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Abstract: Batch-type hot rolling planning highly affects electricity costs in a steel plant, but previous
research models seldom considered time-of-use (TOU) electricity pricing. Based on an analysis of
the hot-rolling process and TOU electricity pricing, a batch-processing plan optimization model
for hot rolling was established, using an objective function with the goal of minimizing the total
penalty incurred by the differences in width, thickness, and hardness among adjacent slabs, as well as
the electricity cost of the rolling process. A method was provided to solve the model through
improved genetic algorithm. An analysis of the batch processing of the hot rolling of 240 slabs of
different sizes at a steel plant proved the effectiveness of the proposed model. Compared to the
man–machine interaction model and the model in which TOU electricity pricing was not considered,
the batch-processing model that included TOU electricity pricing produced significantly better results
with respect to both product quality and power consumption.

Keywords: hot rolling; TOU electricity pricing; hot rolling planning; genetic algorithm

1. Introduction

As a key link in steel production, hot rolling refers to a process in which the steel slabs sustain
heating in a furnace, rough rolling, and fine rolling before becoming steel products (Figure 1). The main
task of the batch-processing planning of hot rolling is to determine an appropriate sequence for
the processing of multiple slabs, to achieve low power consumption, low cost of stack transfer,
high efficiency, and high product quality, while the technical requirements of rolling are met [1].
Throughout the steel production process, the batch-processing plan of hot rolling directly determines
the product quality and production efficiency of the steel plant. In the past, in most studies on the
batch-processing planning of hot rolling, the penalty items relating to the differences (such as width,
thickness, hardness, and delivery time) were only taken into consideration among adjacent slabs,
while the differences in power consumption between slabs of difference sizes were ignored [2–4].
In fact, apart from guaranteeing product quality and production efficiency, a sound processing plan of
rolling also served to reduce production cost through electricity cost cut-backs, thereby maximizing
the economic benefits [5].

Throughout actual hot rolling, most electricity is used to drive the motor of the rolling mill and
power various auxiliary electrical devices. The power consumption in hot rolling is closely related to
the sizes and conditions of the devices, process parameters, as well as the types and sizes of the steel
products [6]. Under the condition of time-of-use (TOU) electricity pricing, the sequence with which
the slabs are processed has a major impact on power consumption. In the research area of hot rolling,
only few studies were carried out regarding the impact investigation of TOU electricity pricing on the
batch-processing planning of hot rolling. Most studies were focused on methods of better connection
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and matching during steelmaking, of continuous casting, and hot rolling processes. A charge-rolling
plan coordination model based on the optimal furnace charge plan and optimal rolling plan models
was presented [7,8], in which the tabu search algorithm was proposed for the corresponding solution.
A steelmaking continuous-casting hot-rolling integrated planning model was proposed to enable an
effective connection among the rolling unit plan [9], the furnace charge plan, and the casting plan.
An integrated model on the production and logistics planning level was constructed [10], based on an
analysis of the characteristics of steelmaking and hot rolling processes, as well as on the transition
between the two processes, where the constraints of capacity and the conflicts between the two stages
were taken into consideration. A mathematical model was presented for batch-processing optimization
in the steelmaking and hot rolling processes [11]. This model was proposed for the model solution with
the neighborhood search algorithm based on heuristic rules. The batch-processing planning problem
of hot rolling was treated as a constraint compliant problem [12], while the vehicle routing problem
with soft time windows (VRPSTW) constraint of uncertain plan number was constructed to satisfy
the model. In certain studies, the effects of other factors on the rolling plan of hot-rolling planning
were taken into consideration. As an example, the problem of slab stack transfer in the rolling plan
was taken into consideration [13,14], whereas the solution was conducted with the improved genetic
algorithm, resulting in reduced handling costs. The impact of TOU electricity pricing on the rolling
planning was taken into consideration [6], but in the proposed model, the power consumptions of
individual rolling units were only considered, instead of the influence of the rolling sequence on the
electricity cost under TOU electricity pricing. Mao et al. [5] considered the influence of TOU electricity
pricing when constructing a rolling unit as the production load unit, and a multi-objective optimization
model for hot rolling was established and a multi-objective optimization algorithm was applied to
solve this problem. However, all the goals were classified into one objective function in this paper.

