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Abstract: This paper presents a simultaneous state variables and system and actuator fault
estimation, based on an unknown input interval observer design for a discrete-time parametric
uncertain Takagi–Sugeno system under actuator fault, with disturbances in the process and
measurement noise. The observer design is synthesized by considering unknown but bounded
process disturbances, output noise, as well as bounded parametric uncertainties. By taking into
account these considerations, the upper and lower bounds of the considered faults are estimated.
The gain of the unknown input interval observer is computed through a linear matrix inequalities
(LMIs) approach using the robust H∞ criteria in order to ensure attenuation of process disturbances
and output noise. The interval observer scheme is experimentally evaluated by estimating the upper
and lower bounds of a torque load perturbation, a friction parameter and a fault in the input voltage
of a permanent magnet DC motor.

Keywords: Takagi–Sugeno; fault estimation; unknown input; interval observer; permanent magnet
motor

1. Introduction

Typically, an observer is an scheme for state estimation through the system input and output
measurements. For instance, in [1] a nonlinear observer is applied to estimate the degree of
polymerization in a series of polycondensation reactors. However, an observer can be designed
for parameter estimation [2], unknown input estimation [3,4] or fault estimation [5,6] among other
important applications where it is important to precisely know the actual value of the states, signals or
parameters for multiple purposes.

Sometimes there are many technical difficulties in performing an exact estimation of the
state, signals or parameters to be estimated. For instance: (i) Model uncertainties, (ii) simplifying
assumptions of physical phenomena for modeling, and (iii) complexity reduction of models or the
unmeasured disturbances, represent an important source of mismatch between a real process and
a mathematical model. In these cases, an approximation of the estimated values can be performed.
These approximations can be very useful in many applications where there is not necessary to know
the exact value of a variable.
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An alternative to estimate unknown variables in processes with uncertain models, interval
observers can be used. These observers provide an interval estimation providing a lower and upper
bound of the unknown estimated variables. The actual value of the corresponding unmeasured
variable located inside the interval defined by these bounds assuming that the uncertainty bounds
are known.

Although it is not possible to estimate the exact value of a variable, the information provided
by an interval observer can be very useful for several applications. For instance, the authors in [7]
propose an interval observer to estimate the lower and upper bounds of vehicle dynamics regardless of
the presence of unknown inputs whose bounded interval is also estimated. The authors in [8] design
an interval sliding mode observer for sensor fault detection and applied it to an electrical traction
device. Another interesting application of interval observers is given in [9], where a trajectory control
based on an interval observer is designed for a quadrotor. The interval observer is synthesized by
using an uncertain model where all the uncertainties (parameters, disturbance, noise) are unknown
but bounded with known bounds.

The main limitation of recent works regarding interval observers is that in most cases, the interval
observer design considers linear systems, or a very particular structure of nonlinear systems which
sometimes are transformed into linear ones. For instance, the observer in [7] has been designed for
switched systems; therefore, its use is limited. In other cases of interval observer designs such as [9],
no faults are considered to be estimated or there is a lack of procedure to detect actuator faults [8].

The objective of this paper is to design an interval observer for a wider variety of nonlinear
processes by using the Takagi–Sugeno (T–S) approach. Most of the nonlinear models can be adequately
transformed into a T–S model (e.g., [10,11]) by using two different methods [12]:

• The nonlinear sector method, in this case the nonlinear model and its equivalent T–S model have
exactly the same behavior. For this reason, this is the method used in this work.

• The linearization method, in which the equivalent T–S model can be dynamically approximated
to the original nonlinear model with a certain accuracy, depending on the design requirements.

Besides, many advantageous opportunities arise when interval observers are designed for
processes modeled in T–S form: (i) Pole placement via linear matrix inequalities (LMI) regions is
considered to compute the observer gains, in contrast with many nonlinear approaches where the
observer gains are heuristically tuned; (ii) a standard methodological procedure can be used to
compute the observer gains; (iii) many approaches originally conceived for linear systems can be
easily extended to T–S systems. For these reasons, the design of interval observers for T–S systems is a
recent and interesting research topic. For example in [13], the authors propose an interval observer
for the state estimation of systems modeled in T–S form with parametric uncertainty, disturbances,
and measurement noise. However, the work is limited to estimate the unmeasured states. The authors
in [14] treat the problem of fault diagnosis of proton exchange membrane (PEM) fuel cells. However,
this paper deals with only the case of sensor faults by means of a bank of observers. In [15] a robust fault
detection procedure for vehicle lateral dynamics using a switched T–S interval observer is presented.
The proposed method is conceived to detect but not to estimate faults.

