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Abstract: High consumption of electricity represents an economic and social problem in warm
places, caused by the massive use of cooling machines. Absorption systems are a sustainable
method for air conditioning applications. However, environmental conditions should be analyzed to
avoid crystallization problems of the working mixture. This article presents a thermal analysis of
a solar absorption cooling system in dynamic conditions using NH3-H2O, H2O-LiBr, NH3-NaSCN,
NH3-LiNO3, and H2O-LiCl working mixtures using Equation Engineering Solver (EES) and
TRaNsient SYstem Simulation (TRNSYS) software. A solar collector area of 42.5 m2 was selected to
carry out the thermal analysis. The results showed that H2O-LiCl obtained the maximum solar (0.67)
and minimum heating (0.33) fraction. However, it obtained the maximum lost heat fraction (0.12),
in spite of obtaining the best coefficient of performance (COP) among the other working mixtures,
due mainly to a crystallization problem. The gain fraction (GF) parameter was used to select the
adequate solar collector number for each working mixture. NH3-LiNO3 and NH3-H2O obtained the
highest GF (up 6), and both obtained the maximum solar (0.91) and minimum heating (0.09) fraction,
respectively, using 88.8 and 100.4 m2 of solar collector area, respectively.

Keywords: solar absorption cooling; evacuated tube solar collector; dynamic condition; crystallization

1. Introduction

Cities located in warm places have a high consumption of electricity, especially in the summertime.
This is a socio-economic and environmental problem that is due to the use of air conditioning and
refrigeration. They are largely based on the consumption of non-renewable primary resources.

Solar-powered absorption cooling systems use solar heat to drive an absorption chiller and
produce a cooling effect in a sustainable way; however, some working mixtures have crystallization
problems depending on the changes in environmental temperature, and this is the main problem for
these devices because it blocks the internal pipes and stops the chiller operation [1].

In the literature, there are some studies about absorption cooling systems (ACS) in dynamic
conditions: Ahmed et al. [2] carried out a simulation based on a performance analysis of a solar
assisted single effect absorption cooling system for two system configurations in TRaNsient SYstem
Simulation (TRNSYS). In configuration 1 (C-1), the working fluid returning from the generator of
the absorption chiller flows toward the hot storage tank. In configuration 2 (C-2), the working fluid
returning from the absorption chiller may become isolated from the collector-storage tank loop if the
fluid temperature in the storage tank is inferior to the required temperature and is directly fed to the
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auxiliary boiler. The results showed that C-2 resulted in higher energy saving than C-1 for the whole
summer season.

Stanciu et al. [3] analyzed an NH3-H2O absorption cooling system driven by solar energy.
A fully mixed hot water storage tank was used to provide the thermal energy to the generator from
the heat collected by a fixed oriented parabolic trough collector. According to the author’s results, for
the longest continuous operation of the NH3-H2O cooling system (from 09:00 to 17:10) 10 m × 2.9 m
parabolic trough collector (PTC) aperture dimensions with a 0.16 m3 storage tank volume were
calculated at 10 ◦C of evaporator temperature. In the same year, Stanciu et al. [4] simulated a solar
driven cooling system consisting of a single effect H2O-LiBr absorption cooling system, a parabolic
trough collector, and a storage tank module was analyzed for one full operation day. The simulation
was constrained to operate at the maximum exergetic efficiency of the absorption system, under a
time-dependent cooling load. A constant evaporator of 10 ◦C was considered. To set up the solar
assembly, two commercial PTCs were selected, namely PT1-IST and PTC 1800 Solitem. The results
showed that the best choice for the studied case was the use of two commercial PTC 1800 collectors
connected in series with a modular storage tank with capacities of 90 and 140 kg. The simulation
incorporated the fact that the system operates continuously between 09:00 to 18:00 on a calm day
(0.2 m/s wind velocity). On a windy day (considering a wind speed of 5 m/s), the computations
revealed that the operation time interval was reduced to 09:00 to 17:40 due to important energy losses
in the PTC.

Sokhansefat et al. [5] carried out a parametric analysis to find the optimum configuration for a
5-ton capacity solar absorption system in transient conditions using TRNSYS software in Tehran. The
results indicated that the performance of the setup is capable of 28% enhancement. The optimum
values were a collector area of 55 m2, storage tank volume of 1 m2, temperature set point of the
auxiliary boiler of 77 ◦C, solar collector mass flow rate at 1000 kg/h, and collector slope of 33◦.

Antonopoulos and Rogdakis [6] studied the performance of absorption heat pumps using
NH3-LiNO3 and NH3-NaSCN in Atenas, Greece. The results showed that NH3-LiNO3 was better than
NH3-NaSCN for heating because it provides a higher heat-gain factor and useful thermal power. For
cooling the NH3-LiNO3 system provides a higher cooling power, while NH3-NaSCN achieves a higher
coefficient of performance (COP).

Florides et al. [7] presented an H2O-LiBr solar absorption cooling system simulation in TRNSYS
software under typical conditions in Nicosia, Cyprus. That study consisted of optimizing the storage
tank size, slope, and area of the parabolic solar collector. The results showed that the ideal size of the
solar collector was 15 m2 with an inclination of 30◦ and 600 L of the storage tank for the generation of
84,240 MJ. Arzoz et al. [8] presented a simulation of a double effect absorption cooling of 3 kW with
NH3-LiNO3 using flat solar collectors in Madrid, Spain. The results showed that the equipment could
operate about 6 hours of solar cooling at −15 ◦C, obtaining a COP of 0.3 at a condensation temperature
of 40 ◦C of condensation temperature. The thermal fluid reached a maximum temperature of 100 ◦C
with a solar efficiency of 0.27.

