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Abstract: To study the appropriate numerical simulation methods for venturi injectors, including
the investigation of the hydraulic performance, mixing process, and the flowing law of the two
internal fluids, simulations and experiments were conducted in this study. In the simulations
part, the cavitation model based on the standard k–ε turbulence and mixture models was added,
after convergence of the calculations. The results revealed that the cavitation model has good
agreement with the experiment. However, huge deviations occurred between the experimental
results and the ones from the calculation when not considering the cavitation model after cavitation.
Thus, it is inferred that the cavitation model can exactly predict the hydraulic performance of a
venturi injector. In addition, the cavitation is a crucial factor affecting the hydraulic performance of
a venturi injector. The cavitation can ensure the stability of the fertilizer absorption of the venturi
injector and can realize the precise control of fertilization by the venturi injector, although it affects the
flow stability and causes energy loss. Moreover, this study found that the mixing chamber and throat
are the main areas of energy loss. Furthermore, we observed that the internal flow of the venturi
injector results in the majority of mixing taking place at the diffusion and outlet sections.

Keywords: venturi injector; cavitation; numerical investigation; mixing process; internal flow

1. Introduction

Fertigation is becoming increasingly common, and fertilizer devices are becoming increasingly
important [1]. A venturi injector, a commonly used device for fertilizer application, uses the turbulent
diffusion of the jet to transfer energy and mass. This injector is broadly applied in fertigation systems
because of its advantages such as simple structure, convenient operation, low cost, and no need for
external power [2–4]. However, the internal flow involves the mixing of two flows with different
pressures, although the internal structure of the venturi injector is simple with no moving parts.
Thus, the internal flow is complex, energy loss is large, and the mass transfer energy efficiency is
low [5], making it necessary to assess the flow characteristics of the venturi injector.

To date, venturi injectors have been studied widely, especially focusing on fertilizer absorption
performance [6–8]. Neto and Porto [9] observed that the area ratio of a venturi injector exerts a major
impact on the fertilizer suction efficiency; the authors also presented a simple methodology for the
design and construction of low-cost ejectors from PVC, to reduce costs and enhance the fertilizer
suction performance of fertigation systems. Ozkan et al. [10] investigated venturi injectors’ structure
parameters, including the impact of the inlet diameter, the diameter of the suction pipe, and the ratio
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of the throat diameter to the inlet diameter. In a field experiment, Parish et al. [11] investigated the
injection methods, injection rate, and solution volume on the fertigation uniformity and reported that
venturi injectors have a better fertilizer distribution and that the injection rate exerts a significant
impact on the fertilizer distribution uniformity. Li et al. [12] investigated the performance of three
different fertilization devices (venturi injector, proportional pump, and differential pressure tank) in
laboratory and field experiments of a micro-irrigation system; they reported that the type of fertilization
device and the manufacturing variability of emitters exert a considerable impact on the fertilizer
distribution uniformity.

Using dynamics theory [13,14] for model analysis and modern testing and signal processing
technology [15,16] has become a common research tool these days. With the technological advancement
of computers and computational fluid dynamics (CFD), complex flows that could previously only be
acquired by experimental methods can be simulated precisely [17–19], especially the internal flow fields
in fluid machinery and microfluidics [20,21], such as two-phase flow [22–24], pressure fluctuation [25],
energy loss [26–28], and so on. Other studies have mainly focused on the flow inside venturi injectors.
Huang et al. [29,30] numerically analyzed the influence of the structural parameters on the absorption
capacity. Yan et al. [31] used a high-speed video camera to investigate the development of the cavitation
inside a venturi injector. Zwart et al. [32] presented a new multiphase flow algorithm to predict
cavitation and validate the transient cavitation in a venturi. Simpson and Ranade [33] developed
CFD models to simulate the cavitating flow in various venturi injectors. Shi et al. [34] established a
semi-empirical model to predict cavitation in different venturi injectors. Furthermore, Dastane et al. [35]
developed a CFD modeling scheme to successfully simulate flows in a cavitating venturi. Various study
reports on venturi injectors revealed that CFD methods have been used extensively to investigate the
impact of key structure and working parameters on the performance, including the diffusion, shape of
the nozzle, ratio of the throat length to diameter, and contraction ratio [36–39]. However, few studies
have focused on the effect of the mixing process between water and fertilizer liquid. Of note, the mixing
process seriously affects the uniformity of the water and fertilizer distribution in the irrigation system,
necessitating further investigation. Hence, this study aims to extend the solution method and test
the reliability of calculated models. Moreover, this study investigates the mixing of two flows with
different pressures.