The main contribution of this paper consists in the design of an interval observer that performs
a simultaneous estimation of unmeasured states, actuator and system faults for processes modeled
in T–S form with uncertainties. The conditions for the existence of such observers are given. Such
conditions guarantee the observer stability and they are proved through a Lyapunov analysis combined
with a LMI formulation. The interval observer scheme is experimentally evaluated by estimating the
upper and lower bounds of a torque load perturbation, a friction parameter and a fault in the input
voltage of a permanent magnet direct-current (DC) motor. These cases are typical faults that, if not
detected in time, can become catastrophic failures such as short-circuits or machinery damages due to
damaged bearings.
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2. Problem Formulation and Preliminaries

Consider the following discrete-time T–S system:

x(k + 1) =
m

∑
i=1

ξi(ρ(k))[(Ai + ∆Ai)x(k) + Biu(k)] + E f f (k) + Gθ(k) + Eww(k),

y(k) = Cx(k) + Evv(k),

(1)

where x(k) ∈ Rnx , u(k) ∈ Rnu , f (k) ∈ Rn f , θ(k) ∈ Rnθ , w(k) ∈ Rnw and v(k) ∈ Rnv represent the state
variable, the input, the actuators fault vector, the unknown parameter, the disturbance and the output
noise vector. Ai, ∆Ai, Bi, G and C are matrices of appropriate dimensions. E f , Ew and Ev are matrices
of the coupling distribution. k denotes the k−th discrete time instant.

The term ξi(ρ(k)) represents the i-th membership function, which is a weighting of the rule
i, where i = 1, 2, . . . , m. The membership functions are normalized, i.e., they satisfy the following
conditions [12,16]: 

m

∑
i=1

ξi(ρ(k)) = 1

0 ≤ ξi(ρ(k)) ≤ 1, i = 1, 2, · · · , m.

(2)

To obtained a simultaneous estimation of parameters and faults, the system (1) is rewritten
as follows

x(k + 1) =
m

∑
i=1

ξi(ρ(k))(Ai + ∆Ai)x(k) + Biu(k) + E fE(k) + Eww(k)

y(k) = Cx(k) + Evv(k),

(3)

where the vector fE(k) is an augmented one, which is defined by the actuator fault vector f (k) and
the unknown parameter vector θ(k); and consequently, the matrix E contains the fault coupling
distribution matrix E f and the parameter matrix G, i.e.,:

E =
[

E f G
]

, fE(k) =

 f (k)

θ(k)

 .

The following considerations are taken into account for the T–S system of the Equation (3):

• The augmented fault vector fE(k) is defined as:

fE(k + 1) = fE(k) + w fE
(k), (4)

where w fE
(k) is considered as a variation of the actuator fault. Therefore, the estimation of fE(k)

is equivalent to the estimation of f̂ (k) and θ̂(k).
• The perturbation vector w(k) is considered unknown but bounded as follows:

w(k) ≤ w(k) ≤ w(k). (5)

• The noise vector v(k) is also considered as an unknown but bounded signal, i.e.,:

|v(k)| ≤ V(k). (6)

• The uncertain matrix ∆Ai is considered bounded as follows,

∆Ai ≤ ∆Ai ≤ ∆Ai . (7)
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• Based on previous assumptions, the estimates to be obtained will be as follows

x̂(k) ≤ x(k) ≤ x̂(k), (8)

f̂ E(k) ≤ fE(k) ≤ f̂
E
(k). (9)

This means that we would get two estimates, i.e., the upper and lower limit of each variable.
For that, we consider the following design based on a T–S interval observer.

