established by Ricker [31,32], 12 manipulated variables are
changed to switch the TE process between operating modes 1, 2, and 4. A total of 70 h of simulation is
conducted, and 100 samples are taken every hour. Therefore, a total of 7000 samples are obtained, of
which 3500 are selected as training samples with a sampling interval of 2. In addition, 1400 samples are
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selected for testing from the 3500 samples which were not considered for training. Since the samples
are from the switch between three operating modes, the number of clusters should be close to three and
not less than three. According to experiments, the parameters in the subtractive clustering algorithm
are set as ra = 12, ε= 0.2, δ= 0.6, and the width of sliding time window is set as H= 30.

Table 2. Manipulated variables for six operating modes.

Manipulated
Variables (%)

Mode 1
(50/50)

Mode 2
(10/90)

Mode 3
(90/10)

Mode 4
(50/50)

Mode 5
(10/90)

Mode 6
(90/10)

D Feed 62.935 12.637 89.130 100.000 13.098 100.000
E Feed 53.147 96.216 8.381 86.715 100.000 9.438
A Feed 26.248 30.421 19.114 49.477 32.009 21.543

A+C Feed 60.566 56.092 51.368 96.595 58.155 57.640
Recycle valve 1.000 1.000 77.621 1.000 1.000 71.166
Purge valve 25.770 44.347 9.501 48.742 47.095 10.654

Separate valve 37.266 35.799 29.146 60.960 37.422 32.685
Stripper valve 46.444 42.865 39.425 74.522 44.491 44.251
Steam valve 1.000 1.000 1.000 1.000 1.000 1.000

Reactor coolant 35.992 25.257 35.550 60.794 26.070 40.538
Condenser coolant 12.431 12.907 99.000 35.534 14.115 99.000

Agitator speed 100.000 100.000 100.000 100.000 100.000 100.000

4.2. Multimode Process Data Classification, Recognition, and Visualization Model Establishment

After the training samples are obtained, they are first standardized to obtain standardized data
of zero mean unit variance. Then, subtractive clustering is performed. After the transition process
data are removed, four sets of steady-state data are obtained. The economic performance index of
each dataset is calculated by the economic performance index calculation formula defined in [33]. The
benefits are shown in Figure 4.
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Figure 4. Economic benefit curve of each dataset.

Figure 4 shows that after the data are classified according to the characteristic of the data
themselves, the economic benefits are also divided into four grades, thereby preventing the uncertainty
and difference in the classification of data performance grades through human experience. According
to the economic indicators corresponding to each dataset, this paper classifies them into four grades:
best, good, general, and poor.

After obtaining the data of four different performance grades, the unique features corresponding
to each performance grade data are obtained by MsPCA and entered the SOM for training to create a
visual model as shown in Figure 5. Figure 5a shows a U matrix diagram in which a brightly colored
area indicates a boundary line of data, and a brighter color of the boundary line indicates that the data
are more dispersed and the classification effect is better. Figure 5b shows four performance grades
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(best, good, general, and poor), and the numbers in parentheses indicate the number of training data
mapped to the current grid. The figure shows that the boundaries of the four regions are evident and
will not easily cause misclassification.
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Figure 5. Visual monitoring model based on subtractive clustering. (a) U-matrix map; (b) training map.

To compare the differences between the data-based classification method and the traditional
method of using the operator’s experience classification in the training process of the monitoring
model, this study applies the classification method of training data using human experience. First, the
economic performance indicators of each data point are calculated, and then, the economic benefits are
equally divided into four intervals according to the maximum and minimum of the economic benefits.
Thereafter, all the data corresponding to each interval are divided into four levels, and then, each
dataset is trained by MsPCA–SOM. The obtained visual monitoring model is presented in Figure 6.
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Figure 6. Visual monitoring model based on operator experience. (a) U-matrix map; (b) training map.
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A comparison of Figures 5 and 6 show that the classification effect of the data-based visual
monitoring model is evidently better than the visual monitoring model based on the manual operating
experience. In Figure 5, the data of the same performance grade are closely distributed, the data of
different performance grades have evident boundaries, and each performance grade uniformly divides
the 2D plane into four regions. However, in Figure 6, the areas corresponding to the poor and general
grades are much larger than those corresponding to the best and good grades, the data distribution in
the same performance grade are not close, and the data boundaries of different performance levels
are not evident. In addition, when the data are classified by the operator experience, the data of the
transition modes are not removed. Therefore, the training model cannot accurately distinguish the
stable operating modes and the transition operating modes of the process, which reduces the accuracy
of the monitoring model.