2. Experimental Setup

We studied the working process and the fertilizer suction/hydraulic performance in a venturi
injector using water as a working fluid. In this study, a closed-loop system was considered to assess the
venturi injector. The system contained water circulation and measuring subsystems. Figure 1 presents
the configuration of the closed-loop system.
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Figure 1. Schematic of the experimental system. 1. Variable-frequency, constant-pressure water supply
device; 2. Valve 1; 3. Turbine flowmeter; 4. Pressure gauge; 5. Venturi injector; 6. Pressure gauge;
7. Turbine flowmeter; 8. Valve 2; 9. Valve 3; 10. Tank.

In the experiment, water was driven by a variable-frequency, constant-pressure water supply
device. We mounted two pressure gauges (precision: 0.4%) on the inlet and outlet lines of the venturi
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injector to measure the local pressures accurately. Likewise, the flow rates at the inlet and outlet
lines of the venturi injector were measured by two turbine flowmeters (precision: 0.2%). In addition,
valves of the main pipeline were used to regulate the flow rate of the experimental system and control
the import and export pressures of the venturi injector. The tank’s water level was maintained constant
to isolate the suction flow rate from the water level impact. Accordingly, a water pipe was set from the
main pipeline to the water tank. Notably, the vertical distance between the water level and the venturi
injector axis was 500 mm.

3. Analysis Model

Figure 2 shows the configuration and dimensions of the venturi injector; it contains the following
seven parts: entrance, exit, contraction section, throat, mixing chamber, diffuser, and suction chamber.
Table 1 presents the geometric parameters of the venturi injector.
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Table 1. Basic geometric parameters of the venturi injector.

Geometric Parameter Value Geometric Parameter Value

Inlet diameter d1 (mm) 20 Inlet length L1 (mm) 59.5
Outlet diameter d2 (mm) 20 Outlet length L2 (mm) 80
Throat diameter dt (mm) 8 Contraction section length Lc (mm) 16
Suction diameter d3 (mm) 17.5 Mixing chamber length Lm (mm) 1

Contraction angle α (◦) 41 Throat length Lt (mm) 5
Diffusion angle β (◦) 14 Diffuser length Ld (mm) 48.5

4. Mesh and Boundary Conditions

4.1. Mesh Independence Study

To ensure a mesh-independent solution, we used four mesh sizes for the simulation. Table 2
shows the results under the P1 = 350 kPa and P2 = 100 kPa flow conditions. We found that the solution
was mesh-independent beyond 400K elements; hence, this mesh was used for all further simulations.

Table 2. Grid independence test of the venturi injector under the flow conditions of P1 = 350 kPa and
P2 = 100 kPa.

Grid No. 1 2 3 4

Number of grid cells/104 20 30 40 60
Q1/(m3/h) 4.170418 4.200837 4.306605 4.320276
Qs/(m3/h) 0.166950 0.186685 0.239519 0.243264
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4.2. Comparison of Turbulence Models

We constructed four turbulence models—standard k–ε model, RNG k–ε model, realizable k–ε
model, and standard k–ω model—to select the optimum turbulence model for the interflow simulations
and compared their results with the experimental results to arrive at the most suitable turbulence
model. Table 3 presents numerical and experimental results of the venturi with different turbulence
models under the flow conditions of P1 = 350 kPa and P2 = 100 kPa. We found that the standard k–ε
model offered better accuracy among these models; hence, this model was selected in this study.

Table 3. Numerical and experimental results with different turbulence models under P1 = 350 kPa and
P2 = 100 kPa flow conditions.

