
Attack Graph Implementation and Visualization for Cyber Physical Systems

Authors:

Mariam Ibrahim, Qays Al-Hindawi, Ruba Elhafiz, Ahmad Alsheikh, Omar Alquq

Date Submitted: 2020-02-02

Keywords: vehicular networks, industrial control system, attack graph, cyber physical system security

Abstract:

Cyber-attacks threaten the safety of cyber physical systems (CPSs) as a result of the existence of weaknesses in the multiple
structural units constituting them. In this paper, three cyber physical systems case studies of a pressurized water nuclear power plant
(NPP), an industrial control system (ICS), and a vehicular network system (VNS) are examined, formally presented, and implemented
utilizing Architecture Analysis and Design Language, determining system design, links, weaknesses, resources, potential attack
instances, and their pre-and post-conditions. Then, the developed plant models are checked with a security property using JKind
model checker embedded software. The attack graphs causing plants disruptions for the three applications are graphically visualized
using a new graphical user interface (GUI) windows application.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2020.0130
Citation (this specific file, latest version): LAPSE:2020.0130-1
Citation (this specific file, this version): LAPSE:2020.0130-1v1

DOI of Published Version: https://doi.org/10.3390/pr8010012

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)

processes

Article

Attack Graph Implementation and Visualization for
Cyber Physical Systems †

Mariam Ibrahim 1,* , Qays Al-Hindawi 1,2 , Ruba Elhafiz 1, Ahmad Alsheikh 1,3 and
Omar Alquq 1

1 Department of Mechatronics Eng., German Jordanian University, Amman 11180, Jordan;
qays.al-hindawi@uni-wuppertal.de (Q.A.-H.); r.elhafiz@gju.edu.jo (R.E.); a.alsheikh@gju.edu.jo (A.A.);
o.alquq@gju.edu.jo (O.A.)

2 School of Electrical, Information and Media Eng., University of Wuppertal, 42119 Wuppertal, Germany
3 Department of Mechanical Eng., and Mechatronics, Deggendorf Institute of Technology,

94469 Deggendorf, Germany
* Correspondence: Mariam.wajdi@gju.edu.jo
† This paper is an extended version of paper published in the international conference: 2018 10th International

Conference on Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania, 28–30 June 2018.

Received: 14 November 2019; Accepted: 17 December 2019; Published: 20 December 2019 ����������
�������

Abstract: Cyber-attacks threaten the safety of cyber physical systems (CPSs) as a result of the existence
of weaknesses in the multiple structural units constituting them. In this paper, three cyber physical
systems case studies of a pressurized water nuclear power plant (NPP), an industrial control system
(ICS), and a vehicular network system (VNS) are examined, formally presented, and implemented
utilizing Architecture Analysis and Design Language, determining system design, links, weaknesses,
resources, potential attack instances, and their pre-and post-conditions. Then, the developed plant
models are checked with a security property using JKind model checker embedded software.
The attack graphs causing plants disruptions for the three applications are graphically visualized
using a new graphical user interface (GUI) windows application.

Keywords: cyber physical system security; attack graph; industrial control system; vehicular networks

1. Introduction

Modeling cyber-attack is an important issue for securing cyber physical systems (CPSs).
The pervasive smart environment in Internet of Things (IoTs) has the potential to monitor various
human activities by using smart devices. For instance, [1] presented an approach for detecting sleep
attacks due to immune system attacks, thus affecting daily activities measured using the S-band
sensing method. The integration of wireless body area networks (WBANs) with recent cloud and
sensor technologies offers significant improvement in the efficiency and the functionality of medical
and health care systems [2]. This integration can preserve the cost of medical services and allow a
wide distribution of medical knowledge to nonmedical personnel [3]. However, deploying IoT devices
in organizations can greatly affect their security, consequently bringing down or disrupting their
business operations.

A brief overview is presented by [4] on state-of-the-art research trends in the area of IoT operating
system (OS) management: opportunities, challenges, and solutions. This includes IoT energy efficiency,
real time capabilities, network connectivity, security and safety, small memory footprint, heterogeneous
devices support, intelligent IoT, and IoT and big data.

Attack graphs are conceptual diagrams used to analyze how a target can be attacked. The main
advantage of an attack graph is that it helps to identify any possible attacks on the system [5], hence

Processes 2020, 8, 12; doi:10.3390/pr8010012 www.mdpi.com/journal/processes

Processes 2020, 8, 12 2 of 22

aiding designers in implementing prevention strategies through making risk analysis [6]. The novelty
of this work lies in presenting a model-based technique for implementing attack graphs for three cyber
physical systems (CPSs): a nuclear power plant (NPP) control system, an industrial control system
(ICS), and a vehicular network system (VNS). This demands a general specification of systems models
and the security properties being studied. The models and their security properties are encoded
using Architecture Analysis and Design Language (AADL) [7] and verified using JKind model checker
embedded software [8]. The generated graphs are visualized using a new graphical user interface
(GUI) windows application implemented with C# language in Microsoft Visual Studio (VS) [9].

This paper extends the conference version [10] significantly by introducing a newly developed
visualizer Windows application that creates a GUI that is encoded using C# within Microsoft VS.
The JKind model checker generates significantly large spreadsheet attack scenarios. Therefore, the
visualizer Windows application manages the number of rows of the produced attack scenarios and
represents them in an appealing, user friendly, graphical way. Simulation results are shown for the
NPP system, the ICS, and the VNS.

The contribution of this work is twofold. First, system models are formalized for three CPS
case studies. The formal descriptions capture the architectural specifications of the systems—their
elements and their connectivity. In addition to that, the descriptions capture systems behaviors—their
dynamic state variables, pre and post conditions of the attacks instances, and the security properties.
The models are encoded using AADL, translated to Lustre using Assume Guarantee Reasoning
Environment (AGREE), and finally checked using JKind. The generated attack scenarios are fed to
a newly developed visualizer Windows application that can graphically illustrate a specific attack
sequence of interest, its spread sheet, and the complete attack graph. The remainder of this paper
is assembled as follows. Section 1.1 revises the related work. Section 2 describes the NPP system.
Section 3 presents attack graph implementation and visualization against the NPP. Section 4 represents
the implementation of cyber-attack scenarios against the ICS. Section 5 represents the implementation
of cyber-attack scenarios against the VNS. Section 6 summarizes and presents some future directions.

1.1. Related Work

Various papers have been explored in the literature on attack graph modeling and analysis for CPS.
For instance, [11] proposes a method on security standards representation in the shape of a graph.
The method also introduces minimum-security baseline extraction with currently implemented controls
by means of a vertex cover algorithm.

A reachability hyper-graph partitioning is performed by [12] to direct the distributed search to
implement an attack graph for a network. The tasks allocated to each agent are defined by conducting
partitioning to the reachability hyper-graph. Each distributed agent must apply attacker privilege
identification tasks for a number of closely connected networked software applications.

A probabilistic threat modeling approach, pwnPr3d, is proposed by [13] for automatic attack graph
generation based on network modeling. PwnPr3d automatically generates probability distributions
over the time to compromise (TTC) for each asset in the system. In [14], a taxonomy of the implemented
algorithms and models related with a reachability study, attack graph modeling, and core building
phases of attack graph is developed. The proposed taxonomy takes into consideration the utilization
of attack graphs for network security.

An adapted attack graph (AAG) is compared by [15] with the fault tree approach to identify which
of the two methods is more effective at helping cyber-attack insight. While the two methods have some
conceptual commonalities, they have different symbol constructions and data flow. The paper found
that the AAG approach is more efficient than the fault tree approach at aiding cyber-attack perception.

An attack-graph-based analysis is presented by [16] of threats on patient controlled analgesia
(PCA) interoperability. Considering a trusted coordinator, most of the attacks are discovered to be
various shapes of the confused deputy attack. The analysis shows that individual medical device safety
does not equate to interoperable medical devices (IMDs) safety, despite having a trusted coordinator.

Processes 2020, 8, 12 3 of 22

A method to model components of the cyber-physical architecture of the vehicle is proposed
by [17] using graphs. The model captures the security policy employed as well as vulnerability
information and access rights. An attacker model is considered as a set of attacks originating from all
the attack vectors (short range, long range, and indirect physical access). The system and the attacker
are modeled with behavioral rules using a graph transformation system.

A novel approach is introduced by [18] for alert correlation based on graphs and absorbing
Markov chains. The approach answers most of the challenges that a correlation system is faced with;
the context-based management system ensures the portability of the system and reduces false positive
alerts, and the correlation system guarantees real-time and scalability properties.

Attack graph modeling is demonstrated by [19] on a theoretical ambulatory medical device.
The paper highlights the need to model ambulatory devices by demonstrating specific attack vectors
that show greater risk to ambulatory devices.

An extended network modeling is introduced by [20] for the Multi-host, Multi-stage Vulnerability
Analysis (MulVAL) framework. The proposed modeling considers the physical network topology,
the supported short-range communication protocols, and the modeled specific industrial communication
architectures. Furthermore, various network attacks are modeled, including bus spoofing, wired
equivalent privacy (WEP) cracking, Bluetooth personal identification number (PIN) cracking, address
resolution protocol (ARP) spoofing, and domain name server (DNS) spoofing.

HERCULE, an automated multi-stage intrusion analysis system, is presented by [21] to reconstruct
a complete and understandable attack story from multiple correlated logs. HERCULE automatically
generates a multi-dimensional weighted graph with valuable information grouped within. The proposed
graph provides a “panoramic view” of the logs implemented by multiple system components.