In summary, in most previous studies, optimal rolling-plan models were proposed to be
established, to produce products with the highest possible quality and production efficiency prior to
the delivery deadline, indifferently to electricity cost reduction throughout production. Because the
main characteristic of genetic algorithms is to directly operate the structural objects, only the objective
function and the corresponding fitness functions that affect the search direction are needed. Therefore,
the genetic algorithm provides a method for solving complex system problems. It does not depend
on the specific fields and types of problems, and has strong robustness, so it has been widely used in
many scientific fields. [15]. On the basis of previous studies, in this paper, a model for batch-processing
planning of hot rolling under TOU electricity pricing was presented, resulting in a method of solving
the model with an improved genetic algorithm.
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2. Problem Description

2.1. Basic Principles of Hot Rolling Planning

Hot rolling constitutes the last link in the steelmaking continuous-casting hot-rolling process.
The raw materials are the slabs resulting from continuous casting, while the products are strip
steels (steel plates or steel coils). The strip steel could be directly sold as a finished product, or be
further processed into high-quality cold-rolled strip steel. A key issue in hot rolling is the rolling
plan formulation. A complete rolling unit generally consists of two parts: “roll heating pieces”
and “principal pieces” (Figure 2). The roll-heating pieces are usually easy-to-process slabs, such as
low-carbon steels as well as relatively thick and narrow strip steels. The number of slabs in this part is
relatively low, while the main purpose of this part is to heat the rolled steel and lead it to reach heat
equilibrium, creating conditions for the subsequent processing of principal pieces. Usually, the width
of the slab increases gradually throughout rolling. The principal pieces are usually hard-to-process
slabs, for thinner and wider products, whereas the width of the slab decreases gradually throughout
hot rolling. Therefore, a complete rolling unit would have a dual trapezoidal structure, with the
positive trapezoid as the roll-heated pieces and the inverted trapezoid as the principal pieces. In view
of the fact that the numbers of roll-heated pieces in a rolling unit are small and the quality requirement
is low, in this study, the principal pieces were focused on. The principal pieces processing met the
following requirements [16,17].

(1) The length of each principal piece had a certain limit;
(2) When the thickness of the principal piece changed in the non-increase direction, the step must be

lower than 25 cm;
(3) When the width changed inversely, the step did not generally exceed 15 cm;
(4) When slabs of the same width were continuously processed, the total length should not exceed a

certain limit;
(5) The width, thickness and hardness were not allowed to jump at the same time;
(6) The thickness jump should be smooth and repeated jumps were not allowed. Changes in the

non-decrease direction were preferred.
(7) The hardness change should be smooth. Both gradual increase and gradual decrease were

allowed. Repeated jumps were not allowed.
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Figure 3 presents the batch-processing plan formulation of hot rolling. Multiple slabs of different
sizes were combined into a rolling unit in accordance with the process requirement, while multiple
rolling units constituted a hot-rolling batch-processing plan (Figure 4). The hot-rolled batch processing
plan was a rolling sequence of slabs arranged in accordance with the roll usage cycle. One rolling
unit corresponded to the usage of one set of rolls. The hot-rolling batch-processing plan’s successful
execution directly determines the product quality, delivery date, and production efficiency, and a sound
hot-rolling batch-processing plan could improve production efficiency, reduce energy consumption
(such as costs), and enhance the firm’s competitiveness.
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2.2. Analysis of Energy Consumption in Rolling