3. Observer Design

In this section a similar procedure as that in [17] (where no parametric uncertainties nor noise
nor disturbances were considered) is presented for the observer design. For this design, first it is
considered the output vector at time instant (k + 1), i.e.,

y(k + 1) = Cx(k + 1) + Evv(k + 1). (10)

Substituting the state equation from system (3), it yields to:

y(k + 1) = C

(
m

∑
i=1

ξi(ρ(k))[(Ai + ∆Ai)x(k) + Biu(k)] + E f E(k) + Eww(k)

)
+ Evv(k + 1). (11)

Next, the following equation can be derived after the pertinent operations

CE f E(k) =y(k + 1)− C
m

∑
i=1

ξi(ρ(k))(Ai + ∆Ai)x(k)− C
m

∑
i=1

ξi(ρ(k))Biu(k)− CEww(k)− Evv(k + 1), (12)

where it is possible to obtain the fault vector f (k) as follows:

f (k) = O
(

y(k + 1)− C

[
m

∑
i=1

ξi(ρ(k))[(Ai + ∆Ai)x(k)− Biu(k)]− Eww(k)

]
− Evv(k + 1)

)
, (13)

such that O comes from the following condition, which furthermore must be satisfied for the observer
to exist [18]:

rank(CE f E) = rank(E f E) = nθ + n f . (14)

The decoupling is achieved by computing

O = (CE f E)
+, (15)

such that (CE f E)
+(CE f E) = In f is satisfied. Whereas the value of O is obtained as:

O =
[
(CE f E)

TCE f E

]−1
(CE f E)

T . (16)

Replacing fault vector Equation (13) in system Equation (3), the new T–S discrete-time system
is obtained:

x(k + 1) =
m

∑
i=1

ξi(ρ(k))[(Ai + ∆Ai)x(k) + Biu(k)] + Eww(k) + EOy(k + 1)− EOEvv(k + 1),

y(k) =Cx(k) + Evv(k)

(17)

with
Ai = (I − E fOC) Ai, ∆Ai = (I − E fOC) ∆Ai,
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Bi = (I − E fOC) Bi, Ew = (I − E fOC) Ew.

Now, based on (17), the unknown input T–S interval observer structure can be written as
follows [19]:

x̂(k + 1) =
m

∑
i=1

ξi(ρ(k))(I − EOC)[(Ai − LiC)x̂(k) + Biu(k) + ∆Aix(k)︸ ︷︷ ︸+Li y(k)− |Li|EvV(k) + Eww(k)

+ EO y(k + 1)− |Li|Ev V(k + 1)],

x̂(k + 1) =
m

∑
i=1

ξi(ρ(k))(I − EOC)[(Ai − LiC)x̂(k) + Biu(k) +
︷ ︸︸ ︷
∆Aix(k) +Li y(k) + |Li|EvV(k) + Eww(k)

+ EO y(k + 1) + |Li|Ev V(k + 1)],

f̂ (k) = O[y(k + 1)− C
m

∑
i=1

ξi(ρ(k))(Ai x̂(k) + Biu(k) + ∆Aix(k)︸ ︷︷ ︸)− CEww(k)− EvV(k + 1)− w f (k)],

f̂ (k) = O[y(k + 1)− C
m

∑
i=1

ξi(ρ(k))(Ai x̂(k) + Biu(k) + ∆Aix(k)︸ ︷︷ ︸)− CEww(k) + EvV(k + 1)− w f (k)],

(18)

with
∆Aix(k)︸ ︷︷ ︸ = A+

i x+ − A+
i x− − A−i x+ + A−i x−,

︷ ︸︸ ︷
∆Aix(k) = A+

i x+ − A+
i x− − A−i x+ + A−i x−,

where x̂(k) and x̂(k) ∈ Rn
x are the interval estimations of x(k), f̂ (k) and f̂ (k) ∈ Rs are the interval

estimations of fE(k). Li and Li are the observer gains used to compute the upper and lower bounds of
the estimated states, faults and parameters, respectively.

The unknown input interval observer can be designer considering (18) in a way that ensures the
simultaneous estimation of Equations (8) and (9). The following theorem is introduced to secure the
stability analysis and robustness in the presence of unknown entries.