The Safelite framework constructed by [22] semi automatically converts an attack graph to
a hierarchical attack representation model (HARM). A HARM is generated from the vulnerability scan
reports to eliminate the state-space explosion problem. The paper incorporates the attack modeling
and the security risk evaluation using the HARM.

Two modified Bayesian networks (BN)-based attack graph models are utilized by [23] to determine
the probabilities of successful attacks on the power system. The models consider different cyber-attack
paths, skill levels of attackers, and mean time to compromise (MTTC) of successful attacks. It is found
that, as more known vulnerabilities are exploited, smaller MTTC results.

A comprehensive risk management technique is provided by [24] to a smart grid CPS. The example
shows that the technique sufficiently allows the organization to analyze their security issues, identify
critical assets, and assess vulnerabilities and potential threats. A method is proposed by [25] for
determining the risk of IoT device deployment using an augmented attack graph. The results show the
potential risk in using IoT devices in organizations and illustrate that randomly employing devices
can greatly affect the security of the organization’s network. The heuristic approach suggests that the
possible risk of two deployed devices is greater than or equal to the sum of their individual risk scores.

A framework is proposed by [26] for security modeling and assessment of the IoT. The framework is
used to implement a graphical security model to automate the security analysis of an IoT. The framework
encompasses five steps: preprocessing, security model generation, visualization and storage, security
analysis, and changes and updates. In this framework, an IoT generator, a security model generator,
and a security evaluator are developed.

A model and a methodology are presented by [27] for security risk analysis of enterprise networks
using probabilistic attack graphs. This model annotates the attack graph with known vulnerabilities
and their likelihoods of exploitation. By disseminating the exploit likelihoods through the attack graph,
a metric is evaluated that determines the security risk of enterprise networks.

A suite of metrics is described by [28] for determining overall network security risk based on
overall attack graph. These metrics are gathered into families, which are combined into a risk metric
for the network. A simulation-driven approach is developed by [29] for secure information system

Processes 2020, 8, 12 4 of 22

design. This method can be utilized by security analysts to determine (a) the capability of a modeled
system to deal with attacks and (b) the result of alterations of the system on its overall security.

A new game-theoretic model is introduced by [30] for the interaction between a network
administrator and an attacker. The possible strategies of the attacker are illustrated using attack graphs,
while the defender adds honeypots to the network to fool the attacker. By translating the attack graph
into a Markov decision process (MDP) and employing a number of pruning techniques, the problems
of realistic size are solved.

In a recent survey conducted by [31], various aspects of security models are compared and
analyzed in terms of graphical security models (GrSM) phases, security metrics, and available tools.
As a result, this survey can provide insight for users to decide the most appropriate GrSM to deal with
their security concerns. Table 1 highlights the main characteristics of the existing schemes in attack
graph modeling for CPSs as compared to our scheme.

The expressiveness of Halpern and Shoham’s interval temporal logic (HS) is studied by [32] in
the context of model checking (MC) in comparison with those of the standard point-based temporal
logics (PTLs), linear temporal logic (LTL), computation tree logic (CTL), and CTL∗ (a superset of CTL).
The results show that HS with trace-based semantics is equivalent to LTL, HS with computation-tree-based
semantics is equivalent to finitary CTL∗, and HS with state-based semantics is incomparable with LTL,
CTL, and CTL∗.

Several fixed parameter (FP) tractable cases are identified by [33] of the first order (FO) model
checking problem of geometric graphs, and these are complemented by hardness results showing quite
strict limits of FP tractability on the studied classes.

A new test statistic is established by [34] under the null hypothesis. Global and various local
alternatives are presented to check the adequacy of the varying coefficient models when some covariate
is measured with error. A behavior version is proposed by [35] of the annual data mining and
knowledge discovery competition organized by association for computing machinery on Knowledge
Discovery and Data Mining (KDD) CUP. Simulation experiments are carried out to evaluate the
performance of the three model checking based algorithms, including LTL, interval temporal logic
(ITL), and real time attack signature logic (RASL).

A method is proposed by [36] for model transformation from system modeling language SysML
to new symbolic model checker/verifier (NuSMV) input language. The formal analysis method is
adopted to verify and find defects from different aspects based on the NuSMV tool.

The recent literature study by [37] shows the state of the art methods for enhancing resilience of
cyber-physical systems. Another classification of resilience enhancement depends on the resilience
property (adaptation and recovery). The study also reviews the threats and the vulnerabilities that can
affect the system’s functionality.

A framework of labeled partial assignment interpolation systems (LPAIS) is presented by [38],
which computes partial variable assignment interpolants (PVAIs) for propositional logic. The notion of
logical strength is defined for LPAISs. The work shows how introducing a partial order over LPAISs
allows for systematic comparison between the strength of the computed interpolants.

A multi-weighted extension is introduced by [39] to Kripke structures and CTL. The MC problem
for the full logic is shown to be undecidable with three weights. However, by imposing upper-bounds
on the temporal operators and assuming the cost converges over infinite runs, the synthesis problem is
also decidable.

Processes 2020, 8, 12 5 of 22

Table 1. Main characteristics of the existed schemes in attack graph modeling for cyber physical systems (CPSs).

Method Aim Proposed Solution Merits Demerits

Distributed attack
graph generation [12]

Building vulnerability-based
attack graphs on a distributed

multi-agent platform.

Introduces a parallel and distributed
memory-based algorithm for
computation of attack graphs.

• Overcomes the state space explosion.
• It can be utilized in real-time attack

scenario detection and prediction.

Needs assessment of the advantages
gained by allowing duplicate

privilege expansion.

pwnPr3d [13]
Probabilistic threat modeling for

automatic attack
graph generation.

Generates probability distributions over
the time to compromise assets.

The threat analysis is built-in and no security
expertise is required.

A thorough experimentation on real-life
systems is needed to validate

the approach.

Attack tree [17]
Constructs attack trees to

estimate the overall risk of a
connected vehicle.

Uses graph transformation to model the
car architecture and its state evolution

under attacks.

Designed to support the conceptual phase of
the vehicle’s cyber-physical system.

Requires input data about structural and
behavioral models of the service nodes,
components, and the attacker model.

Attack graph
modeling [19]

Attack graph for ambulatory
medical devices.

Identifying vulnerabilities, assessing risk,
and forming mitigation strategies when

designing ambulatory devices.

The steps required to achieve an attack are
easily identifiable.

More work is needed to consider the
architecture and style of the attack graph.

Attack graph
modeling [20]

Extends the Multi-host,
Multi-stage Vulnerability

Analysis (MulVAL) framework
with a comprehensive

network modeling.

Considers the network topology,
short-range communication protocols,

and their vulnerabilities.

• Supports short-range communication
protocols.

• Models specific industrial communication
architectures.

• Models various network attacks.

Further work is needed to support the
automatic extraction of additional facts

about wireless devices.

Safelite [22]
Constructing security modeling

and analysis framework
for networks.

Automatically converts an attack graph
into a visualized hierarchical attack

representation model (HARM).
Avoids state-space explosion problem.

• More security metrics are needed.
• Further work is needed on the

computation of the probability of
attack success.

Bayesian attack graph
(BAG) [23]

Models potential attack paths
with the Bayesian network for

power system.

Two BAG models are built to illustrate
the attack procedures and to evaluate the
probabilities of successful cyber-attacks.

Security countermeasures are implemented in
the model to mitigate the damaging impacts of

cyber-attacks.

A more comprehensive and realistic
probabilistic model is needed.

Attack graph
modeling [26]

Presents a framework of
modeling and assessing security

for the IoT.

Developed an Internot of Things (IoT)
generator, a security model generator,

and a security evaluator.

The framework is capable of mitigating
potential attacks and addressing the

scalability problem.

Security analysis is needed for
introducing multiple targets, defense

strategies, heterogeneity, and mobility.

Proposed scheme Attack graph implementation
and visualization for CPSs.

System model is checked using JKind
and the generated attack scenarios are

presented graphically.

The graphical user interface (GUI) visualizes
the attack graph instead of long spread-sheets.

Requires overall specifications of the
system model and the security property.

Processes 2020, 8, 12 6 of 22

2. Nuclear Power Plant (NPP)

2.1. NPP System Architecture

Figure 1 illustrates a pressurized water NPP control system fitted from [40]. The following
hierarchy can illustrate the system:

Processes 2018, 6, x FOR PEER REVIEW 6 of 23

The expressiveness of Halpern and Shoham’s interval temporal logic (HS) is studied by [32] in
the context of model checking (MC) in comparison with those of the standard point-based temporal
logics (PTLs), linear temporal logic (LTL), computation tree logic (CTL), and CTL∗ (a superset of
CTL). The results show that HS with trace-based semantics is equivalent to LTL, HS with
computation-tree-based semantics is equivalent to finitary CTL∗, and HS with state-based semantics
is incomparable with LTL, CTL, and CTL∗.

Several fixed parameter (FP) tractable cases are identified by [33] of the first order (FO) model
checking problem of geometric graphs, and these are complemented by hardness results showing
quite strict limits of FP tractability on the studied classes.

A new test statistic is established by [34] under the null hypothesis. Global and various local
alternatives are presented to check the adequacy of the varying coefficient models when some
covariate is measured with error. A behavior version is proposed by [35] of the annual data mining
and knowledge discovery competition organized by association for computing machinery on
Knowledge Discovery and Data Mining (KDD) CUP. Simulation experiments are carried out to
evaluate the performance of the three model checking based algorithms, including LTL, interval
temporal logic (ITL), and real time attack signature logic (RASL).

