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Abstract: This paper investigates the vibration control, stability, and energy transfer of the offshore
wind turbine tower system with control force and nonlinearity terms. A nonlinear proportional
derivative (NPD) controller was connected to the system to reduce a high oscillation amplitude and
to transfer the energy in the wind turbine system. Furthermore, the averaging method and Poincaré
maps were used with respect to the controlled system to study the stability and bifurcation analysis
in the worst resonance cases. The curves of force response and frequency response were plotted
before and after the control unit was added to the wind turbine system. In addition, we discuss
the performances of the control parameters on the vibration magnitudes. Numerical simulations
were carried out with Maple and Matlab algorithms to confirm the analytical results. The results
show the effectiveness of the NPD controller in suppressing the nonlinear oscillations of the wind
turbine system.
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1. Introduction

In recent decades, renewable energy has been constantly increasing on a worldwide scale.
The production of wind energy is considered one of the most cost-effective projects [1,2].
Vibration isolation and the effect of earthquake forces on behavior have been investigated for the
structures of wind turbines. Moreover, the effect of parameters on the response of the turbine structure,
including the blades, has been studied, and the responses were simulated using the finite element
method [3]. The approach of active fault-tolerant control with “added value” as a fault tolerant system
was applied to enhance the sustainability of a wind turbine in an offshore environment [4]. The technique
of passive control with tuned mass dampers was used to mitigate the oscillations of spars and offshore
wind turbine nacelles [5]. The active control influences on a floating wind turbine were examined
and studied [6]. Mathematical analysis, uniqueness, existence, and simulations of the multi-time
scale for wind turbines dynamics under control limits were studied [7]. Active tuned mass dampers
were proposed to improve the accuracy of wind turbine towers [8]. Numerical simulations were
performed to evaluate the dynamics of an offshore wind turbine tower with two different approaches [9].
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The dynamic behavior was investigated for the inclined cable resonance under harmonic excitation [10].
The passive control approach was performed to study system behavior under multiple types of
excitation forces [11–13]. The stability, bifurcation analyses using the averaging method, the Poincaré
maps of a Cartesian manipulator system, and the energy transfer of a micro-electromechanical (MEMS)
gyroscope system were studied [14,15]. A PD control unit was proposed at primary resonance to
suppress the system vibrations of a horizontally supported Jeffcott-rotor. In addition, the effects of the
time-delays and control gains on the system response were studied. It was reported that the optimal
feedback controls are the positive-position and negative-velocity. [16,17]. Analysis details of some
dynamical systems with different forces have been found [18,19]. In the present work, the nonlinear
proportional derivative (NPD) controller was connected to the system to reduce a high oscillation
amplitude and to transfer the energy in the wind turbine system. The averaging method and Poincaré
maps were used with respect to the controlled system to study the stability and bifurcation analysis in
the worst resonance cases. Additionally, the curves of force response and frequency response were
plotted before and after the control unit was added to the wind turbine system

2. System Modeling

The offshore wind turbine tower system consists of a hub, tower, blade, and concentrated mass.
A model of the offshore wind turbine tower is presented in Figure 1a. The height of the hub is
65 m with a diameter of 6 m, the blade length is 24 m, and the tower carries the weight of the hub,
the nacelle, and the rotor blades, which is 83,000 kg. The structural modal subjected to parametric
(base excitation) force F1 (force multiplied by displacement) and some external forces such as wind
force Faero, wave force FH, and earthquake force Feqk as shown in Figure 1b.

The equation of the motion of the single degree of freedom system was obtained from [9] and is
described by the following equations:

m
..
z(t) + εc

.
z(t) + kz(t) + εF(t) = εG(t) (1a)

where z(t) is the coordinate vector,
.
z(t) is the velocity,

..
z(t) is the acceleration, G(t) is the signal

controller, F(t) is the total force, m is the mass, and c and k are the coefficients of damping and
stiffness, respectively.