Grid No. Standard k–ε RNG k–ε Realizable k–ε Standard k–ω Test Value

Q1/(m3/h) 4.306605 4.322436 4.305457 4.352721 4.32
Qs/(m3/h) 0.239519 0.186685 0.18506 0.165261 0.21

4.3. Boundary Conditions

Structured meshing with hexahedral elements was generated using ANSYS ICEM CFD software
(ANSYS, Inc., Commonwealth of Pennsylvania, USA) to calculate the flow of the computation domain
more effectively. In addition, numerical simulations for the venturi injector were executed in ANSYS
FLUENT 17.2 software (ANSYS, Inc., Commonwealth of Pennsylvania, USA). The separation solver and
the absolute velocity formula were used to deal with the steady-state problem. The conventional fluid
dynamics were computed by solving the Reynolds-averaged Navier–Stokes equations. We applied
the SIMPLE algorithm to solve the coupling velocity and pressure problems. Furthermore, the finite
volume method was used to discretize the governing equations.

In addition, we used the standard k–ε turbulence model in the simulations. The mixture
model was selected as a multiphase model to assess the flow law of the fertilizer solution in the
working process of the venturi injector. Besides this, the Zwart–Gerber–Belamri model, based on the
Rayleigh–Plesset equation, was added after the numerical calculation was convergent to attain a more
accurate and appropriate simulation method. Moreover, non-slip wall boundary conditions were
applied. The pressure inlet and pressure outlet boundary conditions were applied at the two inlets
(Inlet 1 and Inlet 2 denote the inlet and suction chamber, respectively) and outlet boundaries. In the
mixture model, the calculation medium is Newtonian fluid, and the water liquid model was applied
for the primary phase, while the urea liquid model was applied for the secondary phase. Residuals of
<10−5 were set as the convergence criterion. Based on the experiment, different pressures for Inlet 1
were set in the simulations. Different outlet pressures corresponding to different pressure points were
set at the outlet to assess the hydraulic performance under different working conditions of the venturi
injector. Figure 3 shows grid details and boundary conditions for the whole domain.
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5. Results and Discussion

5.1. Comparison of the Numerical and Experimental Results

In this study, the experiments were conducted at the Center of Water-Saving Irrigation Equipment
Quality Inspection, Ministry of Water Resources. We considered four inlet pressures in the experiment
(range: 50–350 kPa). Meanwhile, numerical calculations for the venturi injectors were implemented
with the same working conditions. Figure 4 presents the results obtained from the experiment and
numerical simulation. In this study, we conducted two sets of numerical simulations. The cavitation
model was applied in the first simulation, while the other simulation was performed without the
cavitation model.
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Figure 4. Comparison of experimental and numerical simulation results.

Typically, applying the cavitation model results in predictions which are in better agreement with
the results from the experiment. It is feasible to use CFD simulation based on the mixture model to
estimate the performance of a venturi injector, whereas the cavitation model could make the simulation
results more reliable.

The numerical and experimental results corroborate each other well for cases with low inlet
pressure (i.e., P1 = 50 kPa) or low pressure difference. However, in other conditions, the deviations
between experimental values and calculations are large due to ignoring cavitation. Moreover, each
performance curve of the simulation that considered the cavitation model had a bending point; they
all tended to flatten when the amount of absorbed fluid reached approximately 0.2 m3/h after the
bending point; this is because when the venturi injector works with a large inlet pressure and pressure
difference, the cavitation is more intense. Affected by cavitation, the mixing of the working fluid and
the absorbed liquid becomes increasingly complicated. Of note, cavitation occurs when the internal
local pressure is lower than the saturated vapor pressure of the working fluid at the corresponding
temperature. The occurrence of cavitation leads to stability in the amount of fertilizer absorbed by
the venturi injector applicator. Thus, the amount of fertilizer absorbed can be controlled in cavitation
conditions to provide precise fertilization in terms of quantity.
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5.2. Analysis of the Mixing Process

We used two parameters to indicate the performance and thereby study the mixing process of
two fluids in a venturi injector. The parameters were the local pressure ratio (px) and the flow ratio (q),
which are defined as follows:

px =
P(x) − Ps

P1 − Ps

q =
Qs

Q1

where x is the position along the flow and P(x), P1, Ps, Qs, and Q1 are the local pressure at x section,
inlet pressure, suction inlet pressure, suction flow, and workflow, respectively.