A method is proposed by [36] for model transformation from system modeling language SysML
to new symbolic model checker/verifier (NuSMV) input language. The formal analysis method is
adopted to verify and find defects from different aspects based on the NuSMV tool.

The recent literature study by [37] shows the state of the art methods for enhancing resilience of
cyber-physical systems. Another classification of resilience enhancement depends on the resilience
property (adaptation and recovery). The study also reviews the threats and the vulnerabilities that
can affect the system’s functionality.

A framework of labeled partial assignment interpolation systems (LPAIS) is presented by [38],
which computes partial variable assignment interpolants (PVAIs) for propositional logic. The notion
of logical strength is defined for LPAISs. The work shows how introducing a partial order over
LPAISs allows for systematic comparison between the strength of the computed interpolants.

A multi-weighted extension is introduced by [39] to Kripke structures and CTL. The MC
problem for the full logic is shown to be undecidable with three weights. However, by imposing
upper-bounds on the temporal operators and assuming the cost converges over infinite runs, the
synthesis problem is also decidable.

2. Nuclear Power Plant (NPP)

2.1. NPP System Architecture

Figure 1 illustrates a pressurized water NPP control system fitted from [40]. The following
hierarchy can illustrate the system:

Figure 1. Pressurized water reactor. Figure 1. Pressurized water reactor.

Field Level, F: This level has three water loops—primary, secondary, and cooling. The primary
loop is the main closed loop where the water is being heated and pressurized as a result of
uranium-235 nuclear fission in the core vessel. Next, the heated water passes through a steam
generator, thus transferring heat to the water in the secondary loop. Consecutively, the state of water
is changed to steam. The steam loops until it reaches the steam turbine. Then, the steam’s state is
converted back to liquid using a condenser. This liquid loops back to the heat exchanger, thus closing
the secondary loop. The cooling loop is either an open or a closed loop and is placed outside the plant.

The field level also includes safety and protection system, smart sensors (Sens) (e.g., temperature
sensor, gamma sensor, neutron flux sensor, and pressure sensor), actuators (Acts), and a heater bank,
which releases the heat during the day as required.

Control Level, C: This level consists of programmable logic controller (PLC) and remote terminal
unit (RTU), which connect directly with devices from the field.

Supervisory Level, S: It is the main system, which receives and processes the digital data
from C. The units of this level are: main control room (CR), data historian (DH), and engineering
workstation (EW).

Enterprise Level, E: It contains the enterprise site management computer (SM), which gathers
data, sends results, and reports to decision makers, while a wireless access point (WA) [40] is placed
for outside internet connection.

Network Backbones: Control network (CB) that links C with S and enterprise network (EB) that
links S with E.

In addition, there is a firewall isolating the victims from the remaining enterprise network.
An intrusion detection system (IDS) observes the network data stream. The firewall does not hold
any admittance control restrictions on the flow of network data; rather, it lets the IDS observe data
flow between (E;S), whereas the flow between (S;C) is not observed. For an attack instance/action that
is detectable, the IDS activates an alarm upon its detection, while a stealthy attack stays undetected.
SM, CR, DH, and EW have commercial off-the-shelf (COTS) OS vulnerability [41], while PLC, Sens,
and Acts have firmware vulnerability [42].

The given vulnerabilities can be exploited, causing the successive possible attacks:

Processes 2020, 8, 12 7 of 22

• Intelligent gathering (IG): This occurs when the attacker wants to gain more information (e.g., IP
addresses, hardware model, OS COTS and firmware versions) and steals private data. This attack
can be either stealthy or detectable.

• Malware injection (MI): This attack uses the operating software. When the attacker uses it, he/she
can edit, copy, or install the code at the host. It can provide the attacker root access. This is
a stealthy attack.

• Bypass security mechanism (BSM): This attack is utilized within a firmware update to attack
a certain hardware (PLC, Sen) to obtain root access and gain control over it. This attack is detectable
by IDS.

• Denial-of-Service (DoS): The attacker floods the server with requests for a certain service. This attack
prevents service given to other users and creates latency. This attack is detectable by IDS [43].

• Man-in-the-Middle (MiM): It occurs when the attacker accesses a link (e.g., WIFI access point,
sensor’s WIFI chip) between two parties, giving the attacker root access on the communication
transmitter (e.g., stealing and/or generating illegitimate traffic). This attack is detectable by IDS.

• Alteration-of-Data (AoD): It takes place if the attacker has access to a software. It targets the
device’s memory to generate data processing latency and data alteration (e.g., changing the
pressure set point).

2.2. Formal NPP Depiction

The system can be formally characterized as follows:

1. The attacker is assumed to be placed at WA and has root privilege (static).
2. Set of field level elements F; variable f ∈ {Sen, Act} (static).
3. Set of control level elements C; variable c ∈ {PLC, RTU} (static).
4. Set of supervisory level elements S; variable s ∈ {CR, DH, CB, EW} (static).
5. Set of enterprise level elements E; variable e ∈ {WA, SM} (static).
6. System connectivity, Z ⊆ E × E, E × S, S × S, S × C, C × F; zij = 1 iff element i is connected to

element j (static).
7. System vulnerabilities V; Boolean vi = 1 iff vulnerability v ∈ {COTS, firmware} is placed on host

i (static).
8. Set of possible attacks A; variable a ∈ {IG, MI, BSM, DoS, MiM, AoD} (static).
9. Attack instances, AI ⊆ A × (E × E, E × S, S × S, S × C, C × F); labeled aij ≡ attack a from source i to

target j, a ∈ A (static).
10. Attacker level of privilege P on machine/host i ∈ {S, E}; variable pi ∈ {none, user, root} (dynamic).
11. Hardware control H on device i ∈ {F, C}; Boolean hi = 1 iff attacker gains control over the firmware

of device i (dynamic).
12. Latency L from element i; Boolean li = 1 iff communication from i is delayed (dynamic).
13. Input data N into host i; Boolean ni = 1 iff input of element i is corrupted (dynamic).
14. Output data O from host i; Boolean oi = 1 iff output of elemet i is corrupted (dynamic).
15. Data knowledge K; Boolean kj = 1 iff attacker gets knowledge from j (dynamic).
16. Intrusion detection system IDS: A × E × S→ {0,1}; Boolean ids(aij) = 1 iff attack a from source i to

target j is detectable (static).
17. A global Boolean dg tracks whether an IDS alarm has been triggered for any earlier executed

atomic attack (dynamic).
18. Attack instances/actions pre-conditions:

• Pre(IGij) ≡ (zij = 1) ∧ (pi ≥ user).
• Pre(MIij) ≡ (zij = 1) ∧ (pi ≥ user) ∧ (COTSj = 1) ∧ (∃y ∈ {S, E}: ky = 1).
• Pre(BSMij) ≡ (zij = 1) ∧ (pi ≥ user ∨ (hi = 1)) ∧ (firmwarej = 1) ∧ (∃y ∈ {F, C}: ky = 1).

Processes 2020, 8, 12 8 of 22

• Pre(DoSij) ≡ (zij = 1) ∧ (pi = root ∨ (hi = 1)) ∧ (COTSj = 1 ∨ (firmwarej = 1)).
• Pre(MiMij) ≡ (zij = 1) ∧ (pi = root ∨ (hi = 1)).
• Pre(AoDij) ≡ (zij = 1) ∧ (pi = root ∨ (hi = 1)).

19. Attack instances/actions post-conditions:

• Post(IGij) ≡ kj = 1 ∧ ((i = SM ∨WA) ∧ (dg = 0)⇒ (dg = 0) ∨ (dg = 1)).
• Post(MIij) ≡ pj = root.
• Post(BSMij) ≡ hj = 1 ∧ ((i = SM ∨WA) ∧ (dg = 0)⇒ dg = 1).
• Post(DoSij) ≡ lj = 1 ∧ kj = 1 ∧ ((i = SM ∨WA) ∧ (dg = 0)⇒ dg = 1).
• Post(MiMij) ≡ oj = 1 ∧ kj = 1 ∧ ((i = SM ∨WA) ∧ (dg = 0)⇒ dg = 1).
• Post(AoDij) ≡ lj = 1 ∧ nj = 1.

20. Initial state: pWA = root ∧ (∀j ∈ {F, C, S, E}: Pj = none ∧ (lj = hj = kj = nj = oj = 0)) ∧ dg = 0.
21. Security property ϕ is that attacker cannot disrupt the NPP. This property can then be expressed

by CTL as:

ϕ ≡ AG((lPLC = 0) ∧ (hPLC = 0) ∨ (dg = 1)) ≡ AG(¬((lPLC = 1) ∨ (hPLC = 1) ∧ (dg = 0))).

3. Implementation of Cyber-Attack Scenarios

The model-based technique for attack graph implementation demands a formal model of the
system and security property of concern. The following definitions are adapted from [44] to formally
define an attack graph.

Definition 1. A system security model (M = (S, E, s0)) is a state-transition diagram whose locations S, with s0
∈ S defining an initial location, identify the security status of the system, and whose transitions E illustrate how
the attack instances cause a change in the system security status. Overall, the transitions are determined by
pre-conditions on state-variables, and their execution apply certain post-conditions on the same state-variables.

Definition 2. Given a security model M and a security property ϕ, an attack path (AP) is a finite acyclic path
of a sequence of states in M, AP = (s0, s1, . . . , sf), where s0 is an initial state in M, while any two adjacent states
in the path belong to the transition set E, such that the execution of AP leads to the violation of ϕ.

Definition 3. An attack graph (AG) is a data structure illustrating a union of all attack paths.