Let


z = u1

.
z =

.
u1 = u2

..
z =

..
u1 =

.
u2

. (1b)

Equation (1a) is written in the matrix form as( .
u1
.
u2

)
=

(
0 1

−ω2
− εα2u2

2 + ε f1cos Ω1t −εµ− εα1u2
1

)(
u1

u2

)
+

(
0

−εαcos πt− ε fa sin Ωt + ε fH cos Ωt|cos Ωt|

) (1c)

where µ = c
m , ω2 = k

m , F(t) = 1
m

(
Feqk + Faero sin Ωt− εFH cos Ωt |cos Ωt| − F1

)
, and G(t) =(

−α1u2 .
u− α2u

.
u2).

The initial conditions of Equation (1) are as follows: u(0) = 0.01,
.
u(0) = 0.01, µ is the linear

damping coefficient, ε is the small perturbation, fa and fH are the wind and wave excitation forces,
Feqk = α cosπt is the earthquake force, F1 = f1u cos Ω1t is the parametric force, ω is the natural

frequency, Ω and Ω1 are the excitation frequencies, and
(
−α1u2 .

u− α2u
.
u2) refers to the nonlinear

proportional-derivative (NPD) controller.



Processes 2020, 8, 22 3 of 15
Processes 2019, 7, x FOR PEER REVIEW 3 of 15 

 

 

(a) 

 
(b) 

Figure 1. (a) The offshore wind turbine model. (b) The forces acting on the wind tower. 
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Figure 1. (a) The offshore wind turbine model. (b) The forces acting on the wind tower.

2.1. The Averaging Method

The averaging method [20,21] is applied for Equation (1) to obtain the frequency response
equations. When ε = 0, Equation (1c) can be written as

..
u1 +ω2u1 = 0. (2a)

The solution of Equation (2a) is expressed as

u1 = a cos(ω t + ϕ) (2b)



Processes 2020, 8, 22 4 of 15

where a and ϕ are the free integration constants, and ω is also constant. It follows from Equation (2b) that

.
u1 = u2 = −ω a sin(ωt + ϕ) (3)

where, if ε , 0 is small enough, a and ϕ are functions in time t for Equation (1c).
Therefore, Equation (2b) is differentiated with time t yields:

.
u1 = u2 =

.
a cos (ω t + ϕ) −ωa sin (ω t + ϕ) − a

.
ϕ sin (ω t + ϕ). (4)

Comparing Equation (3) and Equation (4), we conclude that

.
a cos (ω t + ϕ) − a

.
ϕ sin (ω t + ϕ) = 0. (5)

Differentiating Equation (3) once with respect to t, we have

..
u1 =

.
u2 = −ω

.
a sin (ω t + ϕ) −ω2a cos (ω t + ϕ) −ωa

.
ϕ cos (ω t + ϕ). (6)

Inserting u1,
.
u1, and

..
u1 from Equations (2)–(6) into Equation (1c), we obtain

−
.
aω sin(ω t + ϕ) − a

.
ϕω cos(ω t + ϕ) − εµωasin(ω t + ϕ) + ε fa sin(Ω t)

+εα cos(π t) − ε fH cos2(Ω t) − ε f1a
2 (cos((Ω +ω)t + ϕ) + cos((Ω −ω)t−ϕ))

−
εα1ωa3

4 (sin (ωt + ϕ) + sin (3ωt + 3ϕ)) − εα2ω
2a3

2 (cos (ωt + ϕ) − cos (3ωt + 3ϕ)) = 0.