Theorem 1. Consider the system given by (18) as an interval observer for system (17) for fault and parameter
estimation. The observer (18) is stable and robust against the effects of unknown inputs such as bounded
disturbances or noise if there exists a symmetric matrix P = PT > 0, a matrix Q > 0 and the scalars ε1 > 0,
γ > 0 and β > 0 such that:

QGi,j −WiΓ > 0, (19)

φi,i < 0, (20)

φi,j =


I − P + γη2 I 0 0 0 (QGi,j −WiΓ)T

0 γI − ε1P PHi PΦ 0
0 HiP −β2 I 0 HT

i QT + ΦTQT

0 ΦP 0 −β2 I QTΦ
(∗) (∗) (∗) (∗) P−Q−QT

 ,

2
m− 1

φi,i + φi,j + φj,i < 0, (21)

for i, j = 1, 2, · · · , m, 1 ≤ i 6= j ≤ m, i.e., for all subsystems. The observer gains are given by

Li = Q−1Wi, (22)

Li = Q−1Wi. (23)
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Proof. For the stability analysis the following estimation error equations are considered:

e(k) = x(k)− x̂(k), (24)

e(k) = x̂(k)− x(k). (25)

Substituting the state equation (17) and the estimate state equations (18), (24) and (25) it leads to:

e(k + 1) =
m

∑
i=1

ξi(ρ(k))[(Ai + ∆Ai) x(k) + Biu(k)] + Eww(k) + EOy(k + 1)− EOEvv(k + 1)

−
(

m

∑
i=1

ξi(ρ(k))(I − EOC)[(Ai − LiC)x̂(k) + Biu(k) + ∆Aix(k)︸ ︷︷ ︸+Li y(k)− |Li|EvV(k)

+ Eww(k) + EO y(k + 1)− |Li|Ev V(k + 1)]

)
,

(26)

ê(k + 1) =
m

∑
i=1

ξi(ρ(k))(I − EOC)[(Ai − LiC)x̂(k) + Biu(k) +
︷ ︸︸ ︷
∆Aix(k) +Li y(k) + |Li|EvV(k)

+ Eww(k) + EO y(k + 1) + |Li|Ev V(k + 1)]−
(

m

∑
i=1

ξi(ρ(k))(Ai + ∆Ai)x(k) + Biu(k)

+ Eww(k) + EOy(k + 1)− EOEvv(k + 1)

)
,

(27)

such that the resulting error equations are the following:

e(k + 1) =
m

∑
i=1

ξi(ρ(k)) [(Ai − LiC) e(k) + ∆Aix(k)− ∆Aix(k)︸ ︷︷ ︸+Ew(w(k)− w(k))

+ |Li|EvV(k)− LiEvv(k)− EOEvv(k + 1) + LiEvV(k + 1)],

(28)

e(k + 1) =
m

∑
i=1

ξi(ρ(k))[
(

Ai − LiC
)

e(k) +
︷ ︸︸ ︷
∆Aix(k)−∆Aix(k) + Ew(w(k)− w(k))

+ LiEvv(k) + |Li|EvV(k)− EOEvv(k + 1) + LiEvV(k + 1)].

(29)

By convenience, the estimation error given by equations (28) and (29) are rewritten as follows

ε(k + 1) =
m

∑
i=1

ξi(ρ(k))[Giε(k) + Θ∆A + Hiδ(k)] + Φδ(k + 1), (30)

ε(k) =

[
e(k)
e(k)

]
, Gi =

[
Ai − LiC 0

0 Ai − LiC

]
, Θ∆A =

∆Aix(k)− ∆Aix(k)︸ ︷︷ ︸
∆Aix(k)︸ ︷︷ ︸−∆Aix(k)

 ,

Hi =

[Ew −LiEv |Li|Ev

]
0

0
[

Ew LiEv |Li|Ev

] ,

Φ =

[0 −EOEv Ev

]
0

0
[
0 −EOEv Ev

] δ(k) =


w(k)− w(k)

v(k)
V(k)


w(k)− w(k)

v(k)
V(k)




T

.
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To show that the observer is stable and robust, the following Lyapunov quadratic function for
stability analysis is proposed:

V1(ε(k)) = ε(k)T Pε(k) > 0 with P = PT > 0, (31)

whose increment function corresponds to

∆V1(ε(k)) = V1(ε(k + 1))−V1(ε(k))←→ ∆V1(ε(k)) = ε(k + 1)T Pε(k + 1)− ε(k)T Pε(k), (32)

Thus, the the stability condition requires ∆V1(ε(k)) ≤ 0, i.e.,

∆V1(ε(k)) =
m

∑
i=1

m

∑
j=1

ξi(ρ(k)) ξ j(ρ(k))([Giε(k) + Θ∆A + Hiδ(k)] + Φδ(k + 1))T P,

([Giε(k) + Θ∆A + Hiδ(k)] + Φδ(k + 1))− ε(k)T Pε(k) ≤ 0.