AG = {APi|APi is an attack path in M} (1)

Two software tools are used to initiate the cyber-attack scenarios generation and visualization, as
shown in Figure 2. These tools are JKind model checker [45] and Microsoft Visual Studio [46]. JKind is
an infinite state model checker for verifying safety properties of synchronous systems [47], which are
written in the Lustre, a formally determined, declarative, and synchronous dataflow programming
language for programming reactive systems [48]. The checking is based on k-induction and property
directed reachability using a back-end satisfiability modulo theories (SMT) solver. A checked property
is true for all executions of the system. A wrong property is given with a definite counter-example (CE)
illustrating the property violation, which is presented here as an attack scenario given as a sequence of
attack instances causing system compromise.

Processes 2020, 8, 12 9 of 22

Processes 2018, 6, x FOR PEER REVIEW 9 of 23

Definition 2: Given a security model M and a security property φ, an attack path (AP) is a finite acyclic path
of a sequence of states in M, AP = (s0, s1, ... , sf), where s0 is an initial state in M, while any two adjacent states
in the path belong to the transition set E, such that the execution of AP leads to the violation of φ.

Definition 3: An attack graph (AG) is a data structure illustrating a union of all attack paths.

AG = {APi|APi is an attack path in M} (1)

Two software tools are used to initiate the cyber-attack scenarios generation and visualization,
as shown in Figure 2. These tools are JKind model checker [45] and Microsoft Visual Studio [46].
JKind is an infinite state model checker for verifying safety properties of synchronous systems [47],
which are written in the Lustre, a formally determined, declarative, and synchronous dataflow
programming language for programming reactive systems [48]. The checking is based on k-induction
and property directed reachability using a back-end satisfiability modulo theories (SMT) solver. A
checked property is true for all executions of the system. A wrong property is given with a definite
counter-example (CE) illustrating the property violation, which is presented here as an attack
scenario given as a sequence of attack instances causing system compromise.

Figure 2. Cyber-attack scenarios generation workflow. Figure 2. Cyber-attack scenarios generation workflow.

In this work, system specification models of units and their interfaces and connections are encoded
using AADL within the open-source integrated development environment (Osate2) [8]. The AADL
architecture model is embedded by AGREE Annex plug-in [49] that is used to identify the units’
structures and system-level security properties. AGREE also converts the AADL plus Annex models
and properties to Lustre and connects with JKind, which checks the system with a security property of
concern ϕ and submits the result as if a CE exists.

Once all CEs (attack scenarios) are generated, we can export them as comma-separated values
(CSV) files into a visualizer Windows application that creates a GUI, which is encoded using C# within
Microsoft Visual Studio. Visual Studio is an integrated development environment (IDE) that utilizes
the Windows platform to implement programs, websites, as well as graphical visualization of data [46].

The primary encoded GUI interface has three major features: CEs’ attributes, actions, and
results. In CEs’ attributes, the number of CSV files (CEs) to be read is listed in “No. Scenarios (Files)”.
The “Attack Connections” field defines all potential attack instances between the model’s components.

Processes 2020, 8, 12 10 of 22

“Time Steps” field defines the maximum number of time steps (transitions between attack instances in
the attack scenarios) to be presented. Once these fields are defined, attack scenario(s) can be visualized
by selecting “View Attack Scenario(s)”, “Insert Attack Spread-Sheet”, and “Generate Attack Graph” options.
The results illustrates the CE spreadsheet viewer, attack scenarios, and final state post-conditions.

To execute this GUI for the NPP, we define the given security propertyϕ, where the intention of the
attacker is to disrupt the system by either creating a denial of service from PLC (shown by its latency)
or obtaining control on PLC with no detection. This goal can be achieved by obtaining root privilege
on CR and EW machines, respectively. Therefore, the property ϕ that must not be breached is that
either the attacker never produces system disruption or the attacker is detected by the IDS. The JKind
produced the counter-example/attack-scenario CE1:= IGWADH→MIWAEW→MIEWCR→ DoSEWPLC as
a spread sheet with 205 rows, which was then stored as a separate CSV file. Having produced all 16
CEs CSV files, the number of CEs to be visualized is listed in “No. Scenarios (Files)” field. The number
of attack instances/actions is 28 (these instances are encoded in the AADL model). In addition to that,
the number of time steps is four. Then, selecting “View Attack Scenario(s)”, the generated CE1 can be
presented in the GUI.

This attack scenario is explained as follows. First, the attacker has root privilege on WA, and an
IGWADH attack is conducted to gain knowledge on the system and its units (e.g., IP addresses and OS).
Employing the discovered information, a MIWAEW attack is conducted, exploiting a COTS vulnerability
in EW. This attack aims to breach the computer OS by obtaining root access. At this stage, there are
various attack instances to get on with (i.e., the pre-conditions of BSMEWPLC, MIEWCR, and DoSEWDH
are satisfied). However, in this scenario, a MIEWCR is conducted to obtain root access on the control
machine CR. Next, there is a DoSEWPLC attack against PLC to cause latency and prevent other machines
from demanding any information from PLC.

By encoding this counterexample CE1 in disjunct with the property ϕ being verified, i.e., ϕ ∨
CE1, a new counterexample fulfills ¬(ϕ ∨ CE1) = ¬ϕ ∧ ¬CE1, i.e., a counterexample of ϕ and not
CE1. This generates a new counterexample CE2: = IGWADH→MIWACR→MIWAEW→ BSMCRPLC. In
this scenario, after obtaining a root privilege on both EW and CR machines, BSMEWPLC attack uses
firmware vulnerability of PLC to obtain control over it. CE2 is given by JKind as a spreadsheet with
206 rows. By doing this procedure, many (but still finite in number) CEs can be produced, resulting in
all attack scenarios, i.e., the “attack graph”.

It can be noticed that the number of rows in the spreadsheets generated by JKind increase by
one for every newly generated CE (e.g., CE16 spreadsheet has 220 rows). To manage the number
of rows in the produced CEs and to represent them in an appealing graphical way, the visualizer
Windows application extracts only the attack scenarios from the generated CSV files and presents them
in the GUI.

To illustrate a specific CE as a spreadsheet, the “Insert Attack Spread-Sheet” action can be selected,
and the sheet can be visualized in the spreadsheet viewer. The resulted spreadsheet demonstrates
a possible attack sequence CE1. This sequence consists of four attack instances such that one attack
instance can occur at each time step. This sheet has 28 rows, which reduces the total number of rows
by 177 as compared to the sheet generated by JKind.

By selecting “Generate Attack Graph”, the set of attack scenarios violating the property ϕ resulting
in NPP system disruption is given by its attack graph, as illustrated in Figure 3. This attack graph has
16 attack scenarios that lead to two terminating states.

In this graph, it can be noted that the DoS and the MI attack instances show in every attack
scenario as a result of COTS vulnerability. Hence, if the assets can be used to improve the machines’ OS
and alleviate this vulnerability, then the security can be enhanced. We can also observe that PLC can be
abused by an attacker using the available firmware vulnerability to disrupt the system. Hence, in the
design-phase, the system designers can propose suitable improvements as suggested by [50] to enhance
the system-level security characteristics.

Processes 2020, 8, 12 11 of 22

Processes 2018, 6, x FOR PEER REVIEW 11 of 23

possible attack sequence CE1. This sequence consists of four attack instances such that one attack
instance can occur at each time step. This sheet has 28 rows, which reduces the total number of rows
by 177 as compared to the sheet generated by JKind.

By selecting “Generate Attack Graph”, the set of attack scenarios violating the property φ resulting
in NPP system disruption is given by its attack graph, as illustrated in Figure 3. This attack graph has
16 attack scenarios that lead to two terminating states.

Figure 3. Nuclear power plant (NPP) generated attack graph.

In this graph, it can be noted that the DoS and the MI attack instances show in every attack
scenario as a result of COTS vulnerability. Hence, if the assets can be used to improve the machines’
OS and alleviate this vulnerability, then the security can be enhanced. We can also observe that PLC
can be abused by an attacker using the available firmware vulnerability to disrupt the system. Hence,
in the design-phase, the system designers can propose suitable improvements as suggested by [50]
to enhance the system-level security characteristics.

Figure 3. Nuclear power plant (NPP) generated attack graph.

4. Industrial Control System (ICS)

4.1. ICS Topology

Figure 4 shows an ICS with the following components.

Processes 2018, 6, x FOR PEER REVIEW 12 of 23

4. Industrial Control System (ICS)

4.1. ICS Topology

Figure 4 shows an ICS with the following components.

Figure 4. Industrial control system (ICS).

Physical Level (P): This level includes a PLC and a micro-controller (MC) that communicate
directly with the industrial robot. These elements also conduct logical processes and data transfer to
the supervisory control and data acquisition (SCADA) level. The industrial robot (IR) includes
multiple hardware and software components such as mechanical actuators, control logic, and
operating systems.

SCADA Level (S): This is the main component that receives and processes the digital data from
the physical level. It includes human machine interface (HMI), DH, EW, and master terminal unit
(MTU).

Corporate Level (C): This level includes enterprise site management computer (E), which gathers
data, sends results, and reports to decision makers, while wireless access point (AP) exists for external
internet communication.

Network Backbones: Process control network that links S with P and corporate network that
links C with S.

For the ICS system, two vulnerabilities are considered: COTS and firmware vulnerability on
PLC.

4.2. Possible Attacks Against ICS

The illustrated vulnerabilities can be exploited resulting in the following attacks:

• Social Engineering (SE): This attack generally targets enterprises and organizations; an attacker
uses a human to get a critical information by psychologically manipulating the user or deceiving
him [51].