The local pressure ratio (px) is the ratio between energy surplus with the absorbed fluid and the
energy loss with the working fluid at the x cross section. In addition, the flow ratio (q) presents the
ratio of the suction flow to the working flow.

We used five different working conditions at P1 = 350 kPa in the calculations to study the
characteristics of the internal flow field of the venturi injector upstream and downstream of the
cavitation zone. Table 4 shows the performance obtained from the numerical simulation with the
cavitation model in different flow conditions (i.e., P2 = 50, 100, 150, 200, and 250).

Table 4. Simulation results under conditions of P1 = 350 kPa.

P1 (kPa) P2 (kPa) ∆P (kPa) Q1 (m3/h) Qs (m3/h) q

350

50 300 4.3066 0.2376 0.0552
100 250 4.3066 0.2396 0.0556
150 200 4.3057 0.2372 0.0551
200 150 4.0651 0.1912 0.0470
250 100 3.7182 0.0284 0.0076

5.3. Development of Cavitation Distributions

Notably, the occurrence of cavitation depends on the local pressure. We assessed the cavitation
creation for fixed inlet pressure P1 = 350 kPa, as shown in Figure 5. No cavitation occurred under
the pressure conditions of P2 = 250 and 200 kPa. The cavitation primarily occurred in the throat
and diffuser sections. In addition, the cavitation intensity increased as the outlet pressure decreased.
Figure 5 shows that the most intense cavitation takes place for P2 = 50 kPa.
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Table 2 shows that the flow ratio exhibited a small change when cavitation occurred for the
pressure points of P2 = 50, 100, and 150 kPa. These changes were similar for P2 = 50–150 kPa, and there
was a peak in the operating point under 100 kPa. Thus, the suction flow and flow ratio exhibited a minor
fluctuation when the cavitation was created. Notably, the cavitation was critical to the suction flow
and flow ratio, where both increased as the cavitation degree increased. Conversely, both parameters
decreased when the cavitation reached a certain extent.

5.4. Development of Pressure and Velocity Distributions

We simulated the pressure and velocity distributions to analyze the flow structure inside the
venturi injector. Figures 6 and 7 show the pressure and velocity distributions of the venturi injector at
the z = 0 section for P1 = 350 kPa. Figure 6 shows that the pressure decreased at the beginning but then
increased along the flow direction. Negative pressure was formed at the throat, where the pressure
reached its minimum value. Figure 6a–c indicates that for cases with a high pressure difference, low
pressure areas were present in the throat, diffuser, and mixing chamber, where the suction liquid enters
the venturi injector; in other words, there was pressure loss at these places, proving the distribution of
cavitation (Figure 5).
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Figure 7 illustrates that the velocity changed abruptly from the contraction to diffuser sections;
it increased steadily in the contraction section and reached its peak at the throat. During flow in the
diffuser and outlet, a reduction trend was observed owing to the impact of the suction flow and the
variability of the flow cross-sectional area. In addition, the velocity presented different variation trends
under different outlet pressures.

Of note, the velocity distribution is symmetric only for the outlet pressure P2 = 250 kPa. For lower
outlet pressures (P2 ≤ 150 kPa), the velocity near the upper wall was higher than that in the other areas
of the diffuser and outlet; however, this was reversed for P2 = 200 kPa.