De Francisco et al. [9] carried out a test for the NH3-H2O absorption refrigeration system at 2 kW.
The generated heat was dissipating by natural convection in the absorber and condenser components
and the system was manually controlled. The results showed that the COP obtained was very low
(0.05); however, the authors concluded that it could be improved using forced convection.

Assim et al. [10] modeled an absorption chiller operated by hot water using an evacuated tube
collector in TRNSYS software. It was found that the use of a hot water storage tank and a 12 m2

collector area were sufficient to maintain the room temperature at 26 ◦C or below during the cooling
season. Agrouaza et al. [11] studied a solar cooling system in several cities of Morocco and it was
found that Errachindia city obtained the best average annual solar fraction (30%) and a COP value of
0.33. The COP values varied from 0.12 to 0.33 all across the year in other regions.

The H2O-LiBr and NH3-H2O are the conventional working mixtures used in commercial
absorption systems due to advantages in their thermodynamic properties. H2O-LiBr obtained
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higher COP than the NH3-H2O system, though it has crystallization problems. The NH3-LiNO3

and NH3-NaSCN systems are a suitable alternative to NH3-H2O and both have the advantage of
working either refrigeration or air conditioning [12], even though the values of COP are a little higher
than the NH3-H2O system at a high generator temperature. Recently Gogoi and Knowar [13] carried
out an energetic and energetic comparison with H2O-LiCl and H2O-LiBr systems under a similar
working condition. They concluded that H2O-LiCl obtained a higher COP than the H2O-LiBr system.
However, H2O-LiCl has crystallization problems that depend on environmental temperature changes.
Table 1 shows a comparison of working mixtures.

Table 1. Comparative data among working mixtures.

Working Mixture COP *1 TACT *2 Crystallization Price *3 (USD) Pressure (Bar) Refrigeration Condition

H2O-LiBr 0.80 low medium 131.35 (≥99.0 wt %) vacuum no
H2O-LiCl 0.82 low high 153.35 (>99.0 wt %) vacuum no
NH3-H2O 0.67 medium no 193.45 (>99.9 wt %) >10 yes

NH3-LiNO3 0.69 medium medium 353.25 (>99.0 wt %) >10 yes
NH3-NaSCN 0.65 medium medium 180.20 (>98.0 wt %) >10 yes

*1 Operation condition: TGE = 75 ◦C, TAB = TCO = 35 ◦C, TEV = 8 ◦C; *2 TACT Activation temperature of the single
stage absorption chiller; *3 Sigma-Aldrich, web page: www.sigmaaldrich.com.

Most papers published about the absorption cooling system mainly use only one working mixture
in dynamic conditions. The objective of this paper was to carry out a thermodynamic analysis of an
ACS using conventional (NH3-H2O and H2O-LiBr) and unconventional (NH3-LiNO3, NH3-NaSCN,
and H2O-LiCl) working mixtures based on the COP and the limitation on the crystallization of the
solution for dynamic conditions.

2. Description of the System

The present study consists of the cooling of a building via a single stage absorption cooling
system using evacuated solar collectors (SC) and an auxiliary system (AS), as shown in Figure 1. The
auxiliary system is used to control the temperature coming from the solar collectors to the generator
component (GE).
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3. Simulation of the Solar Cooling System 

The TRNSYS [14] software was used to simulate the solar absorption system for the cooling of a 
building located in Temixco City, Mexico. Figure 2 shows the schematic diagram of the process. There 
are two main circuits: solar collector (red line) and cooling (blue line). In the solar collector circuit, 
heating fluid (water) is pumped (Type 3d) from a storage tank (Type 4a) into the evacuated solar 
collector (Type 1b) and returned to the tank. This pump is controlled by Type 2b and it is turned on 
when the output is higher than the input temperature of the solar collector; otherwise, it is turned off. 
In the cooling circuit, a heating fluid is sent to the auxiliary system (Type 66a) to control the supply 
temperature and enter towards to the generator component of the absorption cooling system (Type 
66a-2). Finally, it is pumped by Type 3d-2 to the tank. The pump Type 3d-2 is controlled by Type 2b-

Figure 1. Diagram of the cooling system: (a) building; (b) absorption cooling system; and (c) solar
collector and auxiliary system.

3. Simulation of the Solar Cooling System

The TRNSYS [14] software was used to simulate the solar absorption system for the cooling of
a building located in Temixco City, Mexico. Figure 2 shows the schematic diagram of the process.
There are two main circuits: solar collector (red line) and cooling (blue line). In the solar collector
circuit, heating fluid (water) is pumped (Type 3d) from a storage tank (Type 4a) into the evacuated
solar collector (Type 1b) and returned to the tank. This pump is controlled by Type 2b and it is turned
on when the output is higher than the input temperature of the solar collector; otherwise, it is turned
off. In the cooling circuit, a heating fluid is sent to the auxiliary system (Type 66a) to control the supply
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temperature and enter towards to the generator component of the absorption cooling system (Type
66a-2). Finally, it is pumped by Type 3d-2 to the tank. The pump Type 3d-2 is controlled by Type
2b-2 and it is turned on when the building cooling load (Type 56) was activated to keep an indoor
temperature below 25 ◦C. Type 66a and Type 66a-2 are programmed in Equation Engineering Solver
(EES [15]) and both are coupled with the TRNSYS model for an hourly simulation.
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Figure 2. Diagram of the solar cooling system in TRaNsient SYstem Simulation (TRNSYS).