Hot rolling is a typical energy-intensive process in steel production, mainly requiring electric
energy and heat energy from gas consumption. The gas is mainly consumed in the heating furnace to
heat the slabs to the temperature required for hot rolling. The gas used in the heating furnace is usually
a mixture of blast furnace gas, Linz–Donawitz gas, and coke oven gas, while the calorific value of the
mixed gas must meet the production requirement. The electric energy is mainly used to drive the
rolling mill, while the power consumption in the rolling process varies depending on the slab size, steel
type, and other factors. In a hot-rolling batch-processing plan, the rolling sequence change or positions
exchange of two rolling units will change the energy consumption pattern. At many locations, the
electricity price varies with time. As demonstrated with the TOU electricity pricing scheme presented
in Figure 5, the highest electricity price was 2.43 times that of the lowest electricity price. Consequently,
the rolling sequence in the rolling plan directly affected the electricity cost of hot rolling.
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At present, many batch-processing plans of hot-rolling steel plants are mainly prepared by human
planners in human–computer interaction interfaces, based on their experience. The impact of the
batch-processing plan on the power consumption has been often ignored. Besides, this mode of
planning has the drawbacks of low efficiency, poor accuracy, and high labor cost. To compensate for
this deficiency, in this paper, a model for batch-processing planning of hot rolling under TOU electricity
pricing was proposed, with the aim of ensuring high quality and reducing power consumption at the
same time.

3. Mathematical Model and Solution Method

3.1. Mathematical Model

3.1.1. Model Assumptions

(1) The time required to process a single slab was roughly the same. In this paper, the processing
time used was 2 min;

(2) Basic properties, such as width, thickness, hardness, and length of each slab were known;
(3) The change of the total attribute in the rolling unit could be determined through calculation.

3.1.2. Objective Function

In this paper, the optimizations of quality and power consumptions from different time periods
were taken into consideration. On the basis of setting a certain weight coefficient, an objective function
was formulated with the goal of minimizing the differences in width, thickness, and hardness among
adjacent slabs of the same rolling unit, as well as the electricity cost of the rolling process. The objective
function is presented as

min F =
N∑

j=1

N∑
i=1,i, j

{
PW∆Wi, j + PG∆Gi, j + PH∆Hi, j

}
·Xi jk +

T∑
t=1

N∑
i=1

{
Cele,t(Pele,i)

}
·Yi (1)

where ∆Wi, j =
∣∣∣Wi −W j

∣∣∣, ∆Gi, j =
∣∣∣Gi −G j

∣∣∣, ∆Hi, j =
∣∣∣Hi −H j

∣∣∣.
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3.1.3. Constraints

Based on the above description, the constraints of the hot-rolled batch processing planning model
are as follows:

N∑
k=1

yik = 1

i ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M}
(2)

N∑
i=1

(Li × yik) ≤ Lmax

i ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M}
(3)

N∑
i=1

(
Zi jk × Li × yik

)
≤ Rmax

i, j ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M}
(4)

0 ≤ Xi jk ×
(
Wi −W j

)
≤Wmax

i, j ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M}
(5)

0 ≤ Xi jk × ∆Gi, j ≤ Gmax

i, j ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M}
(6)

0 ≤ Xi jk × ∆Hi, j ≤ Hmax

i, j ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M}
(7)

N∑
i=1

Xi jk ·
N∑

j=1
Xi jk = 1

i, j ∈ {1, 2, 3, . . . , N}, k ∈ {1, 2, 3, . . . , M}
(8)

Cele,t =


C0, t ∈ (0, T0]

C1, t ∈ (T0, T1]

C2, t ∈ (T1, T2]

(9)

Xi jk =

{
1, Slab j is behind slab i, and belong to same rolling unit k
0, else

(10)

Zi jk =

{
1, Slab j is behind slab i and j have same width and belong to same rolling unit k
0, else

(11)

yik =

{
1, Slab i belongs to rolling unit k
0, else

(12)

where F represents the target penalty value, N represents the number of slabs, T represents the rolling
period. PW , PG and PH are the penalty coefficients for the differences in width, thickness, and hardness
among adjacent slabs of the same rolling unit, respectively. In the equations, Yi represents the penalty
coefficient for the electricity spent on the slab i, Cele,t represent the prices of the electricity spent on
the slab i, Pele,i is the electricity spend on the slab i, Lmax is the length limit for each rolling unit, Rmax