(33)

If each function is substituted, Equation (33) can be expressed as:

m

∑
i=1

m

∑
j=1

ξi(ρ(k)) ξ j(ρ(k))ε(k)T(GT
i PGj − P)ε(k) + ΘT

∆APΘ∆A + δ(k)T HT
i PHjδ(k)

+ δ(k + 1)TΦT PΦδ(k + 1) + 2ε(k)T(GT
i,jPΘ∆A + GT

i,jPHjδ(k) + GT
i,jPΦδ(k + 1))

+ 2ΘT
∆A(PHjδ(k) + PΦδ(k + 1)) + 2δ(k)T(HT

i,jPΦδ(k + 1)) ≤ 0.

(34)

Furthermore, for the unknown input T–S interval observer design, the criterion H∞ for the robust
estimation problem of T–S system is considered to minimize the effects of noise and disturbance
signals:

lim
k→∞

ε(k) = 0 for δ(k) = 0 ∀k, (35)

‖ ε(k) ‖2< β ‖ δ(k) ‖2 for δ(k) 6= 0, ξ(0) = 0, (36)

where β =

[
ψ

α

]
correspond to a vector for minimizing the disturbance and noise. The criterion H∞

corresponds to the following function:

ε(k)Tε(k)− β2δ(k)Tδ(k)− β2δ(k + 1)Tδ(k + 1) ≤ 0, (37)

such that the increment of the Lyapunov function results in

V1(ε(k + 1))−V1(ε(k)) + ε(k)Tε(k)− β2δ(k)Tδ(k)− β2δ(k + 1)Tδ(k + 1) ≤ 0. (38)

In addition to considering the stability analysis and robustness, the next condition is considered
for the estimation speed ∆V(ε(k)) ≤ (ε1P− γ)∆Ai(k) for all trajectory, equivalent to

m

∑
i=1

m

∑
j=1

ξi(ρ(k)) ξ j(ρ(k))ε(k)T(GT
i PGj − P + I)ε(k) + ΘT

∆APΘ∆A + δ(k)T HT
i PHjδ(k)

+ δ(k + 1)TΦT PΦδ(k + 1) + 2ε(k)T(GT
i,jPΘ∆A + GT

i,jPHjδ(k) + GT
i,jPΦδ(k + 1))

+ 2ΘT
∆A(PHjδ(k) + PΦδ(k + 1)) + 2δ(k)T(HT

i,jPΦδ(k + 1))− β2δ(k)Tδ(k)

− β2δ(k + 1)Tδ(k + 1) + γΘT
∆AΘ∆A − ε1ΘT

∆APΘ∆A ≤ 0,

(39)

whereas in Equation (39) it can be seen that ΘT
∆APΘ∆A is a global Lipschitz function such that

f (x, x) = (A+
i − A+

i )x+ − A−i x+ + A−i x−, (40)
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f (x, x) = (A+
i − A+

i )x− − A−i x+ + A−i x−, (41)

| f (x, x)| ≤ ‖∆A+
i − ∆A+

i ‖2|x|+ (‖∆A−i ‖2 + ‖∆A−i ‖2)|x|, (42)

| f (x, x)| ≤ ‖∆A+
i − ∆A+

i ‖2|x|+ (‖∆A−i ‖2 + ‖∆A−i ‖2)|x|, (43)

and the resulting functions are given by

η = 2(‖∆A+
i − ∆A+

i ‖2|+ ‖∆A−i ‖2 + ‖∆A−i ‖2). (44)

Consequently, the resulting incremental Lyapunov function can be rewritten as follows

m

∑
i=1

m

∑
j=1

ξi(ρ(k)) ξ j(ρ(k))ε(k)T(GT
i PGj − P + I + γη2 I)ε(k) + δ(k)T HT

i PHjδ(k) + δ(k + 1)TΦT PΦδ(k + 1)