The TRNSYS software has incorporated modules (types) to model a single-effect absorption chiller
from normalized data from catalogs of the manufacturer. However, NH3-LiNO3, NH3-NaSCN, and
H2O-LiCl are still not available. Therefore, it was necessary to develop the mathematical model for
each working mixture to simulate the ACS (Appendix A presents the basic equations, suppositions,
and validation). The interaction between the Type 66a-2 and Type 56 consisted in: the instant cooling
capacity of the building is equal to the evaporator component of the ACS. The operation of the ACS
incorporated a heat transfer in the generator component of ∆T = 5 ◦C between the supply and generator
temperatures (TSUPPLY = TGE + 5 ◦C) using water as the heating fluid. The heat transfer between the
environment, and the condenser and absorber components involved a ∆T = 10 ◦C (TCO = TAB = TENV

+ 10 ◦C) cooled by air.
Type 66a is the auxiliary system and it was used to control the supply temperature to the ACS by

using a heating (QHS) or dissipating (QDS) system.
The solar thermal collector efficiency (Type 1b) was calculated using a quadratic or linear efficiency

equation according to ASHRAE or European standards. The solar collector is an HTP-Evacuated Tube
HP-30SC [16] with a net aperture area of 3.86 m2. The cover is made of a glass vacuum tube and the
absorber material is made of tube-copper and steel/plate-glass, with a tilt angle of 19◦ (corresponding
to the location latitude). The solar thermal collector efficiency is presented in Equation (1) [16],

η = 0.418 − 1.17
(TIN − TENV)

QRAD
(1)

where TIN and TENV are the input temperatures of the solar collector and environment temperature,
respectively, and QRAD is the global radiation incident (W/m2 ◦C).

The Type 56 is a multi-zone building with 4 windows and only one zone, with some dimensions
and main building characteristics shown in Table 2. Four occupants in a rest position and three
computers turned on from 08:00 to 18:00 were considered as heat generation.
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Table 2. Building characteristics.

Concept Quantity

North and south wall 35 m2

Ceiling and floor 75 m2

West and east wall 12.5 m2

Thickness of walls 0.12 m brick
Windows 1 m2

Air change of ventilation 6 h−1

The Type 4a is a stratified storage tank. The properties and working conditions supplied were: a
heat capacity of 4.19 kJ/kg K, a height of 1 m, an initial temperature of 70 ◦C, and a loss coefficient =
0.75 W/m2 K. The characteristics of the thermal insulation are: density = 16 kg/m3, thickness = 0.05 m
and, thermal conductivity = 0.05 W/m K.

4. The Mathematical Model of the Solar Cooling System

4.1. Assumptions

• The pressure drops and heat losses are negligible for each pipeline.
• Fraction pump power (The energy converted to fluid thermal energy, fpar) was 0.05.

4.2. Basic Equation (Energy and Mass Balances)

This section presents a brief mathematical description [17] for each component model (Types).
The pump (Type 3d) computes a mass flow rate using a variable control function (0 ≤ γ ≤ 1) and

a fixed (user-specified) maximum flow capacity (mMAX).

mIN Cp (TOUT − TIN) = P fpar (2)

mOUT = γ mMAX (3)

where fpar is the fraction pump power, p is the power (kW), mOUT is the output mass flow rate (kg/s)
and, Cp is the heat capacity of the fluid (kJ/kg K).

The solar collector (Type 1b) uses a general equation for solar thermal collector efficiency (η) and
it is calculated via Equations (4) and (5),

η =
QU

AQRAD
=

mCp(TOUT − TIN)

AQRAD
(4)

where QU is the useful heat of the solar collector (W), A is the gross area (m2) and, QRAD is the global
radiation incident on the solar collector (W/m2). Equation (4) can be rewritten as:

η = a0 − a1
(TIN − TENV)

QRAD
− a2

(TIN − TENV)
2

QRAD
(5)

where the constants a0, a1 and a2 are, respectively, the intercept of the collector efficiency, the negative
of the first-order coefficient and the negative of the second-order coefficient. The quadratic Equation (5)
can be written as a linear Equation (1) with very similar results.

The stratified storage tank (Type 4a) can be modeled by assuming that the tank consists of
N fully-mixed equal volume segments. An energy balance written in the ith tank segment (i) is
expressed as:

miCp,f
dTi

dt
= αimhCp,f(Th − Ti) + βimLCp,f(TL − Ti) + UAi(TENV − Ti) (6)
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where m, T, and t are the mass flow rate, temperature and time, respectively. Subscripts h, L, and f
are the solar collector, cooling auxiliary circuits and fluid, respectively (see Section 3), αi and βi are a
control function, and U is the loss coefficient between the tank and its environment (kW/m2 ◦C).

The Quantity integrator (Type 24) integrates a series of quantities over a period of time using the
following equation,

Yi =
w

Xidt (7)

where Xi is the ith quantity to be integrated and Yi is the time integral of Xi

The multizone building (Type 56) models the thermal behavior of a building having multiple
thermal zones, with the thermal capacity of the air volume and capacities which are closely connected
with the air node (see Figure 3a). The convective heat that flows to the air node is calculated using
Equation (8).