is the length limit for the continuously processed slabs of the same width in the same rolling unit,
Wmax, Gmax, and Hmax are the upper limits for the differences in width, thickness and hardness among
adjacent slabs from the same rolling unit. Constraint (2) ensured that each slab was assigned to one
rolling unit; constraints (3) and (4) limited the total length of a single rolling unit and the length of
continuously processed slabs of the same width; constraint (5) ensured that slabs of the same rolling
unit were arranged in the descending order of width and that the width difference between two
adjacent slabs did not exceed the upper limit; constraints (6) and (7) ensured that the differences in
thickness and hardness between two adjacent slabs did not exceed the upper limits, respectively;
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constraint (8) signified that each slab could only be processed once; constraint (9) represented the
prices of electricity from different time periods; and constraints (10)–(12) were the decision variables of
values of 0, 1, respectively.

3.2. Method for Model Solution

3.2.1. Brief Description of Algorithm

The genetic algorithm (GA) is an algorithm that mimics the processes of inheritance, mutation,
and natural selection in the evolution of biological organisms. Figure 6 presents the solution of the
genetic algorithm. First, a set of initial feasible solutions were randomly selected, according to the
characteristics of the problem. Following this, a new chromosome was obtained through crossover and
mutation operations involving genetic operators. Next, the fitness of the new generation chromosome
was calculated and evaluated. The chromosome with good adaptability would be passed on to the
next generation. This solution process would be repeated until the preset number of iterations was
reached or the convergence condition was met. The GA has the characteristics of randomness, implicit
parallelism, and global optimization in the operation process. In the actual operation of steel plant, a
requirement to prepare a large number of batch-processing plans exists. Consequently, it was difficult
to achieve the expected result through the common search methods. To tackle this problem, in this
paper, it was proposed that the batch-processing model was to be solved with the GA with improved
genetic operators.Processes 2020, 8, x FOR PEER REVIEW 8 of 15 
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3.2.2. Chromosome Coding

Throughout the hot-rolling planning model solution with GA, the chromosome was represented
by a coding sequence consisting of decimal natural numbers. For a rolling plan, the serial numbers
of the slabs represented the genes in the chromosome coding. The chromosome coding could be
expressed as the sequence of {a1, a2 . . . ai}, in which the chromosome length was the total number N of
pre-processed slabs. Figure 7 presents a schematic diagram demonstrating the chromosomal coding of
the rolling plan, in which, a1, a50 and a100 were the serial numbers of the slabs; A0, A1 and A2 were the
slab sequences constituting the rolling units.
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3.2.3. Chromosome Decoding

In different chromosomes, the numbers represented the serial numbers of the slabs, while the
order of appearance was the order of processing. Figure 8 presents the flowchart of chromosome
decoding. The procedure of rolling plan chromosome decoding was as follows:

Step 0: M = 0, A j = ai, l = 0;
Step 1: Sequentially traversed the slab numbers ai from the ith position of the chromosome, recording

the length li of the slab ai and recording ai in the arranged slab sequence A j, doing l = l + li,
and going to Step 2;

Step 2: If l was larger than the length L of the rolling unit, the last element in the sequence A j was
removed, turning the sequence A j−1 into a rolling unit, and letting M = M + 1; if l was equal
to the length L of the rolling unit, the sequence A j was turned into a rolling unit, and letting
M = M + 1; otherwise, Step 1 was selected;

Step 3: When i was equal to the length of the chromosome, the program exited.
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3.2.4. Selection of Fitness Function

In this paper, a sorting-based allocation function was used as the fitness function. The equation
was as follows:

Fit(P) = 2−Y + 2(Y − 1)(P− 1)/(N − 1)

where N is the number of chromosomes in the population, P is the sorting number of the chromosome
in the population, Y is the selection pressure with a value in the range of [1.0, 2.0]. When the fitness
function was applied, it was necessary to calculate at first the penalty value of each chromosome in the
population, incurred by the differences in the width, thickness, and hardness among adjacent slabs,
as well as the TOU electricity pricing. Following this, sorting was performed according to the penalty
values, and the P value of the corresponding chromosome was obtained. Finally, the fitness values of
different chromosomes were calculated. The smaller the objective function value was, the greater the
fitness of the corresponding chromosome was. In this way, the high-quality chromosomes were picked
from the population.