+ 2ε(k)T(GT
i,jPΘ∆A + GT

i,jPHjδ(k) + GT
i,jPΦδ(k + 1)) + 2ΘT

∆A(PHjδ(k) + PΦδ(k + 1)) + 2δ(k)T(HT
i,j

PΦδ(k + 1))− β2δ(k)Tδ(k) + γΘT
∆AΘ∆A − ε1ΘT

∆APΘ∆A − β2δ(k + 1)Tδ(k + 1) ≤ 0,

(45)

and can be expressed in the following form:
ε(k)
Θ∆A
δ(k)

δ(k + 1)


T 

GT
i PGj − P + η2 I + I GT

i,jP GT
i PHi GT

i PΦ
PGi,j γI − ε1P PHi PΦ

HiPGi HiP HT
i PHi − β2 I HT

i PΦ
ΦPGi ΦP ΦPHi ΦPΦ− β2 I




ε(k)
Θ∆A
δ(k)

δ(k + 1)

 ≤ 0 (46)

To relax the conservatism of (46), the following theorem is considered.

Theorem 2. There exists a symmetric matrix P > 0 such that [20]

AT PA− P < 0, (47)

and a matrix G such that the following inequality implies (47)[
−P ATGT

GA P− G− GT

]
< 0, (48)

Consequently, by applying this theorem, inequality (46) is equivalent to
I − P + η2 I 0 0 0 GT

i,jQ
T

0 γI − ε1P PHi PΦ 0
0 HT

i P −β2 I 0 HT
i QT + ΦTQT

0 ΦT P 0 −β2 I ΦTQT

QGi,j 0 QHi + QΦ QΦ P−Q−QT

 ≤ 0, (49)

such that denoting the inequality (49) as φi,j, it follows

m

∑
i=1

m

∑
j=1

ξi(ρ(k)) ξ j(ρ(k))


ε(k)
Θ∆A
δ(k)

δ(k + 1)


T

φi,j


ε(k)
Θ∆A
δ(k)

δ(k + 1)

 ≤ 0. (50)
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In the inequality, (50) a bilinearity between the GQ matrices appears as can be been in
[

Ai,j + ∆A+
i,j 0

0 Ai,j + ∆A+
i,j

]
︸ ︷︷ ︸

Gi,j

−
[

Li 0
0 L

] [
C 0
0 C

]
︸ ︷︷ ︸

Γ


Q︷ ︸︸ ︷[

Q 0
0 Q

]
≤ 0. (51)

To eliminate the bilinearity that there exists with Li, Li and Q matrices, it is possible to use the
following change of variables Wi = QLi and Wi = QLi. Consequently, the following linear inequality
is obtained

QGi,j −WiΓ < 0, (52)

where Wi correspond to Wi =

[
Wi 0
0 Wi

]
. Finally, the inequality (21) is the result of using [21], which

relaxes the double sum problem.

4. Simulation Results

4.1. Case Study

A DC motor will be used to illustrate the fault estimation proposed in this paper. The following
nonlinear mathematical model represents the dynamics of DC motor [22]:

i̇a(t) = −
Ra

L
ia(t)−

Ke

L
vm(t) +

1
L

u(t),

v̇m(t) =
KT
J1

ia(t)−
(

fr − fpvm(t)
J1

)
vm(t)−

T0(t)− T2(t)
J1

.
(53)

where ia(t) and vm(t) are the armature current and the rotational speed, u(t) is the input voltage,
T2(t) and T0(t) correspond to the load and non-load torque. Table 1 summarizes the model parameter
values.

Table 1. Parameters of a DC motor.

Parameter Value

L 850× 10−3 H
Ra 1.02 Ω
KT 0.1 N·m/A
fp 0.000000075 N/rpm2

fr 0.0000035 N/rpm
Ke 0.0134 V/rpm
J1 0.00668933 N·m·s

L correspond to the inductance, Ra is the armature resistance, KT is the torque-current coefficient, fp is
the friction coefficient (due to aerodynamics), Ke is the back-emf coefficient, fr is the friction coefficient
(due to the bearing lubrication condition) and J1 is the normalized inertial moment of the rotor.

The nonlinear model (53) can be transformed first into a continuous T–S representation (3)
considering the following assumptions:

Assumption 1. The torque T0 and T2 are considered to be unknown. Therefore, it is necessary to decouple
their effect.

Assumption 2. The rotational speed vm is a measurement and is considered as the scheduling parameter.
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Assumption 3. The armature current ia is the measured output.