(7)

Substituting Equation (5) in Equation (7) and solving it for ϕ and a yields

.
a = −

εµa
2 (1− cos(2ω t + 2ϕ)) − ε f1a

4ω
{
sin[(Ω1 + 2ω)t + 2ϕ] − sin[(Ω1 − 2ω )t− 2ϕ]

}
−
εα1a3

8 (1− cos(4ω t + 4ϕ)) − ε fa
2ω

{
cos[(Ω +ω)t + ϕ] − cos[(Ω −ω )t−ϕ]

}
+ εα

2ω
{
sin[(π+ω)t + ϕ] − sin[(π−ω )t−ϕ]

}
−
εα2ωa3

8
{
sin(4ωt + 4ϕ) − 2 sin(2ωt + 2ϕ)

}
−
ε fH
4ω

{
sin[(2Ω +ω)t + ϕ] − sin[(2Ω −ω)t−ϕ] + 2 sin(ωt + ϕ)

} (8)

a
.
ϕ1 = −

εµa
2 sin(2ω t + 2ϕ)

−
ε f1a
4ω

{
cos[(Ω1 + 2ω)t + 2ϕ] + cos[(Ω1 − 2ω )t− 2ϕ] + 2 cos(Ω1t)

}
−
εα1a3

8
{
sin(4ωt + 4ϕ) + 2 sin(2ωt + 2ϕ)

}
+
ε fa
2ω

{
sin[(Ω +ω)t + ϕ] + sin[(Ω −ω )t−ϕ]

}
+ εα

2ω
{
cos[(π+ω)t + ϕ] + cos[(π−ω )t−ϕ]

}
+ εα2ωa3

8 (1− cos(4ω t + 4ϕ))

−
ε fH
4ω

{
cos[(2Ω +ω)t + ϕ] + cos[(2Ω −ω)t−ϕ] + 2 cos(ωt + ϕ)

}
.

(9)

2.2. Periodic Solutions

To find the approximate solutions of Equations (8) and (9) using the perturbation technique,
we introduce detuning parameters σ1 and σ2 to convert the small divisor terms into secular terms at
the worst resonance cases Ω � ω and Ω1 � 2ω. Moreover, to describe the nearness of the resonances
(primary and sub-harmonic), two detuning parameters σ1 and σ2 were introduced and defined
by (Ω � ω+ εσ1 and Ω1 � 2ω+ εσ2) and the slowly varying parts and constant terms are only in
Equations (8)–(9), so we have

.
a = −

µ

2
a−

α1

8
a3 +

fa
2ω

cos θ1 +
f1

4ω
a sin 2θ1 (10)

.
θ1 = σ1 −

α2 ω
8

a2
−

fa
2aω

sin θ1 +
f1

4ω
cos 2θ1 (11)

where θ1 = σ1T1 −ϕ, θ2 = σ2T1 − 2ϕ, and θ2 = 2θ1.
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2.3. Equilibrium Solutions and Stability Analyses

The steady-state solution occur where
.
a =

.
θ1 = 0, and the solutions at steady state can then be

obtained as follows:
µ

2
a +

α1

8
a3 =

fa
2ω

cos θ1 +
f1

4ω
a sin 2θ1 (12)

aσ1 −
α2 ω

8
a3 =

fa
2ω

sin θ1 −
f1

4ω
a cos 2θ1. (13)

By squaring both sides of Equations (12) and (13) and adding the results, we obtained the frequency
response equation in the form:

σ2
1 −

(
ωa2α2

4

)
σ1 +

µ2

4
+
α1µa2

8
+
α2

1a4

64
+
α2

2ω
2a4

64
−

fa2

4a2ω2 −
f12

16ω2

 = 0. (14)

To examine the stability of the nonlinear solutions, we take

a = a10 + a11(T1) and θ1 = θ10 + θ11(T1) (15)

where a10 and θ10 as well as a11 and θ11 correspond to the nonlinear solution and perturbation terms
respectively, where a11 and θ11 are small compared to a10 and θ10. Using Equation (15) in Equations (10)
and (11) and using cos θ11 = 1 and sin θ11 = θ11,

.
a =

−µ2 − 3α1a2
10

8
+

f1
2ω

sin θ10 cos θ10

 a11 +

(
f1a10

2ω
cos 2θ10 −

fa
2ω

sin θ10

)
θ11 (16)