• Malware Injection (MI).
• Pivoting (P): This attack generally consists of two steps, phishing and malware injection. This

attack is usually used on the enterprise network as it has the most visibility to the Internet.
Compromising this network gives the attacker more access into the system and down to the
process control domain [52].

• Sniffing (S): In network security, it corresponds to stealing or breaking off data by capturing the
network traffic by a sniffer [53].

Figure 4. Industrial control system (ICS).

Physical Level (P): This level includes a PLC and a micro-controller (MC) that communicate
directly with the industrial robot. These elements also conduct logical processes and data transfer to

Processes 2020, 8, 12 12 of 22

the supervisory control and data acquisition (SCADA) level. The industrial robot (IR) includes multiple
hardware and software components such as mechanical actuators, control logic, and operating systems.

SCADA Level (S): This is the main component that receives and processes the digital data from the
physical level. It includes human machine interface (HMI), DH, EW, and master terminal unit (MTU).

Corporate Level (C): This level includes enterprise site management computer (E), which gathers
data, sends results, and reports to decision makers, while wireless access point (AP) exists for external
internet communication.

Network Backbones: Process control network that links S with P and corporate network that links
C with S.

For the ICS system, two vulnerabilities are considered: COTS and firmware vulnerability on PLC.

4.2. Possible Attacks Against ICS

The illustrated vulnerabilities can be exploited resulting in the following attacks:

• Social Engineering (SE): This attack generally targets enterprises and organizations; an attacker
uses a human to get a critical information by psychologically manipulating the user or deceiving
him [51].

• Malware Injection (MI).
• Pivoting (P): This attack generally consists of two steps, phishing and malware injection. This attack

is usually used on the enterprise network as it has the most visibility to the Internet. Compromising
this network gives the attacker more access into the system and down to the process control
domain [52].

• Sniffing (S): In network security, it corresponds to stealing or breaking off data by capturing the
network traffic by a sniffer [53].

• Buffer Overflow (BO): This attack is used to fuzz the SCADA HMI and break it down due to a
heap buffer overflow. In addition, the attacker can perform preferred payloads on the HMI server
such as running a remote shell [53].

• Privilege Escalation (PE): This attack relays on programming errors or design flaws to give the
attacker more access to the network and its associated data and applications [54].

• Authentication Bypass (B): This attack allows the attacker to gain system or network access, bypass
a mechanism, a flaw in the design, or an alternative access path placed by developers.

• Man-in-the-Middle (MITM).
• Alteration-of-Data (AoD).
• Denial-of-Service (DoS).

4.3. ICS Formal Depiction

The system can be formally described as follows:

1. The attacker is assumed to be placed at AP and has root privilege.
2. Set of corporate level elements C; variable c ∈ {E, AP} (static).
3. Set of SCADA level elements S; variable s ∈ {HMI, MTU, DH, EW} (static).
4. Set of physical level elements P; variable p ∈ {PLC, C, IR} (static).
5. System connectivity, N ⊆ P × P, P × S, S × S, S × C, C × C; nij = 1 if element i is connected to

element j (static).
6. System vulnerabilities V; Boolean vi = 1 if vulnerability v ∈ {firmware, COTS} is placed on host

i (static).
7. Set of possible attacks A, variable a ∈ {MI, SE, P, S, BO, PE, B, DoS, AoD, MITM}.
8. Attack instances, AI ⊆ A × (P × P, P × S, S × S, S × C, C × C); labeled aij ≡ attack a from source i to

target j.
9. Attacker level of authority Y on machine/host I ∈ {P, S, C}; variable yi ∈ {none, user, root} (dynamic).

Processes 2020, 8, 12 13 of 22

10. Data knowledge K; Boolean kj = 1 if attacker gets knowledge about j (dynamic).
11. Delay D from element i; Boolean di = 1 if communication from i is delayed (dynamic).
12. Corruption of data O, the data coming from source i to target j is corrupted; Boolean oj = 1 (dynamic).
13. Attack pre-conditions:

• Pre (SEij) ≡ (nij = 1) ∧ (yi ≥ root)
• Pre (Pij) ≡ (nij = 1) ∧ (yi ≥ root) ∧ (COTSj = 1)
• Pre (PEij) ≡ (nij = 1) ∧ (yi ≥ user)
• Pre (DoSij) ≡ (nij = 1) ∧ (yi = root) ∧ (COTSj = 1 ∨ firmwarej = 1) ∧ (∃ e ∈ {P, S}:ke = 1)
• Pre (Sij) ≡ (nij = 1) ∧ (yi = root)
• Pre (BOij) ≡ (nij = 1) ∧ (yi = root)
• Pre (MIij) ≡ (nij = 1) ∧ (yi ≥ user)∧ (COTSj = 1) ∧ (∃ e∈ {S}:ke = 1)
• Pre (Bij) ≡ (nij = 1) ∧ (yi = user) ∧ (COTSj = 1 ∨ firmwarej = 1) ∧ (∃ e ∈ {P, S}:ke = 1)
• Pre (AoDij) ≡ (nij = 1) ∧ (yi ≥ user)
• Pre (MITMij) ≡ (nij = 1) ∧ (yi ≥ user)

14. Attack post-conditions:

• Post (SEij) ≡ (kj = 1) ∧ (yj = user)
• Post (Pij) ≡ (yj = root)
• Post (PEij) ≡ (yj = root)
• Post (DoSij) ≡ (yj = user) ∧ (kj = 1) ∧ (dj = 1)
• Post (Sij) ≡ (yj = root) ∧ (kj = 1)
• Post (BOij) ≡ (yj = root) ∧ (dj = 1)
• Post (MIij) ≡ (yj = root)
• Post (Bij) ≡ (yj = root)
• Post (AoDij) ≡ (dj = 1) ∧ (oj = 1) ∧ (yj = root)
• Post (MITMij) ≡ (dj = 1) ∧ (oj = 1) ∧ (yj = root)

15. Initial state:

(yAP = root) ∧ (∀ j ∈ {P, S, T}: (yj = none) ∧ (kj = oi = dj = 0))
16. Security property (ϕ): is the attacker cannot disrupt the system (i.e., no delay from IR, no change

in data entering IR). This property can be then described CTL as:

ϕ ≡ AG (dIR = 0) ∧ (oIR = 0) ≡ AG (¬ ((dIR = 1) ∨ (oIR = 1)))

4.4. ICS Attack Scenarios Generation

Considering the given security property ϕ, in which the attacker goal is to cause system disruption
by either inducing a delay from IR or changing the data entering IR, the JKind model checker
generates the following counter-example (CE1:SE_APE→ BO_EHMI→ B_HMIPLC→ AoD_PLCMC
→MITM_MCIR) as a spreadsheet. This sheet has five attack instances such that one attack instance
can occur at every time step. This attack sequence is illustrated as follows. First, the attacker has
root access on AP; an SE_APE attack is conducted to collect information about the system and its
elements and to gain access to the enterprise. Using the disclosed information and the access to the
enterprise, a BO_EHMI attack is launched against the HMI to gain root access on it. Next, a B_HMIPLC
attack is conducted, exploiting COTS or firmware vulnerability in PLC. Then, an AoD_PLCMC is
conducted to gain root access on the MC. Next, an MITM_MCIR attack against IR occurs to cause data
corruption entering the industrial robot (e.g., changing IR set point). In addition, it causes delay on the
IR performance.

By encoding this generated counter example CE1 in disjunct with the property ϕ being checked,
which is (ϕ ∨ CE1), a new counter example of ϕ that is different from CE1 is generated. By continuing

Processes 2020, 8, 12 14 of 22

this process, six CEs are discovered, yielding the complete attack graph as shown in Figure 5. From the
resulting graph, it can be noted that the PLC is the most compromised component of the system,
as it mainly controls the industrial robot. By placing an intrusion detection system (IDS) [55] between
the corporate and the SCADA levels of the ICS model to monitor the network traffic flow, it is seen that
no property violation occurs, thus reducing the attack graph.

Processes 2018, 6, x FOR PEER REVIEW 15 of 23

Figure 5. ICS attack graph.

Figure 5. ICS attack graph.

5. Vehicular Network System (VNS)

5.1. VNS Topology

Figure 6 shows the vehicular network. This network can be illustrated as follows:

Processes 2020, 8, 12 15 of 22

Processes 2018, 6, x FOR PEER REVIEW 16 of 23

5. Vehicular Network System (VNS)

5.1. VNS Topology

Figure 6 shows the vehicular network. This network can be illustrated as follows:

Figure 6. Vehicular network system (VNS) architecture.

Access Point (AP): It exists for outside internet communication. We assume the attacker is
located at this point.

User Level (UL): It is the point where the user of the vehicle uses his/her personal mobile phone
and connects it to the car’s Bluetooth or the WiFi hotspot given off by the vehicle.

Infotainment Level (IL): It is made up of the infotainment screen, the head unit that contains the
gateway CPU and the main CPU, and the telematics unit.

Controller Area Network (CAN) Level: It contains the CAN bus and the ECUs connected to the
bus.
For the CAN bus, three vulnerabilities are identified:

• Resource Exhaustion (RE): It occurs when the resources required to perform an action are
entirely expended.

• Lack of Authentication (LoA): This allows the attacker to access the CAN bus pretending to be
someone he/she is not [56].

• Multicast Messaging (MM): When a message is sent to the CAN bus, it has no certain destination.
Each access point or controller on the bus has access to all the messages [56].