Consequently, by considering that the rotational speed is scheduling variable ρ(k) = vm(k) =
x2(k) varying in the interval ρ(k) ∈ [ρ ρ], being ρ = 100 and ρ = 300] the minimal and maximal
rotational speeds. The results T–S representation (3) has the following matrices:

A1 =

−
Ra

L
−Ke

L
KT
J1

−
(

fr + fpρ

J1

)
 , A2 =

−
Ra

L
−Ke

L
KT
J1

−
(

fr + fpρ

J1

)
 , B =

 1
L
0

 ,

E =

 1
L

0 0

0 − 1
J1
− 1

J1

 , Ew =

 1
L
0

 , Ev = 0.98, C =

[
1 0
0 1

]
,

∆Ai = 0.01Ai; and fE =
[

f (k) T0(k) T2(k)
]T

.

The previous continuous-time T–S model can be expressed in discrete time with a sampling time
Ts = 1. The resulting matrices are

A1 =

[
0.2471 −0.0088
8.3671 0.9178

]
, A2 =

[
0.2480 −0.0086
8.1747 0.8820

]
, B =

[
0.6591
5.9246

]
, ∆A+

1 =

[
0.0024 −0.00008
0.0836 0.0091

]
,

∆A+
2 =

[
0.0024 −0.00008
0.0817 0.0088

]
, ∆A−1 =

[
−0.0024 −0.00008
−0.0836 −0.0091

]
, ∆A−2 =

[
−0.0024 0.00008
−0.0817 −0.0088

]
,

∆A−1 =

[
−0.0024 0
−0.0836 −0.0091

]
, ∆A−2 =

[
−0.0024 0
−0.0817 −0.0088

]
, ∆A+

1 =

[
0 0.8823
0 0

]
× 10−4,

∆A+
2 =

[
0 0.8620
0 0

]
× 10−4, ∆A−1 =

[
0 −0.8823
0 0

]
× 10−4, ∆A−2 =

[
0 −0.8620
0 0

]
× 10−4,

∆A+
1 =

[
0.0024 0
0.0836 0.0091

]
× 10−4, ∆A+

2 =

[
0.0024 0
0.0817 0.0088

]
× 10−4,

E =

[
0.0117 0 0

0 −1.4949 −1.4949

]
× 102, Ew =

[
1.1764

0

]
, Ev =

[
0.08
0.08

]
.

The solution of LMIs (19)–(21) of Theorem 1 (considering γ = 15, ε1 = 36.46, η = 0.337 and

β =

[
5.6214
4.1365

]
) lead to the following solution

P =

[
3.6658 0.8521
0.8521 6.1022

]
, Q =

[
43.6972 14.9802
14.9802 19.6044

]
,

L1 =

[
0.0099 −0.0111
−0.1453 0.2328

]
, L2 =

[
−0.0085 −0.0245
0.1847 0.3049

]
,

L1 =

[
−0.1301 −0.1171
−0.8238 −0.8665

]
× 10−13, L2 =

[
0.07489 0.2300
0.0382 0.2643

]
× 10−13,
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The initial conditions for the T–S unknown input interval observer are x̂(0) =
[
18 250

]T
, x̂(0) =[

5 150
]T

, f̂ (0) =
[
0.01 0.01 0.001

]
, f̂ (0) =

[
0.001 0.02 0

]
. Additionally, the system

disturbance system and output noise is considered to be bounded with the following bounds:
−0.98 ≤ w(k) ≤ 0.98 and |v(k)| ≤ 0.8.

4.2. Experimental Tests

Two scenarios are considered for the evaluation of the interval observer. The armature current
ia(t), measurable via an oscilloscope, and the rotational speed vm(t) of the motor, measurable via an
incremental encoder associated with an FPGA myRIO-1900 board of National Instruments is used for
implementing the proposed approach.

In the evaluation tests, the laboratory prototype shown in Figure 1 is used. This prototype consists
of a DC motor available at the TecNM/CENIDET in Mexico (1) coupled to a bearing train (2), and an
incremental encoder (3) through a band, whose mathematical model is presented in Equation (53).
The results show the good performance of the interval observer in the event of an actuator fault.