3.2.5. Genetic Operators

Genetic operators include selection operators, crossover operators, and mutation operators.
In a rolling plan, each slab could only occupy one position in the sequence. In other words, no
duplicate genes would appear in the same chromosome, which is different from the conventional GA.
Therefore, it was necessary to improve the crossover and mutation operators. The selection operator
used in the model solution method proposed in this paper was used to realize a selection operation
similar to roulette according to the above-mentioned fitness function. The crossover operator was a
secondary crossover operator. As illustrated in Figure 9, the crossover operator worked as follows. (1)
Three contiguous genes on the chromosome were randomly selected and their positions are recorded; (2)
the three genes were led to exchange positions with three corresponding genes on another chromosome
without changing the original order. Finally, the mutation operator exchanged the positions of two
randomly selected genes on the same chromosome, as presented in Figure 10.
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4. Case Study

4.1. Basic Parameters

The total lengths of the slabs in a rolling unit were limited to 10 km, the lengths of the slabs of
the same width were limited to 1 km, while the jump penalties for width, thickness, and hardness
are presented in Tables 1–3 [18]. Throughout the model solution with genetic algorithm, the initial
population size was 20, the crossover probability was 0.85, and the mutation probability was 0.15.
The genetic algorithm was implemented through Visual C# programming.

Table 1. Penalty of width jump.

Jump down/mm 0~25 26~55 56~90 91~150

Penalty 1.0 3.0 5.0 7.0

Table 2. Penalty of hardness jump.

Factor Change 1 2 3 4 5

Penalty 10 16 20 24 30

Table 3. Penalty of thickness jump.

Jump up/mm 0~0.06 0.0601~0.15 0.1501~0.24 0.2401~0.45 0.4501~3.00

Penalty 200.00 300.00 400.00 800.00 1000.00

Jump down/mm 0~25 26~55 56~90 91~150 0.4501~3.00

Penalty 400.00 600.00 800.00 1000.00 2000.00

Table 4 presents the different electricity prices charged to a typical steel plant during different
periods within one day [19]. Each day was divided into six electricity price periods with three electricity
prices (peak, flat, trough).

Table 4. TOU electricity pricing in steel plant (24-h clock).

Electricity Price Range Period Electricity Price, Yuan/kWh

Peak periods 08:00-11:00, 16:00-21:00 0.76
Flat periods 06:00-08:00, 11:00-16:00, 21:00-22:00 0.53

Trough period 22:00-06:00 (next day) 0.31

4.2. Analysis of Optimization Results

The subject of this case analysis was 240 slabs actually processed by a certain steel plant. The rolling
operation started from 03:00. The genetic algorithm was used to solve the rolling batch-processing
model under two conditions: considering the TOU electricity pricing, and not considering the TOU
electricity pricing. Figure 11 presents the iteration curves under the two conditions. As it could be
observed from Figure 11a, when TOU electricity pricing was not taken into consideration, the penalty
value remained basically unchanged after 10 iterations. The initial penalty value was 23,537, and
the value became 22,029 after optimization, amounting to an improvement of 6.4%. As presented in
Figure 11b, when the TOU electricity pricing is taken into consideration, the penalty value remained
basically unchanged after nine iterations. The initial penalty value was 27,880, while the value became
26,238 after optimization, amounting to an improvement of 5.9%. This indicated that a feasible solution
with a low penalty value could be obtained through model optimization.
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Table 5 presents the penalty values of three hot-rolling batch processing plans prepared with
different methods. It could be observed that the two rolling plans formulated through the hot-rolling
batch-processing model under two electricity pricing conditions (TOU plan, non-TOU plan) had
apparently lower penalty values, compared to the rolling plan formulated by the man–machine
interaction method (MMI plan), even though all three rolling plans had the same number of
rolling units. This indicated that better slab arrangement (width, thickness, and hardness) could be
achieved after the model-based optimization, which would further lead to a smoother hot-rolling
operation. The optimization model, in which the TOU electricity pricing was considered, had higher
penalty value compared to the optimization model without the TOU electricity-pricing consideration.
This occurred because the penalty incurred by the electricity cost had been added to the objective
function. The introduction of the electricity cost penalty created the condition for simultaneous quality
and power consumption optimization for the hot-rolling process.