.
θ1 =

 fa
2ωa2

10

sin θ10 −
ωα2a10

4

 a11 −

(
f1
ω

sin θ10 cos θ10 +
fa

2ωa10
cos θ10

)
θ11. (17)

Equations (16) and (17) can be expressed in a matrix form as follows: .
a
.
θ1

 = [
Γ11 Γ12

Γ21 Γ22

][
a11

θ11

]
(18)

where Γ11 = −
µ
2 −

3α1a2
10

8 +
f1
2ωsin θ10 cos θ10, Γ12 =

f1a10
2ω cos 2θ10 −

fa
2ωsin θ10.

Γ21 =
fa

2ωa2
10

sin θ10 −
ωα2a10

4
, Γ22 = −

f1
ω

sin θ10 cos θ10 +
fa

2ωa10
cos θ10.

Thus, the stability of the steady-state solutions depends on the Jacobian matrix eigenvalues of
Equation (18), so the characteristic equation is obtained as

λ2 + ς1λ+ ς2 = 0 (19)

where the eigenvalues of the Jacobian matrix is denoted by λ, and ς1 = −(Γ11 + Γ22) and
ς2 = (Γ11Γ22 − Γ12Γ21) are the coefficients of Equation (19). Using the criterion of Routh–Hurwitz,

the necessary and sufficient conditions for the system are stable such that the real parts of all roots of
Equation (19) are negative.

3. Analytical and Numerical Results

In this section, Equation (1) is integrated numerically with the fourth-order Rung–Kutta method.
The effects of some different parameters on the behavior of the controlled system are also studied.
Moreover, the transfer of energy between uncontrolled and controlled modes is examined. The curves of
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force response and frequency response are plotted before and after the control unit is added to the wind
turbine system. The bifurcation analyses of the controlled system are conducted using Poincaré maps.

3.1. System Behavior and Energy Transfer in the Wind Turbine Tower System

The system behavior is studied numerically at the adopted parameter values of the controlled
system: µ = 0.04, α = 9.73, Ω = ω = 2.01, Ω1 = 2 ω, fa = 67.17, fH = 5.129, f1 = 0.002, α1 =

28, and α2 = 0.5. The energy is transferred from the system before control to the system after
adding the NPD controller at different values of resonance cases Ω � ω and Ω1 � 2ω, as well as
Ω � 3ω/2 and Ω1 � 2ω as shown in Figures 2 and 3, respectively. The output steady amplitude is
suppressed from about 18 to about 1.5, and the control unit has an effectiveness Ea equal to about 12,
as shown in Figure 2. Moreover, the steady amplitude has been suppressed from about 60 to about
1.25 and has an effectiveness Ea equal to about 48, as shown in Figure 3.
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3.2. Frequency Response Curves of the Controlled System

In this section, we studied the different parameter effect and stability zone of the controlled system
using frequency response curves. In Figure 4a, the detuning parameter σ1 effects on the behavior of the
system before and after control are shown. The controlled system behavior is a monotonic increasing
function in the wind amplitude force fa, as shown in Figure 4b. However, Figure 4c shows that the
behavior of the controlled system is a monotonic decreasing function in the nonlinear control parameter
α1, and the curve of the controlled system is bent to the right and the left, producing soft, hard spring,
jump phenomena and multiple solutions with positive and negative values of the nonlinear control
parameter α2, respectively, as shown in Figure 4d.

Processes 2019, 7, x FOR PEER REVIEW 7 of 15 

 

 
Figure 3. The energy transfer between uncontrolled and controlled system at Ω ≅ 3𝜔/2   and  Ω ≅2𝜔. (a) Time history. (b) Phase plane. 