In the first evaluation test, the DC motor is powered with 14 V at time instant 390 s, an abrupt
fault, almost instantaneous, is introduced in the motor supply voltage via a programmable testing
power source. The fault in the motor input produces a decrease of 3.5 V.

Figure 1. Laboratory prototype.

Figure 2 shows the measurement of the armature current and the limits (upper and lower)
estimated by the interval observer. It can be seen in the figure that the current and limits slightly
change their value in the presence of the fault.

0 100 200 300 400 500 600 700 800

0

5

10

15

20

Figure 2. Measurement of armature current x1(k) and estimation of interval bounds.

Figure 3 shows that the motor speed signal and the limits (upper and lower), estimated by the
interval observer (18), present a fairly close dynamic behavior and the speed is always kept within the
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limits. When the fault disappears, the speed signal recovers its nominal value in approximately 120 s,
with the dynamics of the motor coupled to a bearing train.

0 100 200 300 400 500 600 700 800

0

200

400

600

800

1000

Figure 3. Measurement of rotational speed x2(k) and estimation of interval bounds.

Figure 4 shows the estimated limits for the input fault, which corresponds to a change in the
motor supply voltage. The limits are kept at a value of zero in the absence of failure and change their
value when the fault is present.

0 100 200 300 400 500 600 700
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-4

-2

0

2

4

Figure 4. Estimation of the bounds for the input voltage fault.

Figures 5 and 6 show the estimated values of parameters T0 and T2, of the parameter vector θ(k).
It can be observed that these parameters remain relatively constant (around 0 and 0.5, respectively)
and in the presence of the fault their values are modified. When the fault disappears, they converge
again to their initial values.
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Figure 5. Estimation of T0(k).
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Figure 6. Estimation of T2(k).

Figure 7 shows the dynamic behavior of the membership functions, which meet the conditions
described in Equation (33).

In the second evaluation test, the DC motor is powered with 15 V at time instant 420 s.
An intermittent fault occurs in the supply voltage to the DC motor, caused by interruptions in the
connection of the power supply.

100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1
,

2

Figure 7. Membership functions.

Figure 8 shows the dynamic behavior of the armature current signal. Figure 9 shows the variations
of the motor rotational speed signal. The current signal and the speed signal, both measurable, are
maintained within their respective estimated intervals, in the presence of a fault.

0 200 400 600 800 1000

-10

-5

0

5

10

15

20

Figure 8. Measurement of armature current x1(k) and estimation of interval bounds.
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Figure 9. Measurement of rotational speed x2(k) and estimation of interval bounds.

Figure 10 shows the evolution of the estimated bounds for the input fault, which corresponds to
change in the the voltage of the motor power supply. The limits are kept at a value centered around
zero in the absence of fault and change their value when the fault is present.
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Figure 10. Estimation of the limits of input voltage fault.

Figures 11 and 12 show the estimated values of parameters T0 and T2, of the parameter vector θ(k).
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Figure 11. Upper and lower bound estimations of T0(k).
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Figure 12. Upper and lower bound estimations of T2(k).

Figure 13 shows the dynamic behavior of the membership functions, which meet the conditions
described in Equation (2).
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Figure 13. Membership functions.

5. Conclusions

A discrete-time unknown-input interval observer is proposed for a system modeled in T–S
form with uncertainties. This observer allows the simultaneous estimation of unmeasured states,
actuator and system faults despite disturbances and measurement noise. The structure of the proposed
discrete-time T–S model has four additional terms: Three terms in the dynamic structure corresponding
to the fault, disturbance and parametric uncertainty, and an additive noise term in the output
(measurement noise). The conditions for the existence of the observer are formally given to guarantee
the observer stability. Such conditions are derived through a Lyapunov analysis combined with a LMI
formulation. The proposed discrete-time interval observer approach is experimentally evaluated by
estimating the upper and lower bounds of a torque load perturbation, a friction parameter and a fault
in the input voltage, in a permanent magnet DC motor.

The main advantage of the proposed T–S interval observer with respect to Kalman or
Luenberger-like observers is that a great amount of nonlinear models can be transformed into the
Takagi–Sugeno form, with a consequent benefit of preserving the model dynamics. This feature
allows us to use this observer for a great number of nonlinear systems, in contrast with Kalman or
Luenberger-like observes which requires linear or linearized systems to be implemented.
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