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Abstract: Based on the molecular dynamics method, the calculations for diffusion coefficients were
carried out in binary aqueous solutions of three alcohols: ethanol, isopropanol, and tert-butanol.
The intermolecular potential TIP4P/2005 was used for water; and five force fields were analyzed
for the alcohols. The force fields providing the best accuracy of calculation were identified based
on a comparison of the calculated self-diffusion coefficients of pure alcohols with the experimental
data for internal (Einstein) diffusion coefficients of alcohols in solutions. The temperature and
concentration dependences of the interdiffusion coefficients were determined using Darken’s Equation.
Transport (Fickian) diffusion coefficients were calculated using a thermodynamic factor determined
by the non-random two-liquid (NRTL) and Willson models. It was demonstrated that for adequate
reproduction of the experimental data when calculating the transport diffusion coefficients, the
thermodynamic factor has to be 0.64. Simple approximations were obtained, providing satisfactory
accuracy in calculating the concentration and temperature dependences of the transport diffusion
coefficients in the studied mixtures.

Keywords: diffusion coefficient; molecular dynamics; intermolecular interaction; water; alcohols

1. Introduction

Physicochemical properties of aqueous solutions related to alcohols have for a long time been
a subject of close study due to their wide application in various industries and human activity. It is
known that aqueous solutions of alcohols, as a rule, are quite imperfect systems. This is due to specific
intermolecular interactions that occur between the molecules of alcohol and water. The thermodynamic
conditions of interphase equilibrium (vapor-liquid, liquid-liquid), as well as molecular transport
coefficients, are important for the analysis of industrial processes related to water-alcohol solutions
separation, such as distillation, membrane processes [1–4], etc. Currently, molecular simulation
methods (molecular dynamics, Monte Carlo) are widely used to obtain these data. The accuracy of the
data obtained as a result of molecular simulation is largely determined by the force fields used for
description of intermolecular interactions. An experimental determination of interaction forces for two
molecules is not possible yet [5]; therefore, to describe them, either the quantum-chemical methods [6–8]
or simulative intermolecular potentials has to be used, where the parameters are identified by the
accuracy of the macroscopic properties’ calculation. The latter method has an increased use; however,
the question remains as to which set of macroproperties is necessary to determine parameters of the
force fields so that they could be universal. Moreover, it is known that the same behavior of the
thermodynamic properties of a system can be obtained for a certain set of force field parameters [9].
Currently, there are many large databases on force fields that are focused on the calculation of certain
macroproperties, and many scientific papers are published every year where force fields are offered or
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specified for various substances. This research covers the force fields in the TraPPE database [10] and
those offered in research works [11–14]. The parameters in those research papers, except for [14], have
been determined by the thermodynamic conditions of phase equilibrium. The matter of interest is in
finding the accuracy of description for the diffusion coefficients using these force fields, because the
parameters adjusted according to the equilibrium properties are often unsuitable to describe kinetic
properties [12,15].

In the present work, based on molecular dynamic simulation, the diffusion coefficients for
water-alcohol mixtures of three alcohols were calculated: ethanol, isopropanol, and tert-butanol.
Diffusion coefficients determine the rate of mass transfer processes, and are important for the design
of industrial processes intended for the separation of mixtures. For the calculation of separation
processes, the transport diffusion coefficients are essential, which determine the relative velocity
of the components of the mixture. In addition, based on the mean square path of molecules in a
pure liquid and in a mixture, self-diffusion coefficients and internal diffusion coefficients can be
obtained, respectively. Establishing a relationship between transport and internal diffusion coefficients
is an important task, since the former are easily determined from molecular dynamic simulation,
while the latter are measured in labor-intensive physical experiments. In addition, the transport
diffusion coefficients in liquid mixtures significantly depend on the composition and temperature, and
insignificantly on pressure.