To verify the accuracy of the training result of the data-based visual monitoring model, this study
uses the test data to project on the trained SOM grid (taking the general and best performance level
data as an example) as shown in Figure 7. Figure 7a,b are the projections of the test data of the general
grade and the best grade on the SOM training model, respectively, where the larger the area of the red
hexagon, the more test data are projected into the grid. The figure shows that the data under these two
performance grades are projected in the corresponding areas and the distinction is evident.

Processes 2020, 8, x 11 of 15 

 

Figure 6. Visual monitoring model based on operator experience. (a) U-matrix map; (b) training map. 

A comparison of Figures 5 and 6 show that the classification effect of the data-based visual 
monitoring model is evidently better than the visual monitoring model based on the manual 
operating experience. In Figure 5, the data of the same performance grade are closely distributed, the 
data of different performance grades have evident boundaries, and each performance grade 
uniformly divides the 2D plane into four regions. However, in Figure 6, the areas corresponding to 
the poor and general grades are much larger than those corresponding to the best and good grades, 
the data distribution in the same performance grade are not close, and the data boundaries of 
different performance levels are not evident. In addition, when the data are classified by the operator 
experience, the data of the transition modes are not removed. Therefore, the training model cannot 
accurately distinguish the stable operating modes and the transition operating modes of the process, 
which reduces the accuracy of the monitoring model. 

To verify the accuracy of the training result of the data-based visual monitoring model, this 
study uses the test data to project on the trained SOM grid (taking the general and best performance 
level data as an example) as shown in Figure 7. Figure 7a,b are the projections of the test data of the 
general grade and the best grade on the SOM training model, respectively, where the larger the area 
of the red hexagon, the more test data are projected into the grid. The figure shows that the data 
under these two performance grades are projected in the corresponding areas and the distinction is 
evident. 

 
(a) 

 
(b) 

Figure 7. Test data mapping results. (a) test (general); (b) test (best). 

4.3. Online Process Performance Assessment and Variable Weight Identification of Nonoptimal Causes 

The method proposed in this paper is not only suitable for offline data monitoring but also has 
a good monitoring effect on online data. The result of the online monitoring of the data by sliding 
data window is shown in Figure 8. The trajectory changes in Figure 8a–d show the trend of 
performance grades (general–poor–good–best) of multimode processes, where the data of the 
transition process are mapped into the blank area without the performance grade label. According to 
the running trajectory of the above four figures, the online performance grade change shown in 
Figure 9 can be obtained, which shows the change of the process running state with time. The integers 
(1: general, 2: poor, 3: good, and 4: best) indicate the performance grade of the stable operating 
performance, and the decimal indicates that the process is in transition. 

Labels
Ge(3)

Ge(2)

Ge(2)

Gd(7)

Gd(5)

Gd(3)

Gd(3)

Gd(1)

Gd(3)

Gd(2)

Gd(2)

Gd(3)

Gd(2)

Gd(5)

Gd(2)

Gd(3)

Ge(4)

Ge(1)

Gd(1)

Gd(1)

Gd(1)

Gd(2)

Gd(2)

Gd(3)

Gd(1)

Gd(2)

Gd(3)

Gd(1)

Gd(2)

Gd(3)

Ge(3)

Ge(1)

Ge(3)

Ge(3)

Gd(3)

Gd(2)

Gd(1)

Gd(1)

Gd(1)

Gd(2)

Gd(1)

Gd(3)

Gd(4)

Gd(7)

Ge(2)

Ge(1)

Ge(4)

Ge(4)