Figure 8 presents the streamlines in the z = 0 section for different outlet pressures; it shows that
the flow was steady only for the outlet pressure P2 = 250 kPa, and there were vortices at other outlet
pressures. Among these conditions, the difference is the position of the vortex; the presence of vortices
near the side of the suction tubes for low outlet pressures is contrary to their absence at higher outlet
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pressure. This could be attributed to the nonuniformity of the flow and the velocity distribution after
the throat section. Conversely, when the second fluid was absorbed into the working fluid, an energy
conversion occurred between them, which led to the different velocity field near the suction side of
the diffuser compared with those in other regions. Thus, the vortex was formed in a different area,
suggesting that the formation of a vortex inevitably leads to energy loss. This phenomenon correlates
with the structure of the suction chamber. Owing to the lateral inlet, the suction fluid flows around
the nozzle. In addition, the flow at the throat entrance is absorbed asymmetrically into the throat,
which then becomes different in different regions. Thus, a symmetric suction chamber is necessary
and preferred.Processes 2020, 8, x 9 of 14 
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5.5. Analysis of the Local Pressure Ratio

Figure 9 illustrates the local pressure ratio along the length of the venturi injector under different
outlet pressure conditions, suggesting that the local pressure ratio increased gradually as the outlet
pressure increased. In addition, the curves revealed that the local pressure ratio began to decrease in
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the contraction section. We observed that the local pressure ratio markedly decreased in the throat,
as the outlet pressure decreased. Furthermore, the curves were almost coincident in the throat, and the
outlet pressure was <150 kPa. With the mixing of two flows, the energy of the suction fluid increased
gradually. Finally, in the diffuser, the energy obtained by the suction flow reached a maximum in the
unit volume; in other words, the pressure ratio of the mixture reached a peak value and then tended to
be stable.Processes 2020, 8, x 10 of 14 
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After contrasting with Figure 6, we found that cavitation occurred for small outlet pressures.
The cavitation region occupied a wide range of the diffuser, and the phenomenon of cavitation was
higher when the outlet pressure was 50 kPa. Hence, we infer a certain impact of cavitation on fertilizer
absorption performance.

5.6. Development of the Turbulent Kinetic Energy

Reportedly, the turbulent kinetic energy is a key parameter to illustrate cavitation [40]. When
cavitation occurs, there is strong disturbance in the flow, and the turbulent kinetic energy increases
rapidly. In addition, the variation of the turbulent kinetic energy depicts the cavitation intensity [41].

Figure 10 describes the trend of the turbulent kinetic energy at different outlet pressures along
the venturi injector, also illustrating that the turbulent kinetic energy remained constant from the
contraction to the throat sections, while it increased in the diffuser section, where the position of the
turbulent kinetic energy was approximately the same as that of the cavitation. We observed that the
turbulent kinetic energy reached its maximum value after a sharp increase in the diffuser, but then
gradually decreased to its ultimate value (about 2 m2 s−2) in the outlet. Furthermore, the effect of the
turbulent kinetic energy was enhanced as the pressure difference increased, which could be attributed
to the presence of cavitation in this region.
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5.7. Development of the Volume Fraction of the Suction Flow 

Figure 11 illustrates the development of the volume fraction of the suction flow in different 
conditions. Accordingly, the curves present three distinct trends in different conditions along the 
venturi injector. Initially, there were plenty of similarities in the curves for low outlet pressure. The 
volume fractions showed a considerable increase in the diffuser, and their rate of increase decreased 
in the outlet but reached a high point at 3.5%. Moreover, the curve exhibited the same trend in the 
diffuser for outlet pressure equal to 200 kPa; however, the volume fraction tended to rise first but 
then decrease in the outlet. Finally, Figure 11 shows that the volume fraction only grew after the 
diffuser for P2 = 250 kPa. 

Accordingly, the flow inside the venturi injector is a non-negligible factor. The flow did not 
completely mix in the throat because of its large velocity. Furthermore, the variation in the velocity 
gradient in the diffusion section made the suction flow spread rapidly in the working flow. Thus, the 
velocity and flow ratio can be considered to be the major factors that affect the mixing speed. 

Figure 10. Turbulent kinetic energy at different outlet pressures.