Qi = Qsuf,i + Qinf,i + Qvent,i + Qic,i + Qaf,i + Qsolar,i + Qasr,i (8)

Qsurf,i = hiA(Tsurface,i − Tair) (9)

Qinf,i = VρCp(Toutside,i − Tair) (10)

Qvent,i = VρCp(Tventilation,i − Tair) (11)

Qaf,i = VρCp(Tzone,i − Tair) (12)

where the subscripts surf, inf, vent, ic, af, solar and asr are the energy gain for convective heat due to
the: surfaces, infiltration (air flow from the outside only), ventilation (user-defined air flow), internal
convective heat (people, equipment, radiator, etc.), the air flow from air node i or boundary condition,
the fraction of solar radiation (due to the external windows) and the absorbed solar radiation on all
internal shading devices that is directly transferred as a convective gain to the internal air, respectively.
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The radiative heat flowing through the wall and window is calculated via Equation (13) (see
Figure 3b),

Qw,i = Qsurf,w,i + Qsolar,w,i + Qlong,w,i + Qgain,w (13)

where Qw,i represents the radiative gains for the wall surface temperature node, Qsurf,w,i represents the
radiative air node internal gains received by the wall, Qsolar,w,i represents the solar gains through the
zone windows received by the walls, Qlong,w,i represents the longwave radiation exchange between
this wall and all the other walls and windows, and Qgain,w represents the user-specified heat flow to
the wall or window surface. All of these quantities are given in kW.

The auxiliary system (Type 66a) is used to control the supply temperature (TSUPPLY), when the
storage tank temperature (TT) is lower than TSUPPLY (obtained from Table 3); the heating system (QHS)
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is activated using a simple energy balance (Equation (14)); otherwise, the dissipation system (QDS) is
activated and Equation (15) is applied to it:

QHS = m Cp (TT − TSUPPLY) (14)

QDs = m Cp (TSUPPLY − TT) (15)

Table 3. Operation range of the supply temperature range for absorption cooling system (ACS).

TCO = TAB, ◦C <35 <38 <40 <42 <43 <44

TSUPPLY, ◦C (NH3-H2O) 73–135 80–135 85–135 90–135 93–135 96–135
TSUPPLY, ◦C (NH3-LiNO3) 70–35 76–135 81–135 85–135 86–135 90–135
TSUPPLY, ◦C (NH3-NaSCN) 73–114 80–121 85–126 90–129 93–132 95–133

TSUPPLY, ◦C (H2O-LiBr) 72–90 78–96 83–100 87–103 90–106 92–107
TSUPPLY, ◦C (H2O-LiCl) 71–74 77–81 82–85 86–88 88–90 91–92

The Differential controller (Type 2b) is an on/off differential controller that, can have a value of 1
or 0. The value of the control signal is chosen as a function of the difference between upper (Th) and
lower (Tl) temperatures, and both are compared with two dead-band temperature differences ∆Th
and ∆Tl. The new value of the control function depends on the value of the input control function at
the previous time step.

The weather data processor (Type 15-2) serves the purpose of reading data at regular time intervals
from an external weather data file, interpolating the data at time steps of less than one hour, and
making it available for other TRNSYS components.

4.3. Numerical Procedure

The TRNSYS library includes many of the components commonly found in thermal and electrical
energy systems, as well as component routines to handle input of weather data or other time-dependent
forcing functions and output of simulation results. The default solver uses successive substitutions in
order to solve the systems equations. The iterative numerical methods are based on a guess or initial
values that are used as starting points for the iterations. If the system’s equating is very complex it
needs a good guess value [17].

EES software uses a variant of Newton’s method [18] to solve systems of non-linear algebraic
equations. The Jacobian matrix needed in Newton’s method is evaluated numerically at each iteration.
Sparse matrix techniques are employed to improve calculation efficiency and permit rather large
problems to be solved in the limited memory of a microcomputer. The efficiency and convergence
properties of the solution method are further improved by the step-size alteration and implementation
of the blocking algorithm which breaks the problems into a number of smaller problems which are
easier to solve. Several algorithms are implemented to determine the minimum or maximum value of
a specified variable.

EES software supports Dynamic Data Exchange (DDE) commands in order to exchange
information with other programs. DDE is a method of sending information to other programs through
the Microsoft Windows operating system. Type 66 makes use of DDE commands to launch EES, pass
parameter and input information to EES, and ask EES to solve and recuperate output information,
which is then treated like the output from any other TRNSYS component [17].

5. Operation Range of the Auxiliary System (AS)

An analysis of the environment temperature was carried out in order to select the time of operation
of the absorption cooling system (ACS). Type 15-2 was built in the TRNSYS software to simulate a
year’s environmental conditions obtained from meteorological data in Temixco city, Mexico. Figure 4
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shows the environment temperature and global radiation profiles across a year. The period from
March to May (1460–3560 h) was selected to operate the absorption system due to the highest ambient
temperature in a year (blue box). The maximum and minimum environment temperatures were 16.3
and 33.5 ◦C, these conditions will be used to dissipate the heat load in the condenser and absorber
components of the ACS. It is a limitation of the working operation because ACS could fall into the
crystallization zone or low COP depending on the environmental temperature. COP is defined as the
ratio of the energy absorbed in the evaporator to the energy supplied by the generator.
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Figure 4. Environment temperature behavior along a year.