5.2. Possible Attacks Against VNS

The presented vulnerabilities can be exploited resulting in the following attacks:

• Trojan-Horse (TH): The attacker develops a malicious app that allows the attacker to obtain
access to the user’s phone. This allows the attacker to exploit the Bluetooth connection of the
driver’s phone to the infotainment gateway [57].

• Packet Sniffing (PS).
• Client Side Attack (CSA): Using this attack, the attacker can take over the user’s web browser of

the vehicle by injecting a scripted malware [58].
• Buffer Overflow (BO).
• Privilege Escalation (PE).

Figure 6. Vehicular network system (VNS) architecture.

Access Point (AP): It exists for outside internet communication. We assume the attacker is located
at this point.

User Level (UL): It is the point where the user of the vehicle uses his/her personal mobile phone
and connects it to the car’s Bluetooth or the WiFi hotspot given off by the vehicle.

Infotainment Level (IL): It is made up of the infotainment screen, the head unit that contains the
gateway CPU and the main CPU, and the telematics unit.

Controller Area Network (CAN) Level: It contains the CAN bus and the ECUs connected to
the bus.

For the CAN bus, three vulnerabilities are identified:

• Resource Exhaustion (RE): It occurs when the resources required to perform an action are
entirely expended.

• Lack of Authentication (LoA): This allows the attacker to access the CAN bus pretending to be
someone he/she is not [56].

• Multicast Messaging (MM): When a message is sent to the CAN bus, it has no certain destination.
Each access point or controller on the bus has access to all the messages [56].

5.2. Possible Attacks Against VNS

The presented vulnerabilities can be exploited resulting in the following attacks:

• Trojan-Horse (TH): The attacker develops a malicious app that allows the attacker to obtain access
to the user’s phone. This allows the attacker to exploit the Bluetooth connection of the driver’s
phone to the infotainment gateway [57].

• Packet Sniffing (PS).
• Client Side Attack (CSA): Using this attack, the attacker can take over the user’s web browser of

the vehicle by injecting a scripted malware [58].
• Buffer Overflow (BO).
• Privilege Escalation (PE).
• Row Hammer (RH): An attacker can execute a malicious application that continuously alters the

same row of transistors in a fraction of a second, creating a way for the attacker to gain control
over the victim’s device [59].

• Tampering with Data (TwD).
• Denial-of-Service (DoS).

Processes 2020, 8, 12 16 of 22

• Dictionary Attack (DA): This attack uses a large set of words to generate potential passwords.
• Brute Force Attack (BF): This attack uses automated software to conduct a large number of

suggested values for the desired data, such as passwords.
• Hybrid Attack (HA): Dictionary attack and Brute Force attack are used together.
• Cryptographic Attack (CA): This attack consists of listening in on information being traded

between two parties and modifying the information without their knowledge.
• CAN Dump (CD): It can be used to dump all the traffic on the CAN bus on to the attacker’s

terminal [60].
• CAN Sniffer (CS): The attacker looks at the traffic for specific message IDs and begins to filter

repeated messages that do not change [61].
• CDS: CAN dump and CAN sniffer are used together.
• Session Hijacking (SH): An attacker uses a sniffer to look through authentic requests and finds the

information needed to impersonate the authentic user [62].
• Eavesdropping (MIM).

5.3. VNS Formal Depiction

The VN can be formally described as follows:

1. An attacker is considered to be placed at the AP and has root access over it.
2. Set of ECUs Z; variable z ∈ {BCM, ECM, ACC, EPB, SCCM, PSCM}; Boolean kj = 1 if attacker gets

knowledge about j (static).
3. Response R from element i; Boolean ri = 0 if element i does not respond (dynamic).
4. CAN bus level C (static).
5. Set of possible attacks A, variable a ∈ {RH, CA, HA, PE, CDS, TH, CSA, DoS, MiM, DA, BF, BO,

SH, TwD}.
6. Attack instances, AI ⊆ A × (U × U, U × F, F × F, F × C, C × Z); labeled aij ≡ attack a from source i

to target j.
7. Set of infotainment level elements F; variable f ∈ {TCU, HU} (static).
8. Set of user level elements U; variable u ∈ {AP, CP}, where CP is cell phone device (static).
9. System connectivity, Q ⊆U ×U, U × F, F × F, F × C, C × Z; qij = 1 if element i connected to element

j (static).
10. System vulnerabilities V; Boolean vi = 1 if vulnerability v ∈ {RE, LoA, MM} is located on host

i (static).
11. Attacker level of privilege P on machine/host i ∈ {Z, C, F, U}; variable pi ∈ {none, user, root} (dynamic).
12. Level of danger D on vehicle; variable d ∈ {none, low, high} (dynamic).
13. Attack pre-conditions:

• Pre(RHij) ≡ (qij = 1) ∧ (pi = none)
• Pre(THij) ≡ (qij = 1) ∧ (pi = root)
• Pre(CAij) ≡ (qij = 1) ∧ (pi = root)
• Pre(HAij) ≡ (qij = 1) ∧ (pi = root)
• Pre(MiMij) ≡ (qij = 1) ∧ (pi = user)
• Pre(CSAij) ≡ (qij = 1) ∧ (pi = user)
• Pre (BOij) ≡ (qij = 1) ∧ (pi = user)
• Pre (CDSij) ≡ (qij = 1) ∧ (pi = user)
• Pre (DoSij) ≡ (qij = 1) ∧ (pi = root) ∧ (vj = 1) ∧ (rj = 1) ∧ (kj = 1)
• Pre (SHij) ≡ (qij = 1) ∧ (pi = user)
• Pre (PEij) ≡ (qij = 1) ∧ (pi = none)
• Pre (TwDij) ≡ (qij = 1) ∧ (pi = root)

Processes 2020, 8, 12 17 of 22

14. Attack post-conditions:

• Post (RHij) ≡ (pj = root) ∧ (d = none)
• Post (THij) ≡ (pj = user) ∧ (d = none)
• Post (CAij) ≡ (pj = root) ∧ (d = none)
• Post (HAij) ≡ (pj = user) ∧ (d = none)
• Post (MiMij) ≡ (kj = 1) ∧ (d = none)
• Post (CSAij) ≡ (pj = root) ∧ (d = high)
• Post (BOij) ≡ (pj = root) ∧ (d = high)
• Post(CDSij) ≡ (kj = 1)
• Post (DoSij) ≡ (rj = 0) ∧ (d = high)
• Post (SHij) ≡ (pj = root) ∧ (d = high)
• Post (PEij) ≡ (pj = root) ∧ (d = none)
• Post (TwDij) ≡ (pj = root) ∧ (d = high)

15. Initial state:

(PAP = root) ∧ (∀ j ∈ {Z, C, F, U}: (Pj = none) ∧ (kj = none) ∧ (rj = 1) ∧ (d = none)).
16. Security property (ϕ): is that the attacker cannot disrupt/compromise the vehicle (the CAN bus

always responds to ECUs, attacker has no root privilege on the CAN bus, and the level of danger
is none). The property is written by CTL as:

ϕ ≡ AG ((rC = 1) ∧ (pC = none) ∧ (d = none)) ≡ AG (¬((rC = 0) ∧ (pC = root) ∧ (d = high))).

5.4. VNS Attack Scenarios Generation

Considering the given security property ϕ in which the attacker aims to disrupt the system by
tampering with the data sent and received on the CAN bus, thus affecting its response, the JKind model
checker generates the following counter-example: (CE1:CA_APCP→ HA_CPTCU→ BO_TCUHU→
CDS_HUC→ SH_CC→ TwD_CC) as a spread-sheet. This sheet has six attack instances such that one
attack instance can occur at every time step. By encoding this generated counter example CE1 in
disjunct with the property ϕ being checked and repeating the process until the property is true, twenty
CEs are discovered, generating the complete attack graph as shown in Figure 7.

In this graph, one of the attack sequences is described as follows. Initially, the attacker has root
access over the access point. The attacker then uses an attack named RH_APCP, which gives the attacker
root access over the user’s cell phone. Afterwards, the HA_CPTCU attack is carried out. This attack
gives the attacker user access over the telematics unit of the infotainment system. Then, BO_TCUHU
is conducted to give the attacker root access over the head unit. Once the attacker has gained root
access over the head unit, he/she can apply CDS_HUC. Here, the attacker uses CAN dump tool to
dump all the CAN traffic into the attacker’s terminal, then a CAN sniffer tool can be used to filter out
the CAN messages that are brought up onto the attacker’s terminal. This is done by monitoring which
messages change and removing the messages that do not change. The attacker then gains knowledge
of the messages used for each function through SH_CC attack and sends data to the CAN bus, acting
as an authenticated user. This can lead to Denial-of-Service DoS_CC attack or many more dangerous
attacks on the driver of the vehicle.

It should be noted that the CAN bus lacks any cyber-security countermeasures, and it does not
have any form of authentication. One of the ways in which the CAN bus can be improved is by adding
an IDS between the CAN bus and the ECUs to detect and alert the owner and the vehicle manufacturers
of unauthorized entry to the CAN bus.

Processes 2020, 8, 12 18 of 22Processes 2018, 6, x FOR PEER REVIEW 19 of 23

Figure 7. Vehicular network system (VNS) attack graph.

Overall, while our scheme does not illuminate the attack, it graphically shows the potential
sequences of attack instances an attacker can seek to disrupt the system. In fact, the generated graphs
may aid system administrators to decide the placement of appropriate detection and prevention
measures. For instance, for the three case studies—NPP, ICS, and VNS—experimental results show
that the common attack among their attack graphs is DoS. Thus, identifying such an attack using, for
example, IDS, may render the violation of the security properties. Also, for NPP, the generated attack
graph illustrates that a DoS attack can never be conducted correctly without running an MI attack
first. Thus, by way of preventing the MI attacks, the system administrators can also eliminate the DoS
attacks, which would significantly enhance the system security.