3.2. Frequency Response Curves of the Controlled System 

In this section, we studied the different parameter effect and stability zone of the controlled 
system using frequency response curves. In Figure 4a, the detuning parameter 𝜎  effects on the 
behavior of the system before and after control are shown. The controlled system behavior is a 
monotonic increasing function in the wind amplitude force 𝑓 , as shown in Figure 4b. However, 
Figure 4c shows that the behavior of the controlled system is a monotonic decreasing function in 
the nonlinear control parameter 𝛼 , and the curve of the controlled system is bent to the right and 
the left, producing soft, hard spring, jump phenomena and multiple solutions with positive and 
negative values of the nonlinear control parameter 𝛼 , respectively, as shown in Figure 4d. 

 
(a) 

 
(b) 

-100 -50 0 50 100
-400

-200

0

200

400

Amplitude u1 (µm)

du
1/d

t (
m

/s
)

b

Figure 4. Cont.



Processes 2020, 8, 22 8 of 15Processes 2019, 7, x FOR PEER REVIEW 8 of 15 

 

 
(c) 

.  
(d) 

Figure 4. (a) The curves of frequency response for the controlled system without and with NPD 
control. (b) The curves of frequency response for the controlled system at some of the wind force 𝑓 . 
(c) The curves of frequency response for the controlled system at some values of the gain 𝛼 . (d) The 
curves of frequency response for the controlled system at some values of the gain 𝛼 . 

3.3. Effect of Some Different Parameters on the Controlled System 

In this section, we studied the effect of some different parameters on the behavior of the 
controlled system at 𝜎 = 0. Figure 5a–c show that the behavior of the controlled system is a 
monotonic decreasing function in the control parameters 𝛼    and  𝛼  and the damping coefficient 𝜇. 
Based on these figures, we can use these parameters for suppressing the oscillations of the wind 
turbine system. The behavior of the controlled system is a monotonic increasing function in the 
parametric excitation force 𝑓 , as shown in Figure 5d. 

Figure 4. (a) The curves of frequency response for the controlled system without and with NPD control.
(b) The curves of frequency response for the controlled system at some of the wind force fa. (c) The
curves of frequency response for the controlled system at some values of the gain α1. (d) The curves of
frequency response for the controlled system at some values of the gain α2.

3.3. Effect of Some Different Parameters on the Controlled System

In this section, we studied the effect of some different parameters on the behavior of the controlled
system at σ1 = 0. Figure 5a–c show that the behavior of the controlled system is a monotonic decreasing
function in the control parameters α1 and α2 and the damping coefficient µ. Based on these figures,
we can use these parameters for suppressing the oscillations of the wind turbine system. The behavior
of the controlled system is a monotonic increasing function in the parametric excitation force f1,
as shown in Figure 5d.
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3.4. The Curves of Force Response for the Controlled System

Figure 6a–d shows the curves of force response for the controlled system at values of detuning
parameter σ1 before and after adding a control unit. These figures show that, for large values of fa,
the system amplitude before control has a nonlinear relation with the wind turbine force, and the
system has large amplitudes for a slight change in the wind turbine force. In addition, after adding a
control unit, the relation becomes linear with a small slope, and the system amplitudes become less
than those before control.
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Figure 6. (a) The curve of force response for the system before and after control at σ1 = 0. (b) The curve
of force response for the system before and after control at σ1 = 2. (c) The curve of force response for
the system before and after control at σ1 = 5. (d) The curve of force response for the system before and
after control at σ1 = −5.