Figure 5 shows the minimum and maximum condenser and absorber temperatures that ACS will
operate across the 3 months at 8 ◦C of the evaporator temperature. H2O-LiCl obtained the highest
COP (around 0.80–0.85) at TCO = TAB = 30 ◦C and NH3-H2O obtained the lowest COP value (lower
than 0.70). On the other hand, H2O-LiBr obtained the highest COP (around 0.73) and NH3-H2O the
lowest value (lower than 0.53) at TCO = TAB = 44 ◦C. It is clear that the increment of TCO and TAB,
decrease in the range of operation of ACS, mainly in the case of H2O-LiCl, and range of operation of
the generator temperature is from 55 to 69 ◦C (∆T = 14 ◦C) and from 86 to 87 ◦C (∆T = 1 ◦C) at a TCO =
TAB of 30 and 44 ◦C, respectively.
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Figure 5. The coefficient of performance as a function of the generator temperature of an absorption
cooling system.
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The NH3-LiNO3 and NH3-NaSCN system obtained similar COP values; however, NH3-LiNO3

has a wider operating range than the NH3-NaSCN system. Both mixtures obtained a COP of around
0.68 to 0.72 and 0.60 to 0.63 at TCO = TAB = 30 and 44 ◦C, respectively.

Figure 6 shows the temperature as a function of the solution mass fraction for the absorber input,
which is one of the streams most susceptible to fall in the crystallization zone (Point 4, from Figure 1b)
corresponding to the same working condition in Figure 5. Crystallization temperatures are obtained
mainly when the generator temperature obtained the maximum values; this means that the limit
generator temperature is 82◦ at TCO = TAB = 30 ◦C in the case of the H2O-LiBr that corresponds to a
0.67 mass fraction and to 45 ◦C (Figure 6) located next to the crystallization line, as shown in Figure 7.
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Figure 7. Crystallization curves for several working mixtures.

Note that the mass fraction for H2O-LiBr and H2O-LiCl are defined as the ratio of the mass of the
absorbent to the mass of the solution, and NH3-LiNO3 and NH3-NaSCN are defined as the ratio of the
mass of the refrigerant (NH3) to the mass of the solution.

The Auxiliary system (Type 66a) controls the supply temperature of the ACS in a dynamic way
because the storage tank (T) and environment temperatures change throughout the day. When the
supply temperature (see Table 3) was lower than the operation range, a heating system (QHS) is turned
on, when it was higher than operation range it is turned off and the dissipating heat system (QDH) is
turned on. Table 3 shows the operation range of the supply temperature in order to obtain COP values
of up to 0.4 or in order to avoid falling into the crystallization zone for each working mixture.

It was necessary to work at several ranges when working in the generator temperature because a
wider temperature range limits its function due to the crystallization (except the NH3-H2O system);
besides, 135 ◦C was fixed as the maximum supply temperature.
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6. Simulation Results

The total cooling energy consumption of the building was 1.43 × 107 kJ evaluated during 3
months, fixing a maximum indoor temperature of 25 ◦C. This value was calculated using Type 24,
which integrates the instant cooling capacity over the time interval of the summary. Figure 8 shows
the behavior of indoor and environment temperatures and the cooling capacity from 2000 to 2160 h
(one week); as can be seen the cooling capacity was turned off when the indoor temperature was lower
than 25 ◦C.Energies 2018, 11, x FOR PEER REVIEW  10 of 19 
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Figure 8. Indoor temperature and cooling capacity of the building.

The fractions of solar collector (SF), heating (HF), lost heat (LF) and Gain (GF) were the
parameters we selected to compare each working mixture systems. They were defined in Equations
(16)–(19) respectively.

SF = QtSC/QtIN (16)

HF = QtHS/QtIN (17)

LF = QtLH/QtIN (18)

GF = QtSC/(QtHS + QtLH) (19)

QtIN is the total energy input to the system due to the solar collectors (QtSC) and heating system
(QtHS). QtLH is the lost heat caused by the dissipating heat system (QtDH) and the storage tank (QtT).

Figure 9 shows the number of solar collectors as a function of energy fractions, fixing a storage
tank volume of 2 m3 and a flow rate of 1000 kg/h for pumps P1 and P2. A collector area of 42.5 m2

(11 solar collectors) was selected to compare each absorption system because this is the minimum
number to satisfy the adequate relationship between the solar and heating fraction for all working
mixtures. Note that the H2O-LiCl system can be satisfied using 30 m2 of collector area. Moreover,
the lost heat fraction (red line) has a constant value around 0.07 for all working mixtures with few
solar collector areas. It was caused by the energy loss from the storage tank; however, when the solar
collector is increased, the LF increases significantly, mainly for H2O-LiBr and H2O-LiCl systems, and
this is because the dissipating heating system is activated.
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Figure 9. Energy fractions for each working mixture.

Figure 10 shows the COP behavior for each working mixture across one week from using 11 solar
collectors (42.5 m2); as can be seen the H2O-LiCl system obtained the highest COP value (around
0.78–0.86), H2O-LiBr obtained 0.70–0.83 and the NH3-LiNO3, NH3-NaSCN and NH3-H2O systems
obtained around 0.50–0.71.

Table 4 shows a resume of energy fractions evaluated over 3 months. The numbers that appear on
the left side mean the best (1) and the worst (5) condition values. H2O-LiCl obtained the maximum
solar (0.67) and minimum heating (0.33) fraction; however, it obtained the maximum (0.12) lost heat
fraction. This last value means that 12% of the energy supplied (QIN) was lost in the storage tank and
the dissipating heat system. Note that SF + HF = 1.



Energies 2018, 12, 259 12 of 19

Energies 2018, 12, x FOR PEER REVIEW  11 of 19 

 

  

 

Figure 9. Energy fractions for each working mixture. 