Molecular simulation was widely used to study a mixture of water-alcohol solutions [16]. An article
in [17] provides a comparison of various force fields for ethanol in the simulation of water-alcohol
solutions. The comparison was carried out for three force fields: OPLS, [18,19], TraPPE [10], and
Kirkwood-Buff derived force field [20]; for water, the TIP4P [21] and SPC-E [22] force fields were
used. Calculations of the diffusion coefficient at 298 K showed that all three force fields give an
overestimation. Also, a review of the results for other force fields and the best description of the force
field from [11] were carried out. In [23], simulations of the structure and diffusion coefficient of an
ethanol-water mixture were presented. For water, the TIP4P force field was used for ethanol; a model
adapted according to the works of Gotlib and Piotrovskaya [24] and Van Leeuwen [25] was used.
The presented force field shows an overestimation of the self-diffusion coefficient of both ethanol and
water. In addition, correlations for the coefficients linking the diffusion coefficients of the mixture
with the diffusion coefficients of pure substances are proposed. However, in practice, the proposed
expression is difficult to use, because molecular simulation is required to obtain the parameters of the
proposed expressions. In [26], the diffusion coefficients were calculated at a temperature of 298 K for
the TraPPE and TIP4P/2005 [27] force fields for ethanol and water, respectively; the calculated values
show a slight overestimation. The authors of [28] present calculations of the diffusion coefficient of
tert-butanol. The force field of OPLS and TIP4P indicates an overstatement. The best result can be
achieved by replacing the force field for water with the TIP4P/2005 force field.

The analysis of literature data showed that the ethanol-water mixture has been more explored
than aqueous solutions of isopropanol and tert-butanol. Moreover, they are, as a rule, limited to
simulation at one temperature and, less often, to simulation at two temperatures. In most studies,
only the coefficients of internal diffusion of self-diffusion are analyzed. It can be noted that the best
description of self-diffusion coefficients for water is provided by the TIP4P/2005 force field. For alcohols,
the situation with the selection of the force field is not so unambiguous.

In this paper, the main attention was paid to the possibility of an adequate description of the
temperature and concentration dependences of the transport coefficients in water-alcohol mixtures.
In the paper, based on a comparison of the results of molecular simulation with a physical experiment
on the coefficients of self-diffusion and internal diffusion, we analyzed the accuracy of calculating
several promising force fields selected on the basis of an analysis of literature data. Next, a relationship
between the coefficients of internal and transport diffusion was determined, which ensures adequate
reproduction of experimental data. The simulation results obtained over a wide range of temperatures
and concentrations made it possible to propose a simple and reliable approximation of the concentration
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and temperature dependences of the transport coefficients of diffusion. In this work, the influence of
structural characteristics and hydrogen bonds on kinetic characteristics will not be revealed. A similar
analysis with the use of the all-atom potential for water-alcohol rats was carried out in [28–37].

2. Molecular Simulation

Molecular simulation was conducted using the GROMACS 2018 package (Stockholm University
and the Royal Institute of Technology, Sweden) [38–40] under an NPT ensemble. The systems, which
comprised of 4000 molecules, were simulated. The Nosé—Hoover thermostat was used to maintain
constant temperature; for pressure—Parrinello-Rahman barostat. An integration step for equations of
motion was 0.5 fs.

The simulation was conducted in the following sequence: generation of a system comprised
of 4000 molecules. The cutoff radius of the intermolecular potential was 2 nm. The simulation was
conducted at a temperature 100 K higher than the critical temperature for the given substance and
at a pressure of 10,000 bar. Further, the temperature was decreased in several steps, and then the
pressure was reduced to the specified values. Each stage took 500 ps. Upon reaching thermodynamic
equilibrium, the motion of molecules was calculated over 2000 ps to average the physicochemical
properties. Additional simulation information can be found in Supplementary Materials.

The value of the pure components’ self-diffusion coefficient and the components’ internal diffusion
coefficient in the mixture was determined by the Einstein’s equation:

Di =
1

6τ

〈
(ri(τ) − ri(0))

2
〉

(1)

where τ is the simulation time, r is the atom position, 〈...〉 is averaging across all molecules.

3. Force Fields for Alcohols

To describe the intermolecular interaction of water, the TIP4P/2005 [27] force field was used.
This force field, if compared to the others, demonstrated the best description of various macroproperties
of pure water [41], including the self-diffusion coefficient.