5.7. Development of the Volume Fraction of the Suction Flow

Figure 11 illustrates the development of the volume fraction of the suction flow in different
conditions. Accordingly, the curves present three distinct trends in different conditions along the
venturi injector. Initially, there were plenty of similarities in the curves for low outlet pressure.
The volume fractions showed a considerable increase in the diffuser, and their rate of increase decreased
in the outlet but reached a high point at 3.5%. Moreover, the curve exhibited the same trend in the
diffuser for outlet pressure equal to 200 kPa; however, the volume fraction tended to rise first but then
decrease in the outlet. Finally, Figure 11 shows that the volume fraction only grew after the diffuser for
P2 = 250 kPa.
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6. Conclusions 

This study obtained the following conclusions. Numerical simulation can precisely depict the 
hydraulic performance of a venturi injector. To ensure the reliability of numerical results, it is key to 
select a suitable calculation model based on the flow characteristics of the internal flow field. For 
cases with cavitation, the results calculated without considering the cavitation model presented a 
significant error when compared with the experimental results, where the maximum error exceeded 
50%. However, the largest deviation between the calculated results obtained from the cavitation 
model and the experiment results was just 3%. Thus, CFD methods with an appropriate 
computational model can be used to reliably estimate the hydraulic performance and the flow field 
of a venturi injector. This study offers information that could be used to perfect the numerical 
simulation method for venturi injectors. 

The internal flow field analysis revealed that cavitation is a key factor affecting the hydraulic 
performance of the venturi injector. The occurrence of cavitation makes the flow of the absorbed 
liquid remain steady at around 0.23 m3/h for different working pressures. In conclusion, cavitation 
might enhance the performance of a venturi injector in applications such as agricultural irrigation 
and engineering. In addition, the flow field inside the venturi injector could be adjusted according to 
the inlet condition. For fixed entrance conditions, the suction flow and the flow ratio increase as the 
pressure difference increases. However, the two flows do not mix well inside the throat because the 
flow ratio value is relatively small. When liquid enters the diffuser, the flow speed decreases. 
Meanwhile, the complex flow in the mixing chamber and the throat, as well as the flow area of the 
abrupt change, results in a drastic change in the velocity gradient, causing the reduction of the local 
pressure ratio. Hence, the main energy loss correlates with the region. 
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Figure 11. The volume fraction of suction flow at different outlet pressures.

Accordingly, the flow inside the venturi injector is a non-negligible factor. The flow did not
completely mix in the throat because of its large velocity. Furthermore, the variation in the velocity
gradient in the diffusion section made the suction flow spread rapidly in the working flow. Thus,
the velocity and flow ratio can be considered to be the major factors that affect the mixing speed.

6. Conclusions

This study obtained the following conclusions. Numerical simulation can precisely depict the
hydraulic performance of a venturi injector. To ensure the reliability of numerical results, it is key
to select a suitable calculation model based on the flow characteristics of the internal flow field.
For cases with cavitation, the results calculated without considering the cavitation model presented a
significant error when compared with the experimental results, where the maximum error exceeded
50%. However, the largest deviation between the calculated results obtained from the cavitation model
and the experiment results was just 3%. Thus, CFD methods with an appropriate computational
model can be used to reliably estimate the hydraulic performance and the flow field of a venturi
injector. This study offers information that could be used to perfect the numerical simulation method
for venturi injectors.

The internal flow field analysis revealed that cavitation is a key factor affecting the hydraulic
performance of the venturi injector. The occurrence of cavitation makes the flow of the absorbed
liquid remain steady at around 0.23 m3/h for different working pressures. In conclusion, cavitation
might enhance the performance of a venturi injector in applications such as agricultural irrigation
and engineering. In addition, the flow field inside the venturi injector could be adjusted according
to the inlet condition. For fixed entrance conditions, the suction flow and the flow ratio increase as
the pressure difference increases. However, the two flows do not mix well inside the throat because
the flow ratio value is relatively small. When liquid enters the diffuser, the flow speed decreases.
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Meanwhile, the complex flow in the mixing chamber and the throat, as well as the flow area of the
abrupt change, results in a drastic change in the velocity gradient, causing the reduction of the local
pressure ratio. Hence, the main energy loss correlates with the region.
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