For ICS, the generated attack graph requires as an initial step the running of either SE or P attacks
against the enterprise site management computer. This can be done by exploiting the COTS
vulnerability in the operating system of this computer. Therefore, securing the operating system may
prevent the attacker from executing the remaining attacks. In regard to VNS, the generated attack
graph demonstrates that the graph cannot be generated unless one of the three attacks (RH, CA, and

Figure 7. Vehicular network system (VNS) attack graph.

Overall, while our scheme does not illuminate the attack, it graphically shows the potential
sequences of attack instances an attacker can seek to disrupt the system. In fact, the generated graphs may
aid system administrators to decide the placement of appropriate detection and prevention measures.
For instance, for the three case studies—NPP, ICS, and VNS—experimental results show that the
common attack among their attack graphs is DoS. Thus, identifying such an attack using, for example,
IDS, may render the violation of the security properties. Also, for NPP, the generated attack graph
illustrates that a DoS attack can never be conducted correctly without running an MI attack first.
Thus, by way of preventing the MI attacks, the system administrators can also eliminate the DoS
attacks, which would significantly enhance the system security.

For ICS, the generated attack graph requires as an initial step the running of either SE or P
attacks against the enterprise site management computer. This can be done by exploiting the COTS
vulnerability in the operating system of this computer. Therefore, securing the operating system may
prevent the attacker from executing the remaining attacks. In regard to VNS, the generated attack graph

Processes 2020, 8, 12 19 of 22

demonstrates that the graph cannot be generated unless one of the three attacks (RH, CA, and TH) is
executed initially against the driver’s cell phone, thus securing the driver’s cell phone would prevent
such attacks.

It can be seen that the number of pre and post conditions is linear in the number of attack instances
and the dynamic state variables [44]. In addition, the complexity is known to be polynomial in the
size of the model and the length of the security property [63]. The accuracy of the proposed scheme
depends on how accurate the system architecture model is formally specified. Similar to our scheme,
the scheme proposed by [17] requires having architectural information of the system model. Thus,
the implemented attacks are more detailed and can capture more information about the potential
attacker actions. In addition, in [17], the system and the attacker are modeled with behavioral rules
using graph transformation system. However, the generated state space (attack graph) is quite
complex and large, thus requiring attack graph to attack tree transformation, while in our scheme, such
behavioral rules are captured through pre and post conditions of attacker actions in the AADL model.
The developed visualizer Windows application enhances the efficiency and the ease of use for the
underlying long spreadsheets attack scenarios into an appealing visual attack graph. The shortcoming
of our scheme is that it requires accessibility of the system model. This requires a specific and accurate
one-time modeling exertion to obtain the system characterization for elements, connectivity, assets,
and their vulnerabilities.

6. Conclusions

In this paper, we illustrated a model-based attack graph implementation and its graphical
visualization for three CPSs case studies—an NPP system, an ICS, and a VNS—using JKind model
checker and Microsoft Visual Studio integrated development environment (IDE). The Visual Studio
program can read all scenarios spreadsheets and automatically visualize the potential attack sequences,
their final state post-conditions, and CEs reduced spreadsheet viewer. The main criterion for modeling
is the application of an architectural specification language to obtain the security-related information
of the system. The generated attack graph can benefit system administrators to select the best
arrangement of countermeasures, preventing the occurrence of such attacks in addition to cyber
security risk assessment. For future work, we aim to enhance the GUI to automatically present the
associated resilience levels of CPS, thus resulting in a hybrid attack graph.

Author Contributions: Conceptualization, M.I.; Methodology, M.I.; Software, M.I., Q.A.-H., R.E., A.A., O.A.;
Validation, M.I., Q.A.-H.; Formal Analysis M.I.; Investigation, M.I., Q.A.-H., R.E., A.A.; Resources, M.I.;
Data Curation, M.I., Q.A.-H., R.E.; Writing—Original Draft Preparation, M.I., Q.A.-H., R.E., O.A.; Writing—Review
& Editing, M.I.; Visualization, M.I., Q.A.-H., R.E.; Supervision, M.I.; Project Administration, M.I.; Funding
Acquisition, M.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Deanship of Graduation Studies and Scientific Research at the German
Jordanian University for the seed fund SATS 02/2018.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shah, S.; Ren, A.; Fan, D.; Zhang, Z.; Zhao, N.; Yang, X.; Luo, M.; Wang, W.; Hu, F.; Rehman, M.; et al. Internet
of things for sensing: A case study in the healthcare system. Appl. Sci. 2018, 8, 508. [CrossRef]

2. Chen, C.M.; Xiang, B.; Wu, T.Y.; Wang, K.H. An anonymous mutual authenticated key agreement scheme for
wearable sensors in wireless body area networks. Appl. Sci. 2018, 8, 1074. [CrossRef]

3. Lee, J.; Kim, S. Emergency-prioritized asymmetric protocol for improving QoS of energy-constraint wearable
device in wireless body area networks. Appl. Sci. 2018, 8, 92. [CrossRef]

4. Zikria, Y.B.; Kim, S.W.; Hahm, O.; Afzal, M.K.; Aalsalem, M.Y. Internet of Things (IoT) Operating Systems
Management: Opportunities, Challenges, and Solution. Sensors 2019, 19, 1793. [CrossRef] [PubMed]

Processes 2020, 8, 12 20 of 22

5. Al-Mohannadi, H.; Mirza, Q.; Namanya, A.; Awan, I.; Cullen, A.; Disso, J. Cyber-attack modeling analysis
techniques: An overview. In Proceedings of the 4th International Conference on Future Internet of Things
and Cloud Workshops, Vienna, Austria, 22–24 August 2016; pp. 69–76.

6. Yuan, B.T.; Pan, Z.L.; Fan, S.H. A Review on Network Attack Graph Technology. In Proceedings of the
International Conference on Electrical, Control, Automation and Robotics (ECAR 2018), Xiamen, China,
16–17 September 2018; pp. 239–245.

7. Carnegie-Mellon-University. Open Source Aadl Tool Environment for the SAE Architecture. 2018.
Available online: http://osate.github.io/index.html (accessed on 15 May 2018).

8. Sheeran, M.; Singh, S.; Stålmarck, G. Checking Safety Properties Using Induction and a SAT-Solver.
In Proceedings of the International Conference on Formal Methods in Computer-Aided Design, Austin, TX,
USA, 1–3 November 2000.

9. Coorporation, M. Visual Studio. 2018. Available online: https://visualstudio.com/vs/ (accessed on 15 May 2018).
10. Ibrahim, M.; Al-Hindawi, Q. Attack Graph Modeling for Nuclear Power Plant. In Proceedings of the

10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania,
28–30 June 2018.

11. Olifer, D.; Goranin, N.; Cenys, A.; Kaceniauskas, A.; Janulevicius, J. Defining the Minimum Security Baseline
in a Multiple Security Standards Environment by Graph Theory Techniques. Appl. Sci. 2019, 9, 681.
[CrossRef]

12. Kaynar, K.; Sivrikaya, F. Distributed attack graph generation. In IEEE Transactions on Dependable and
Secure Computing; IEEE Computer Society Press: Los Alamitos, CA, USA, 2015; Volume 13, pp. 519–532.

13. Johnson, P.; Vernotte, A.; Ekstedt, M.; Lagerström, R. pwnpr3d: An attack-graph-driven probabilistic
threat-modeling approach. In Proceedings of the 11th IEEE International Conference on Availability,
Reliability and Security (ARES), Salzburg, Austria, 31 August–2 September 2016; pp. 278–283.

14. Kaynar, K. A taxonomy for attack graph generation and usage in network security. J. Inf. Secur. Appl. 2016,
29, 27–56. [CrossRef]

15. Lallie, H.S.; Debattista, K.; Bal, J. An empirical evaluation of the effectiveness of attack graphs and fault trees
in cyber-attack perception. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1110–1122. [CrossRef]

16. Taylor, C.R.; Venkatasubramanian, K.; Shue, C.A. Understanding the security of interoperable medical
devices using attack graphs. In Proceedings of the 3rd International Conference on High Confidence
Networked Systems, Berlin, Germany, 15–17 April 2014; pp. 31–40.

17. Karray, K.; Danger, J.L.; Guilley, S.; Elaabid, M.A. Attack Tree Construction and Its Application to the
Connected Vehicle. In Cyber-Physical Systems Security; Springer: Cham, Switzerland, 2018; pp. 175–190.

18. Fredj, O.B. A realistic graph-based alert correlation system. Secur. Commun. Netw. 2015, 8, 2477–2493.
[CrossRef]

19. Luckett, P.; McDonald, J.T.; Glisson, W.B. Attack-graph threat modeling assessment of ambulatory
medical devices. In Proceedings of the 50th Hawaii International Conference on System Sciences, Waikoloa
Village, HI, USA, 4–7 January 2017; pp. 3648–3657.

20. Stan, O.; Bitton, R.; Ezrets, M.; Dadon, M.; Inokuchi, M.; Ohta, Y.; Yamada, Y.; Yagyu, T.; Elovici, Y.; Shabtai, A.
Extending Attack Graphs to Represent Cyber-Attacks in Communication Protocols and Modern IT Networks.
arXiv 2019, arXiv:1906.09786.