Figure 10 shows the COP behavior for each working mixture across one week from using 11 

solar collectors (42.5 m2); as can be seen the H2O-LiCl system obtained the highest COP value (around 

0.78–0.86), H2O-LiBr obtained 0.70–0.83 and the NH3-LiNO3, NH3-NaSCN and NH3-H2O systems 

obtained around 0.50–0.71. 

 

Figure 10. The coefficient of performance as a function of time. 

Table 4 shows a resume of energy fractions evaluated over 3 months. The numbers that appear 

on the left side mean the best (1) and the worst (5) condition values. H2O-LiCl obtained the maximum 

solar (0.67) and minimum heating (0.33) fraction; however, it obtained the maximum (0.12) lost heat 

fraction. This last value means that 12% of the energy supplied (QIN) was lost in the storage tank and 

the dissipating heat system. Note that SF + HF = 1. 

  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40 50 60 70

E
n

er
g

y
 f

ra
ct

io
n

Collector area, m2

NH3-LiNO3

EFHS

EFLS

EFSC

HF

LF

SF

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40 50 60 70

E
n

er
g

y
 f

ra
ct

io
n

Collector area, m2

NH3-NaSCN

EFHS
EFLS
EFSC

HF

LF

SF

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10 20 30 40 50 60 70

E
n

er
g

y
 f

ra
ct

io
n

Collector area, m2

NH3-H2O

EFHS
EFLS
EFSC

HF

LF

SF

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2000 2040 2080 2120 2160

C
O

P

Time, h

NH3-H2O

NH3-NaSCN

H2O-LiCl

NH3-LiNO3

H2O-LiBr

Figure 10. The coefficient of performance as a function of time.

Table 4. Resume of energy fractions for all working mixtures.

Working Mixture Solar Collector Area SF HF LF

H2O-LiCl 42.5 (1) 0.67 (1) 0.33 (5) 0.12
H2O-LiBr 42.5 (2) 0.64 (2) 0.36 (4) 0.08

NH3-LiNO3 42.5 (3) 0.54 (3) 0.46 (1) 0.05
NH3-NaSCN 42.5 (4) 0.52 (3) 0.48 (3) 0.06

NH3-H2O 42.5 (5) 0.50 (5) 0.50 (1) 0.05

Table 5 shows the total energy of the solar collector (QtSC), heating (QtHS), storage tank (QtLH,T)
and dissipation heat (QtLH,D) evaluated during 3 months for each working mixture using 42.5 m2 of
collector area. The NH3-LiNO3 system obtained the maximum value of energy from solar collectors
(2.13 × 107 kJ) and the H2O-LiBr system was the worst (2.04 × 107 kJ). It was caused because the
H2O-LiBr system obtained a better COP value than the NH3-LiNO3 system; therefore, the storage tank
temperature starts to increase, reducing the solar collector efficiency.

Table 5. Total energy using 11 solar collectors (42.5 m2).

Working Mixture QtSC (kJ) QtHS (kJ) QtLH,T (kJ) QtLH,D (kJ)

H2O-LiCl (4) 2.07 × 107 (1) 9.99 × 106 (4) 2.33 × 106 (5) 1.31 × 106

H2O-LiBr (5) 2.04 × 107 (2) 1.13 × 107 (5) 2.42 × 106 (4) 4.04 × 104

NH3-LiNO3 (1) 2.13 × 107 (3) 1.81 × 107 (1) 2.14 × 106 (1) 0.0
NH3-NaSCN (3) 2.08 × 107 (4) 1.89 × 107 (3) 2.31 × 106 (1) 0.0

NH3-H2O (2) 2.09 × 107 (5) 2.10 × 107 (2) 2.26 × 106 (1) 0.0

The H2O-LiCl and H2O-LiBr systems obtained the minimum consumption of heating energy
(9.99 × 106 kJ and 1.13 × 107 kJ, respectively), while the NH3-H2O system obtained the maximum
value (2.10 × 107 kJ) because these systems can operate at a lower generator temperature than the
NH3-H2O system.

The lost energy was caused mainly by the storage tank. The NH3-LiNO3 system obtained the
lowest value of lost energy in the storage tank (2.14 × 106 kJ) and H2O-LiBr obtained the highest
(2.42 × 106 kJ), caused by the highest storage tank temperature. The lost energy due to the dissipating
system was only activated for the H2O-LiCl and H2O-LiBr systems.

Figures 11 and 12 show the effect volume and the thickness of the insulator of the storage tank
on the solar and heating fraction, respectively. The increment of the tank volume slightly lowers the
values of SF, which positively affects the HF values.
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Figure 11. The energy fraction as a function of the volume tank using different working mixtures.
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Figure 12. The energy fraction as a function of the insulation thickness of the storage tank.

The increment of the insulation thickness of the tank positively affects the solar fraction and
negatively affects the heating fraction. Moreover, when the insulation thickness was higher than 0.08
m, the energy fractions were slightly affected by it.

Figure 13 shows that the increments of the solar collector area, the solar and lost heat fraction
increase too. The maximum SF obtained was around 0.90 for the H2O-LiBr and H2O-LiCl systems
using 77.20 m2 of collector area and was 0.94 for the other working mixtures using 108.1 m2 of collector
area. After these values, the increment of the solar collector area will affect softly to the SF because the
dissipation heat system is activated to avoid crystallization problems or COP values lower than 0.4
and because the generator temperature was limited to 135 ◦C.
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Figure 13. The energy fraction as a function of the number of solar collectors using different
working mixtures.