Five united atoms of force fields have been used to describe the intermolecular interaction of
the alcohols. The parameters of the used force fields are shown in Table 1. In parentheses are the
names of the substances for calculation of which that data was used. In the table and further in the
text, force fields have the following tags: FF-1 (TraPPE) [10], FF-2 from research work [11], FF-3 from
research work [12], FF-4 from research work [13], and FF-5 from research work [14]. The cross terms
in the potential of intermolecular interaction were determined according to the combining Lorentz
Berthelot rules.

Two (FF-1 and FF-4) of the used force fields are classified as transferable, the rest were obtained
for the individual alcohols: FF-2 for ethanol, FF-3 for isopropanol, and FF-5 for tert-butanol.

The difference in the molecular structure of the alcohols selected for the simulation was in a
different number of CH3 groups, bound to a carbon atom, which had a link with the oxygen. In this
case, the difference in parameters, for the transferred force fields, will be only for the CHn group
directly bonded to the oxygen atom. For example, for FF-1, an increase in the number of CH3 groups
in homologous series results in attractive energy decrease of the CHn group (ε/kB values for CH2, CH
and C are equal to 46, 10, and 0.5 K respectively), and diameter increase of this group (σ values for
CH2, CH and C are equal to 3.75, 3.95 and 5.8 Å, respectively). For the transferred force fields, it is
associated with a contribution weakening of the inner group surrounded by CH3 and OH groups to
the intermolecular van der Waals interactions.

FF-1, FF-2, and FF-4 are the force fields of alkanes; therefore, for the intermolecular interactions of
alcohols, only the OH group parameters and the charge of the CHn group bound to the oxygen atom
was selected. In the FF-3 force field, parameters were identified for all interaction groups in two stages:
by vapor-liquid phase equilibrium—the distances between the interaction centers were adjusted to
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a more accurate description of the transport properties. Thus, the force field can only be used for
isopropanol. The FF-5 force field is a distinctive one, where the parameters were determined from
quantum chemical calculations for all interaction centers. This explains a significant deviation of the
values for FF-5 parameters from the other force fields. For instance, the CH3 group has a small charge.

The force fields FF-2 and FF-4 are based on anisotropic form of the potential. Typically, when
using the united atom force fields, the center of interaction is located on the carbon atom. In case of an
anisotropic potential, the center of interaction shifts to hydrogen atoms and the distance l Å between
the interaction centers varies. In this regard, with an increase in number of CH3 groups in the molecule,
the contribution to the total interaction of the central group (C, CH) has a greater contribution, as
compared to non-anisotropic potentials.

It should also be noted that in the force fields FF-2, FF-3, and FF-5, the molecule was rigid, and in
the FF-1, FF-4, only bonding lengths were fixed (the potentials of valence and torsion angles are given).

Table 1. Parameters of the used force fields.

Site
Property Parameter

FF-1 (TraPPE) [10] FF-2 [11] FF-3 [12] FF-4 [13] FF-5 [14]

(Ethanol, Isopropanol,
Tert-Butanol) (Ethanol) (Isopropanol) (Tert-Butanol) (Tert-Butanol)