21. Pei, K.; Gu, Z.; Saltaformaggio, B.; Ma, S.; Wang, F.; Zhang, Z.; Si, L.; Zhang, X.; Xu, D. Hercule: Attack
story reconstruction via community discovery on correlated log graph. In Proceedings of the 32nd Annual
Conference on Computer Security Applications, Los Angeles, CA, USA, 5–9 December 2016; pp. 583–595.

22. Jia, F.; Hong, J.B.; Kim, D.S. Towards automated generation and visualization of hierarchical attack
representation models. In Proceedings of the IEEE International Conference on Computer and Information
Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing;
Pervasive Intelligence and Computing, Liverpool, UK, 26–28 October 2015; pp. 1689–1696.

23. Zhang, Y.; Wang, L.; Xiang, Y.; Ten, C.W. Power system reliability evaluation with SCADA cybersecurity
considerations. IEEE Trans. Smart Grid 2015, 6, 1707–1721. [CrossRef]

24. Kure, H.; Islam, S.; Razzaque, M. An integrated cyber security risk management approach for a cyber-physical
system. Appl. Sci. 2018, 8, 898. [CrossRef]

Processes 2020, 8, 12 21 of 22

25. Agmon, N.; Shabtai, A.; Puzis, R. Deployment optimization of IoT devices through attack graph analysis.
In Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, Miami, FL,
USA, 15–17 May 2019; pp. 192–202.

26. Ge, M.; Kim, D.S. A framework for modeling and assessing security of the internet of things. In Proceedings of
the IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), Melbourne, Australia,
14–17 December 2015; pp. 776–781.

27. Singhal, A.; Ou, X. Security risk analysis of enterprise networks using probabilistic attack graphs. In Network
Security Metrics; Springer: Cham, Switzerland, 2017; pp. 53–73.

28. Noel, S.; Jajodia, S. A suite of metrics for network attack graph analytics. In Network Security Metrics; Springer:
Cham, Switzerland, 2017; pp. 141–176.

29. Ekelhart, A.; Kiesling, E.; Grill, B.; Strauss, C.; Stummer, C. Integrating attacker behavior in IT security
analysis: A discrete-event simulation approach. Inf. Technol. Manag. 2015, 16, 221–233. [CrossRef]

30. Durkota, K.; Lisý, V.; Bošanský, B.; Kiekintveld, C. Optimal network security hardening using attack
graph games. In Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos
Aires, Argentina, 25–31 July 2015; pp. 526–532.

31. Hong, J.B.; Kim, D.S.; Chung, C.J.; Huang, D. A survey on the usability and practical applications of graphical
security models. Comput. Sci. Rev. 2017, 1–16. [CrossRef]

32. Bozzelli, L.; Molinari, A.; Montanari, A.; Peron, A.; Sala, P. Interval vs. point temporal logic model checking:
An expressiveness comparison. ACM Trans. Comput. Log. 2018, 20, 4–41. [CrossRef]

33. Hliněný, P.; Pokrývka, F.; Roy, B. FO model checking on geometric graphs. Comput. Geom. 2019, 78, 1–19.
[CrossRef]

34. Wang, M.; Liu, C.; Xie, T.; Sun, Z. Data-driven model checking for errors-in-variables varying-coefficient
models with replicate measurements. Comput. Stat. Data Anal. 2020, 141, 12–27. [CrossRef]

35. Deng, M.; Cao, H.; Zhu, W.; Wu, H.; Zhou, Y. Benchmark Tests for the Model-Checking-Based IDS Algorithms.
IEEE Access 2019, 7, 135479–135498. [CrossRef]

36. Wang, H.; Zhong, D.; Zhao, T.; Ren, F. Integrating Model Checking With SysML in Complex System Safety Analysis.
IEEE Access 2019, 7, 16561–16571. [CrossRef]

37. Mihalache, S.F.; Pricop, E.; Fattahi, J. Resilience Enhancement of Cyber-Physical Systems: A Review.
In Power Systems Resilience; Springer: Cham, Switzerland, 2019; pp. 269–287.

38. Jančík, P.; Kofroň, J.; Alt, L.; Fedyukovich, G.; Hyvärinen, A.E.; Sharygina, N. Exploiting partial variable
assignment in interpolation-based model checking. In Formal Methods in System Design; Springer:
Cham, Switzerland, 2019; pp. 1–39.

39. Jensen, L.S.; Kaufmann, I.; Larsen, K.G.; Nielsen, S.M.; Srba, J. Model checking and synthesis for branching
multi-weighted logics. J. Log. Algebraic Methods Program. 2019, 105, 28–46. [CrossRef]

40. Varuttamaseni, A.; Bari, R.A.; Youngbl, R. Construction of a Cyber Attack Model for Nuclear Power Plants.
In Proceedings of the ANS Annual Conference, San Francisco, CA, USA, 11–15 June 2017.

41. Martin, R.A. Managing vulnerabilities in your commercial-off-the-shelf (COTS) systems using an industry
standards effort. In Proceedings of the 21st Digital Avionics Systems Conference, Irvine, CA, USA,
27 October 2002; p. 4A1.

42. Basnight, Z.; Butts, J.; Lopez, J. Firmware modification attacks on programmable logic controllers. Int. J. Crit.
Infrastruct. Prot. 2013, 6, 76–84. [CrossRef]

43. Abdul Razak, T.; Ibrahim Salim, M. A study on IDS for preventing Denial of Service attack using outliers techniques.
In Proceedings of the 2nd IEEE International Conference on Engineering and Technology (ICETECH),
Coimbatore, India, 17–18 March 2016.

44. Al Ghazo, A.; Ibrahim, M.; Ren, H.; Kumar, R. A2G2V: Automatic Attack Graph Generation and Visualization
and Its Applications to Computer and SCADA Networks. IEEE Trans. Syst. Man Cybern Syst. 2019, 1–11,
(Early Access). [CrossRef]

45. Gacek, A.; Backes, J.; Whalen, M.; Wagner, L.; Ghassabani, E. The JKind Model Checker. In Proceedings of
the Computer Aided Verification 2018, Oxford, UK, 14–17 July 2018.

46. David, M. Visual Studio IDE Offers Many Advantages for Developers. SearchSoftware Quality. Available online:
https://searchsoftwarequality.techtarget.com (accessed on 26 May 2018).

47. JKind, An Infinite-State Model Checker for Safety Properties. Loonwerks. Available online: http://loonwerks.
com/tools/jkind.html (accessed on 26 May 2018).

Processes 2020, 8, 12 22 of 22

48. Halbwachs, N.; Caspi, P.; Raymond, P.; Pilaud, D. The synchronous data flow programming language
LUSTRE. Proc. IEEE 1991, 79, 1305–1320. [CrossRef]

49. The Assume Guarantee Reasoning Environment. Loonwek. Available online: http://loonwerks.com/tools/
agree.html (accessed on 27 May 2018).

50. Sklyar, V. Cyber Security of Safety-Critical Infrastructures: A Case Study for Nuclear Facilities. Information
& Security. Int. J. 2012, 28, 98–107.

51. Zulkurnain, A.U.; Kamal, A.; Kamarun, B. Social Engineering Attack Mitigation. Int. J. Math. Comput. Sci.
2015, 1, 188–198.

52. Meixell, B.; Forner, E. Out of Control: Demonstrating SCADA Exploitation. In Proceedings of the Black Hat
2013 Conference, Las Vegas, LV, USA, 27 July–1 August 2013.

53. Sayegh, N.; Chehab, A.; Elhajj, I.H. Internal security attacks on SCADA systems. In Proceedings of the 2013
3rd International Conference in Communication and Information Technology (ICCIT), Beirut, Lebanon,
19–21 June 2013; pp. 22–27.

54. Papp, D.; Ma, Z.; Buttyan, L. Embedded systems security: Threats, vulnerabilities, and attack taxonomy.
In Proceedings of the 2015 13th Annual Conference on Privacy, Secur Trust (PST), Izmir, Turkey, 21–23 July
2015; pp. 145–152.

55. Scarfone, K.; Mell, P. Guide to Intrusion Detection and Prevention Systems (IDPS); National Institute of Standards
and Technology: Gaithersburg, MD, USA, 2007; pp. 1–127.

56. Hartzell, S.; Stubel, C. Automobile CAN Bus Network Security and Vulnerabilities (2018). Available online:
https://canvas.uw.edu/files/47669787/download?download_frd=1 (accessed on 15 July 2019).

57. Asvestopoulos, A. Intrusion Protection of in-Vehicle Network: Study and Recommendations. Available
online: www.kth.se (accessed on 27 May 2019).

58. Jamie, riden. CLIENT-SIDE ATTACKS. 2008. Available online: https://www.sciencedirect.com/topics/
computer-science/client-side-attack7 (accessed on 28 July 2019).

59. Khandelwal, S. New Drammer Android Hack Lets Apps Take Full Control (root) of Your Phone. 2016. Available
online: https://thehackernews.com/2016/10/root-android-phone-exploit.html (accessed on 15 July 2019).

60. Evenchick, E. Hopping on the CAN bus. In Proceedings of the Black Hat Asia, Marina Bay Sands, Singapore,
24–27 March 2015.

61. CAN SNIFFER-Technical Description, CANLAB s.r.o. Available online: http://www.canlab.cz. (accessed on
15 July 2019).

62. Kushawah, S. Most Popular Types of WiFi Cyberattacks. Available online: https://socialwifi.com/knowledge-
base/network-security/most-popular-types-wifi-cyberattacks/ (accessed on 15 July 2019).

63. Schnoebelen, P. The Complexity of Temporal Logic Model Checking. Adv. Modal Log. 2002, 4, 35–79.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