The solar fraction shows a linear behavior from 15 to 50 m2 of collector area for all working
mixtures, after which the increment shows a logarithmic behavior because the energy lost (LF) starts
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to increase due to the dissipation system. In order to select the adequate number of solar collectors
for each working mixture, a maximization of the gain fraction (GF) parameter was carried out. This
parameter represents the best relationship between the solar energy and the energy that is “not
desirable” (the heating system and lost heat from the storage tank and dissipation system). Each
working system obtained a maximum value of GF of 2.3, 3.8, 4.7, 6.1 and 6.6 for the H2O-LiCl, H2O-LiBr,
NH3-NaSCN, NH3-H2O and NH3-LiNO3 systems, respectively as is shown in Figure 14. Table 6 shows
the number of solar collectors for each working mixture system and the energy fractions based on the
GF. The H2O-LiCl system obtained the minimum solar collector area (54.0 m2), however, it obtained
the maximum lost heat fraction (0.20) and the lowest solar fraction value (0.78). It was caused by
the short working operation due to the crystallization problem. Meanwhile, the NH3-LiNO3 and
NH3-H2O systems obtained the maximum solar (0.91) and minimum heating (0.09) fraction, using an
area solar collector of 88.8 and 100.4 m2, respectively. This means that this system could operate at a
higher solar collector number with low lost energy.
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Figure 14. The gain fraction as a function of the number of solar collectors using different
working mixtures.

Table 6. Results of energy fractions.

Working Mixture GF No. of Solar Collector Solar Collector Area (m2) SF HF LF

H2O-LiCl 2.3 14 54.0 0.78 0.22 0.20
H2O-LiBr 3.8 16 61.8 0.85 0.15 0.16

NH3-NaSCN 4.7 17 84.9 0.88 0.12 0.15
NH3-H2O 6.1 26 100.4 0.91 0.09 0.14

NH3-LiNO3 6.6 23 88.8 0.91 0.09 0.14

7. Conclusions

This paper presented a thermal analysis of the absorption cooling system with different working
mixtures in a dynamic condition for conditioning a building located in Temixco, Mexico using TRNSYS
and EES software. In this study, we analyzed the behavior of the system as a function of the number of
evacuated solar collectors and the volume of the storage tank. The following conclusions are presented:

• The COP of the absorption cooling system analyzed the condenser and absorber temperatures at
30 and 44 ◦C at a fixed evaporator temperature of 8 ◦C, in order to select the operation range of the
generator temperature to avoid obtaining values lower than 0.4 for the COP and crystallization
zone, after which different condenser and absorber temperature ranges were set.

• A solar collector area of 42.5 m2 was selected to carry out the thermal analysis because it
presented the adequate relationship between the energy fraction of the heating system and
the solar collectors. The H2O-LiCl system obtained the maximum solar fraction (0.67) and the
minimum heating fraction (0.33); however, it obtained the maximum lost heat fraction (0.12),
in spite of obtaining the best COP among the other working mixtures. The NH3-LiNO3 system
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obtained the maximum value of energy from solar collectors (2.13 × 107 kJ) and the H2O-LiBr
system was the worst (2.04 × 107 kJ) because it obtained a better COP than the NH3-LiNO3 system.
Therefore, the storage tank temperature starts to increase, reducing the solar collector efficiency.

• The increment of the tank volume decreases the values of SF slightly, which positively affects the
HF values. On the other hand, the increment of the insulation thickness of the tank positively
affects the solar fraction and negatively affects the heating fraction. Moreover, when the insulation
thickness was higher than 0.08 m, the energy fractions were slightly affected by it.

• The maximum solar fraction obtained was around 0.90 for the H2O-LiBr and H2O-LiCl systems
using 77.20 m2 of collector area and was 0.94 for the other working mixtures using 108.1 m2 of
collector area. This is because the dissipation heat system was activated to avoid crystallization
problems or COP values lower than 0.4 and because the generator temperature was limited to
135 ◦C.

• A gains fraction was used to select the adequate solar collector number for each working mixture.
This parameter represents the energy fraction between the solar collectors and the heating system
and lost heat. The H2O-LiCl system obtained the minimum GF (2.3), with a solar collector area
of 54.0 m2 (14 solar collectors). It was caused by a short working operation resulting from the
crystallization problem. On the other hand, NH3-LiNO3 and NH3-H2O obtained the highest GF
(up 6), both obtained the maximum solar (0.91) and minimum heating (0.09) fractions, respectively,
using 88.8 and 100.4 m2 of the solar collector area, respectively.
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Nomenclature

A area, m2

ACS absorption cooling system
AS auxiliary system
COP coefficient of performance, adim
Cp heat capacity, kJ/kg ◦C
m mass flow rate, kg/s
Q heat load, kW
Qt total energy, kJ
SC solar collector
SHX solution heat exchanger
T temperature, ◦C
t time, s
U loss coefficient between the tank and its environment, kW/m2 ◦C
h specific enthalpy, kJ/kg
x liquid ammonia concentration,% by weight
y vapor ammonia concentration, % by weight
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Subscripts
AB absorber
CO condenser
COOL cooling
DH dissipating system
ENV environment
GE generator
HS heating system
HS heating system
IN input
LH lost heat
OUT output
RAD radiation
SC solar collector
Symbols
η efficiency
α control function for solar collector circuit
β control function for cooling circuit

Appendix A.

This section describes the mathematical model of the single stage absorption cooling system to evaluate the
coefficient of performance for each working mixture as well as its validation.