transferable + − − + −

Site parameters

CH3

ε/kB, K 98 120.15 103.59 120.150 64.38

σ, Å 3.75 3.6072 3.866 3.607 3.775

q, ē 0 0 0 0 0.0089

CH2

ε/kB, K 46 86.291 86.29

σ, Å 3.95 3.4612 3.261

q, ē 0.265 0.2556 0.265

CH
ε/kB, K 10 20.2 50.98

σ, Å 4.33 3.238 3.363

q, ē 0.265 0.31 0.265

C
ε/kB, K 0.5 15.04 73.08

σ, Å 5.8 2.44 2.93

q, ē 0.265 0.265 0.293

O
ε/kB, K 93 85.053 85.9 125.010 28.52

σ, Å 3.02 3.1496 3.154 3.081 3.25

q, ē −0.7 −0.69711 −0.747 −0.700 −0.7517

H Q 0.435 0.44151 0.437 0.435 0.432

bond length

CH3-CH2 l, Å 1.54 1.9842

CH3-CH l, Å 1.54 1.55

CH3-C l, Å 1.54 1.751 1.53

CHn-O l, Å 1.43 1.71581 1.465 1.44 1.42

O – H l, Å 0.945 0.95053 0.969 0.945 0.95

Constrains Fixed bonds Fixed atom
coordinates

Fixed atom
coordinates

Fixed atom
coordinates Fixed bonds

A comparison of the calculated self-diffusion coefficients of alcohols with experimental data from
research work [42] was conducted in the first stage. The comparison at atmospheric pressure is shown
in Figures 1–3. For ethanol and isopropanol, qualitative and quantitative alignment for both FF-1 and
FF-2 force fields are used. However, force field FF-1 demonstrates a small overshooting. Similarly FF-1
was demonstrated for isopropanol (Figure 2). The best description of the experimental data for ethanol
and isopropanol was demonstrated by force field FF-2 and FF-3, respectively. Owing to the acceptable
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description of self-diffusion coefficients of force fields FF-1, FF-2 for ethanol and of FF-1, FF-3 for
isopropanol, all of these force fields have been applied for the study of mixtures.

The force fields FF-1, FF-4, and FF-5 have been used to simulate tert-butanol. FF-4 was the
only force field with an acceptable description of the self-diffusion coefficient, demonstrating its
slight lowering.

It should be noted that for the FF-1 force field, in the series from ethanol to tert-butanol, there was
an increase in error for description related to the self-diffusion coefficient.
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4. Diffusion Coefficients in Water-Alcohol Solutions

Several rigorous formulations for the description of diffusion in mixtures are known [43].
The formulations contain different diffusion coefficients: the transport diffusion coefficient in Fick’s
equation, the mutual diffusion coefficients in Maxwell-Stefan’s expression, the Onsager coefficients L
in relations of non-equilibrium thermodynamics.

To describe the diffusion in water-alcohol mixtures, the approach of independent diffusion for
mixture components was applied, according to which the molar flow of each component is expressed
as follows:

ji = vini =
Di

kBT
dµi

dz
ni + wni (2)

where, Di is the internal (Einstein) diffusion coefficient determined by Equation (1), µi is the chemical
potential, v is velocity of component, w is velocity characterizing the movement of the system as
a whole. For the one-component case, the velocity value w coincides with the convective velocity.
Using this approach, it is easy to obtain expressions for the coefficient matrix of multicomponent
diffusion in any reference system. Thus, in a particular case of the binary mixture, the reference system
is set by velocity v:

v = v1x1
ϕ1

ϕ
+ v2x2

ϕ2

ϕ
(3)

where ϕ is the transferred attribute by the mole of a substance unit (volume, mass, etc.). The diffusion
flow in a certain reference system, considering Equation (2), will have an expression as follows:

jD1 = (v1 − v)n1 =
D∗12

kBT
ϕ2

ϕ

dµ1

dz
n1

jD2 = (v2 − v)n2 =
D∗12

kBT
ϕ1

ϕ

dµ2

dz
n2 (4)

The mutual diffusion coefficient in this case is determined by the well-known Darken’s Equation:

D∗12 = x2D1 + x1D2 (5)
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Thus, using the known coefficients of internal diffusion, one can obtain the coefficients of mutual
diffusion in any reference system. It should be noted that this approach has limitations related to the
fact that in Darken’s Equation for D∗12 the cross-correlations of the velocities of different molecules
are not considered. As was demonstrated, the effects can indeed be neglected for weakly non-ideal
systems; even then, D∗12 = DMS [44,45].

The diffusion flow in Fick’s Equation is usually written either in the average molar reference
system [46]:

jD1 = DT
dx1

dz
n, (6)

or in the average volumetric:

jD1 = DT
dn1

dz
, (7)

In both cases, it can be shown that:
DT = D∗12Γ1 (8)

where Γi =
xi

kBT
∂µi
∂xi

= 1 + ∂ ln(γi)
∂xi

xi is a thermodynamic factor.
For non-ideal solutions, it was revealed that the quantitative discrepancies of the mutual diffusion

coefficients, calculated using the Darken’s equation with the experimental data, were obtained for
example by the Taylor dispersion method. There are various options for adjustment of Equation (8) [47].
The simplest and, in many cases, adequate expression is [48]:

DT = D∗12Γα
1 (9)

where the recommended value is α = 0.64
The adequacy of Equations (8) and (9) has been analyzed in this research based on data for internal

diffusion coefficients related to the binary mixtures of three alcohols (ethanol, isopropanol, tert-butanol)
with water.