Gd(2)

Gd(2)

Gd(3)

Gd(1)

Ge(3)

Ge(2)

Ge(1)

Ge(3)

Ge(2)

Gd(2)

Gd(2)

Ge(3)

Ge(1)

Ge(1)

Ge(1)

Ge(3)

Ge(1)

Ge(4)

P(1)

P(3)

P(2)

Ge(1)

Ge(2)

Ge(2)

Ge(3)

Ge(1)

Ge(2)

Ge(3)

P(1)

P(1)

P(3)

Ge(5)

Ge(1)

Ge(2)

Ge(2)

Ge(1)

Ge(2)

B(1)

P(1)

P(3)

P(2)

P(1)

P(2)

P(3)

P(2)

Ge(1)

Ge(1)

Ge(1)

Ge(4)

Ge(1)

B(1)

B(2)

P(1)

P(1)

P(1)

P(3)

Ge(2)

Ge(2)

Ge(3)

B(4)

B(1)

P(1)

P(2)

P(2)

P(1)

P(1)

B(1)

B(2)

B(1)

P(1)

P(3)

P(1)

P(1)

B(3)

B(1)

B(1)

B(1)

P(1)

P(2)

P(3)

P(1)

P(1)

P(1)

B(1)

B(1)

B(2)

B(1)

B(3)

B(1)

P(2)

P(1)

P(2)

P(2)

B(1)

B(1)

B(1)

B(3)

B(1)

B(1)

B(1)

B(1)

B(2)

P(1)

P(2)

P(2)

P(1)

P(1)

B(1)

B(4)

B(2)

B(2)

B(2)

B(1)

B(2)

B(2)

B(1)

B(1)

P(3)

P(1)

P(1)

P(2)

P(2)

P(1)

B(1)

B(1)

B(1)

B(2)

B(4)

B(1)

B(2)

B(2)

B(1)

B(1)

P(1)

P(3)

P(1)

P(1)

P(2)

B(10)

B(1)

B(2)

B(3)

B(2)

B(2)

B(1)

B(1)

B(1)

B(1)

B(1)

B(1)

P(1)

P(1)

P(1)

P(3)

P(2)

P(7)

Labels
Ge(3)

Ge(2)

Ge(2)

Gd(7)

Gd(5)

Gd(3)

Gd(3)

Gd(1)

Gd(3)

Gd(2)

Gd(2)

Gd(3)

Gd(2)

Gd(5)

Gd(2)

Gd(3)

Ge(4)

Ge(1)

Gd(1)

Gd(1)

Gd(1)

Gd(2)

Gd(2)

Gd(3)

Gd(1)

Gd(2)

Gd(3)

Gd(1)

Gd(2)

Gd(3)

Ge(3)

Ge(1)

Ge(3)

Ge(3)

Gd(3)

Gd(2)

Gd(1)

Gd(1)

Gd(1)

Gd(2)

Gd(1)

Gd(3)

Gd(4)

Gd(7)

Ge(2)

Ge(1)

Ge(4)

Ge(4)

Gd(2)

Gd(2)

Gd(3)

Gd(1)

Ge(3)

Ge(2)

Ge(1)

Ge(3)

Ge(2)

Gd(2)

Gd(2)

Ge(3)

Ge(1)

Ge(1)

Ge(1)

Ge(3)

Ge(1)

Ge(4)

P(1)

P(3)

P(2)

Ge(1)

Ge(2)

Ge(2)

Ge(3)

Ge(1)

Ge(2)

Ge(3)

P(1)

P(1)

P(3)

Ge(5)

Ge(1)

Ge(2)

Ge(2)

Ge(1)

Ge(2)

B(1)

P(1)

P(3)

P(2)

P(1)

P(2)

P(3)

P(2)

Ge(1)

Ge(1)

Ge(1)

Ge(4)

Ge(1)

B(1)

B(2)

P(1)

P(1)

P(1)

P(3)

Ge(2)

Ge(2)

Ge(3)

B(4)

B(1)

P(1)

P(2)

P(2)

P(1)

P(1)