3.5. The Poincaré Maps

In this section, the stability is investigated, and bifurcation diagrams are plotted using the Poincaré
maps. The complicated response in the phase space is transferred to a discrete map in the lower
dimensional space using these maps. Figures 7–9 show the wind turbine response at the simultaneous
primary and sub-harmonic resonance case Ω � ω and Ω1 � 2ωwith different values of gain parameters
α1 and α2 with the response and Poincaré map, respectively. Figure 7a,b shows that the system starts
with a chaotic response and becomes stable, and the periodic motion appears on Poincaré maps at
α1 = 0 and α2 = 0. Moreover, the system has a steady-state solution at α1 = 28 and α2 = 0.5, as shown
in Figure 8a,b. Figure 9a,b shows that the system has a quasi-periodic motion and the solution is
unstable at α1 = 0 and α2 = 0.5.
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Figure 7. (a) Time responses (b) Poincaré map of the controlled system at Ω � ω, Ω1 � 2ω, α1 =

0, α2 = 0, and σ1 = 0.25.
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Figure 8. (a) Time responses. (b) Poincaré map of the controlled system at Ω � ω, Ω1 � 2ω, α1 =

28, α2 = 0.5, and σ1 = 0.25.
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Figure 9. (a) Time responses. (b) Poincaré map of the controlled system at Ω � ω, Ω1 � 2ω, α1 =

0, α2 = 0.5, and σ1 = 0.25.

3.6. Comparison with Published Work

In comparison with previous researches, Dagli et al. [9] performed the effect of environmental
forces and seismic loads on the offshore wind tower behavior with a two-way (fluid–structure
interaction) technique. They performed dynamic vibration analysis using Rayleigh’s energy. In addition,
the single degree of freedom (SDOF) equation of motion is solved numerically using the fourth-order
Runge–Kutta method.

Within this work, the authors studied the nonlinear dynamics behavior and vibration suppression
of the offshore wind turbine system with multiple external and parametric excitation forces using an
NPD controller. In addition, the authors investigated the energy transfer between uncontrolled and
controlled system. The method of averaging is applied to analyze the response and stability of the
solutions in the worst resonance cases. In the numerical results, the amplitudes have been suppressed
from about 18 and 60 to about 1.5 and 1.25, respectively, and the controlled system has an effectiveness
Ea = 12 and Ea = 48. Moreover, jump down phenomena and multi-valued solutions appeared.
Finally, the system before control becomes stable, and periodic motion appears on Poincaré maps.

4. Conclusions

The oscillations of the offshore wind turbine system were investigated with multiple external,
parametric excitations with a nonlinear PD controller. The stability analysis and numerical integration
were studied to determine system behavior. The effect of different parameters and force–response curves
of the system were investigated before and after adding a control unit. The stability and bifurcation
diagrams were studied using the Poincaré maps. From this study, we conclude the following:
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1. The amplitudes were suppressed from about 18 and 60 to about 1.5 and 1.25 at resonance cases
Ω � ω and Ω1 � 2ω as well as Ω � 3ω/2 and Ω1 � 2ω, respectively.

2. The controlled system has an effectiveness Ea = 12 and Ea = 48 for the wind turbine system.
3. The energy was transferred from the system before control to the system after adding the NPD

controller at different values of natural, external excitation, and parametric excitation frequencies
ω, Ω, and Ω1.

4. The behavior of the controlled system is a monotonic increasing function of the wind amplitude
force fa and the parametric excitation force f1, and is a monotonic decreasing function of the
damping coefficient µ and control parameters α1 and α2.

5. The controlled system has a jump phenomenon with multiple solutions for positive and negative
values of the nonlinear control parameter α2.

6. The system amplitude before control has a nonlinear relation and a slightly increasing amplitude
for large values of fa, but it has a linear relation with small slope amplitudes after adding
a controller.

7. The system before control becomes stable, and periodic motion appears on Poincaré maps.
The system also has a steady-state solution after control.

8. The controlled system shows quasi-periodic motion and an unstable solution at α1 = 0 and α2 = 0.5.
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Nomenclature

..
u,

.
u, u

acceleration, velocity, and displacement of the wind turbine
system.

µ damping parameter of the controlled system.
f1, fa, and fH parametric, wind, and wave forces.
ω, Ω, and Ω1 natural and excitation frequencies of the wind turbine system.
α1 and α2 coefficients of the nonlinear PD controller
ε small perturbation parameter (0 < ε << 1)
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