Table 5. Penalty values of three hot-rolling batch-processing plans.

Slab Number /Piece Preparation Method Number of Rolling Units /Piece Penalty Value

240

Human interaction 5 31,266
Model-based optimization

(not considering TOU electricity pricing) 5 22,029

Model-based optimization
(considering TOU electricity pricing) 5 26,238

Figure 12 presets the electricity costs during rolling. The different colors represented different
rolling units. The MMI plan induced an electricity cost of 11,230 yuan, the non-TOU plan induced
10,770 yuan and the TOU plan induced 10,230 yuan. In other words, the TOU plan induced 8.9% less
electricity cost than the MMI plan and 5.0% less electricity cost than the non-TOU plan. Because the
model considering the TOU electricity pricing is good for reducing peaks and filling valleys, the cost of
electricity consumption is effectively reduced.

Figure 13 presents the power consumption data during the period from 04:00 to 10:00. The electricity
price was 0.31 yuan/kWh in the period of 04:00–06:00, 0.53 yuan/kWh in the period of 06:00–8:00 and
0.76 yuan/ kWh in the period of 08:00–10:00. It could be observed that when the electricity price was
0.31 yuan/kWh, the MMI plan, non-TOU plan, and the TOU plan consumed 4293 kWh, 5134 kWh
and 4808 kWh of electricity, respectively. When the electricity price was 0.76 yuan/kWh, the TOU
plan consumed 4132 kWh, while the MMI plan consumed 5574 kWh. The former was 25.9% lower
than the latter. This demonstrated the benefit of model-based optimization. After the model-based
optimization, the high-load rolling units were arranged in the trough-price and flat-price periods,
while the low-load rolling units were arranged in the peak-price period.
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Figure 13. Electricity consumptions at different time periods.

Figure 14 presents the electricity costs of three kinds of rolling plans at different time periods.
It could be observed that when the electricity price was low (0.31 yuan/kWh), the MMI plan, TOU plan,
and non-TOU plan induced electricity costs of 1331 yuan, 1592 yuan and 1490 yuan, respectively. When
the electricity price was medium (0.53 yuan/kWh), the electricity costs induced by the three rolling
plans were very close. When the electricity price was high (0.76 yuan/kWh), the MMI plan, non-TOU,
and TOU plans induced costs of 4236 yuan, 3984 yuan and 3140 yuan, respectively. In other words, the
TOU plan induced a 21.2% lower electricity cost than the non-TOU plan, and 25.9% lower than the
MMI plan. Therefore, the TOU plan could effectively reduce the electricity cost and contribute to the
power grid fluctuation reduction of electricity consumption.
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5. Conclusions

(1) A hot-rolling batch-processing plan optimization model, in which TOU electricity pricing was
taken into consideration was established. An objective function was used in the model that was
aimed at the jump penalties minimizations of the jumps among adjacent slabs in width, hardness,
and thickness, as well as in the electricity costs. The optimization method reduced the electricity
cost of hot rolling, while ensuring the product quality and production efficiency, in addition to
the extra benefit of power consumption fluctuation reduction.

(2) In the proposed method, the crossover and mutation operators of the improved genetic algorithm
were used to solve the model for batch-processing plan production for hot rolling. The algorithm
was characterized by strong search ability and good convergence. The penalty value after
optimization was significantly lower than before optimization, proving the actual value of the
proposed method.

(3) An experimental verification was carried out to check the electricity costs of processing of 240 slabs
through three hot rolling batch processing plans, formulated under “TOU electricity-pricing
consideration”, “TOU electricity-pricing absence” and “man—machine interaction” models.
The results demonstrated that the TOU plan induced 8.9% lower electricity cost than the MMI
plan and 5.0% lower electricity cost than the non-TOU plan.
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