Appendix A.1. Simulation Model

The ACS (Figure 1b) simulation was based on simple mass and energy balances for each component [19]
programmed in the EES software. The suppositions are described as follows:

1. The system operates under steady-state conditions.
2. The pressure drops and heat losses are negligible for each component and pipeline.
3. Expansion valves are adiabatic and isenthalpic.
4. The efficiency (ESHX) of the solution heat exchanger (SHX) is 0.8.
5. The saturated condition at the condenser, evaporator, generator and absorber outlets.
6. The vapor (Point 5 from Figure 1) and solution (3) streams have the same temperature at the generator outlet.
7. The refrigerant is considered pure in the evaporator.
8. The power of the pump is negligible.

Appendix A.2. Energy Balances

Absorber
m1 = m4 + m8 (A1)

m1 x1 = m4 x4 + m8 y8 (A2)

m1 h1 + QAB = m4 h4 + m8 h8 (A3)

Generator
m2 = m3 + m5 (A4)

m2 x2 = m3 x3 + m5 y5 (A5)

m2 h2 + QGE = m3 h3 + m5 h5 (A6)

Condensador
m5 = m6 (A7)

m5 h5 = m6 h6 + QCO (A8)

Evaporador
M7 = m8 (A9)

M7 h7 + QEV = m8 h8 (A10)

Economizer (SHX)
QMAX1 = m1 Cp,1 (T3 − T1) (A11)
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QMAX3 = m3 Cp,3 (T3 − T1) (A12)

QMIN = MIN(QMAX3, QMAX5) (A13)

QSHX = ESHX QMIN (A14)

h2 = QSHX/m1 + h1 (A15)

h4 = h3 − QSHX/m3 (A16)

m1 h1 + m3 h3 = m4 h4 + m2 h2 (A17)

Coefficient of performance

COP =
QEV
QGE

Appendix A.3. Validation

The COP obtained from the CAS simulation were compared with simulations reported by different authors
for each working mixture.

Appendix A.3.1. H2O-LiBr System

The H2O-LiBr thermodynamic properties were obtained from the publication of Patek and Klomfar [20]
programed as a library routine in the EES software. The COP obtained in this study was compared with that
of the Gogoi and Konwar [13] simulation at different temperatures conditions as shown in Table A1. The COP
difference percent was lower than 2.6% between the present simulation and the bibliography.

Table A1. Simulation results of the H2O-LiBr absorption cooling system.

TEV, ◦C TGE, ◦C TCO, ◦C TAB, ◦C COP [13] COP, Author Difference, %

4 70 31 31 0.79 0.79 0.9
5 66 28 35 0.77 0.76 0.8
6 72 33 37 0.73 0.73 0.5
8 85 46 39 0.58 0.60 −2.6
9 66 28 34 0.84 0.83 0.7

Appendix A.3.2. H2O-LiCl System

The H2O-LiCl thermodynamic properties were obtained from the publication of Patek and Klomfar [21] (heat
capacity) and Conde [22] (concentration, density, and enthalpy). The COP obtained in this study was compared
with that of the Gogoi and Konwar [13] simulation at different temperatures conditions as shown in Table A2. The
COP difference percent was lower than 10% between the present simulation and the bibliography.

Table A2. Simulation results of the H2O-LiCl absorption cooling system.

TEV, ◦C TGE, ◦C TCO, ◦C TAB, ◦C COP [13] COP, Author Difference %

4 70 31 31 0.86 0.82 3.6
5 66 28 35 0.86 0.82 4.8
6 72 33 37 0.84 0.79 5.7
8 85 46 39 0.81 0.73 10.0
9 66 28 34 0.85 0.86 2.7

Appendix A.3.3. NH3-LiNO3 System

The NH3-LiNO3 thermodynamic properties were obtained from the publication of Infante Ferreira [23].
Table A3 shows the values of COP obtained from the Sun simulation [12] and from the present work at
an evaporator temperature = −5 ◦C and condenser and absorber = 25 ◦C. The COP difference percent is
lower than 8%.
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Table A3. Simulation results of the NH3-LiNO3 absorption cooling system.

TGE,◦C COP [12] COP, Author Difference %

60 0.52 0.54 3.4
65 0.60 0.65 7.7
75 0.64 0.67 5.5
85 0.64 0.67 4.5
95 0.64 0.65 2.6

Appendix A.3.4. NH3-NaSCN System

The NH3-NaSCN thermodynamic properties were obtained from the publication of Ferreira [23]. Table A4
shows the values of COP obtained from the Sun simulation [12] and the present work at an evaporator temperature
= −5 ◦C and condenser and absorber = 25 ◦C. The COP difference percent is lower than 8%.

Table A4. Simulation results of the NH3-NaSCN absorption cooling system.

TGE, ◦C COP [12] COP, Author Difference %

65 0.53 0.55 3.99
75 0.62 0.65 4.29
85 0.63 0.66 4.70
95 0.63 0.66 3.21

Appendix A.3.5. NH3-H2O System

The NH3-H2O thermodynamic properties were obtained from the publication of Ibrahim and Klein [24]
programmed as an EES Library routine in the EES software. Table A5 shows the values of COP obtained from the
Sun simulation [12] and the present work at an evaporator temperature = −5 ◦C and condenser and absorber =
25 ◦C. The COP difference percent is lower than 13%.

Table A5. Simulation results of the NH3-H2O absorption cooling system.

TGE, ◦C COP [12] COP, Author Difference %

65 0.54 0.56 3.90
75 0.62 0.63 1.21
85 0.62 0.62 0.26

100 0.62 0.60 4.67
120 0.62 0.54 12.75
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