B(1)

B(2)

B(1)

P(1)

P(3)

P(1)

P(1)

B(3)

B(1)

B(1)

B(1)

P(1)

P(2)

P(3)

P(1)

P(1)

P(1)

B(1)

B(1)

B(2)

B(1)

B(3)

B(1)

P(2)

P(1)

P(2)

P(2)

B(1)

B(1)

B(1)

B(3)

B(1)

B(1)

B(1)

B(1)

B(2)

P(1)

P(2)

P(2)

P(1)

P(1)

B(1)

B(4)

B(2)

B(2)

B(2)

B(1)

B(2)

B(2)

B(1)

B(1)

P(3)

P(1)

P(1)

P(2)

P(2)

P(1)

B(1)

B(1)

B(1)

B(2)

B(4)

B(1)

B(2)

B(2)

B(1)

B(1)

P(1)

P(3)

P(1)

P(1)

P(2)

B(10)

B(1)

B(2)

B(3)

B(2)

B(2)

B(1)

B(1)

B(1)

B(1)

B(1)

B(1)

P(1)

P(1)

P(1)

P(3)

P(2)

P(7)

Figure 7. Test data mapping results. (a) test (general); (b) test (best).

4.3. Online Process Performance Assessment and Variable Weight Identification of Nonoptimal Causes

The method proposed in this paper is not only suitable for offline data monitoring but also has a
good monitoring effect on online data. The result of the online monitoring of the data by sliding data
window is shown in Figure 8. The trajectory changes in Figure 8a–d show the trend of performance
grades (general–poor–good–best) of multimode processes, where the data of the transition process are
mapped into the blank area without the performance grade label. According to the running trajectory
of the above four figures, the online performance grade change shown in Figure 9 can be obtained,
which shows the change of the process running state with time. The integers (1: general, 2: poor, 3:
good, and 4: best) indicate the performance grade of the stable operating performance, and the decimal
indicates that the process is in transition.
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Figure 8. Online process operation performance monitoring results. (a) general; (b) general–poor;
(c) general–poor–good; (d) general–poor–good–best.
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Figure 9. Online process performance assessment results.
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Figure 10 shows the case where the process operating performance grade is nonoptimal, which is
obtained by calculating the contribution rate of the manipulated variables of each performance grade
with respect to the optimal performance grade.
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Figure 10. Nonoptimal performance cause identification result. (a) “General” grade nonoptimal
cause identification; (b) “poor” grade nonoptimal cause identification; (c) “good” grade nonoptimal
cause identification.

Figure 10a–c show that in each performance grade, the contribution rate of D feed (variable 1) and
E feed (variable 2) to the optimal performance grade is greater than those of other variables, and the
switching of the TE process mode is mainly achieved by changing the proportion of the feed amount.
Therefore, this result is consistent with the actual situation, and the accuracy of the identification of
nonoptimal cause is verified, which can be fed back to the control personnel as a reference for the
adjustment of the control strategy.

5. Conclusions

This paper proposes a method for visualizing multimode operating performance and identifying
nonoptimal causes. This method uses subtractive clustering algorithm (SCA) to divide the historical
data of multimode processes into different datasets according to the similarity between the data, which
solves the problem of classifying the different production mode data and distinguishing the stable
mode data from the transition mode data. Compared with the traditional performance assessment
methods in which data are classified by expert knowledge, the proposed method reduces human
influence and improves the accuracy and consistency of data classification and makes the feature
extraction of different stable-mode processes more accurate by separating steady-state data from
transition data. Simultaneously, this method realizes the identification of stable operation modes and
transition modes of multimode processes during online assessment. In addition, in this method, SOM
is used to solve the problem of visualizing the results of online monitoring, so that the monitoring
results are more intuitive and easier to understand and are convenient for the operator to observe. For
nonoptimal operating performances, the causes are identified by calculating the contribution rate of
the manipulated variables for each performance grade, which provides a reference for improving the
production performance. Finally, the effectiveness and accuracy of the proposed method are verified
by monitoring the performance grades of various operating modes in the TE process.
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