As noted in many research works [47], the thermodynamic factor largely determines the behavior
of the transport diffusion coefficient; therefore, it is desirable to minimize errors in calculation.
Usually Γi is determined by the models to calculate the activity coefficients for vapor-liquid equilibrium.
For water-alcohol mixtures, the most accurate calculations are provided by the non-random two-liquid
(NRTL) [49], Willson [50], and Uniquac [51] models. However, even these models, with parameters
being recommended in the literature, may have significant discrepancies in thermodynamic factor
at close values of the calculated activity coefficients. For the ethanol-water mixture, significant
discrepancies are observed for the NRTL иWillson models, and for mixtures of isopropanol and
tredbutanol with water, the NRTL model gives a generally non-physical result—Γ < 0 in a certain
concentration range. After analyzing the calculation accuracy of vapor-liquid phase equilibrium
conditions, it was decided that for ethanol-water, Γ should be calculated according to the NRTL model,
and for mixtures of isopropanol and tert-butanol with water, it should be done according to the Willson
model. To calculate the activity coefficient of mixtures, the Aspen Hysys [52] (8.4, Aspen Technology
Inc., MA, USA) package was used.

5. Ethanol-Water Mixture

Internal diffusion coefficients have been calculated under equilibrium conditions depending on
the concentration and temperature for force fields FF-1 and FF-2. The results of the coefficients of
internal ethanol and water in a mixture at T = 298 K, as compared to the experimental data [53,54], are
shown in Figure 4. It can be seen that the qualitatively calculated data for both force fields are well
aligned with the experiment. In this case, force field FF-1 shows the best accuracy for the coefficients of
internal diffusion of water and shows slightly higher diffusion coefficients for alcohol. The FF-2 force
field shows a reduction, as compared to the experimental data, both for water and ethanol.
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Availability of experimental data for internal and transport diffusion coefficients of the
ethanol-water mixture make it possible to objectively assess the adequacy of Darken’s equations.
According to the analysis, Equation (8) provides lower transport diffusion coefficients, as compared
to the experimental data obtained by the Taylor dispersion method [55,56]. However, the calculated
data may differ from the experimental one by twice the value. Therefore, Darken’s Equation is not
accurate for non-ideal systems, such as solutions of alcohols in water. The calculation accuracy can be
improved if we use approach [55], where the thermodynamic factor is taken as 0.64, like in Equation (9).
The results of such a comparison are shown in Figure 5, which also provides the calculated transport
diffusion coefficients according to Equation (9) for force fields FF-1 and FF-2. It can be seen that the
FF-1 force field is best aligned with the experiment; therefore, it was subsequently used to calculate the
diffusion coefficients in the ethanol-water mixture for other temperatures.

Processes 2020, 8, x FOR PEER REVIEW 9 of 18 

 

Availability of experimental data for internal and transport diffusion coefficients of the 
ethanol-water mixture make it possible to objectively assess the adequacy of Darken’s equations. 
According to the analysis, Equation (8) provides lower transport diffusion coefficients, as compared 
to the experimental data obtained by the Taylor dispersion method [55,56]. However, the calculated 
data may differ from the experimental one by twice the value. Therefore, Darken’s Equation is not 
accurate for non-ideal systems, such as solutions of alcohols in water. The calculation accuracy can 
be improved if we use approach [55], where the thermodynamic factor is taken as 0.64, like in 
Equation (9). The results of such a comparison are shown in Figure 5, which also provides the 
calculated transport diffusion coefficients according to Equation (9) for force fields FF-1 and FF-2. It 
can be seen that the FF-1 force field is best aligned with the experiment; therefore, it was 
subsequently used to calculate the diffusion coefficients in the ethanol-water mixture for other 
temperatures. 

 

Figure 5. The transport diffusion coefficient for the water-ethanol mixture as a function of the water 
mole fraction at T = 298 K, p = 1 bar; open symbols are the experimental data [54,56] (open triangles 
are the diffusion coefficients calculated by Equation (9) based on experimental data [53] and the 
non-random two-liquid (NRTL) model), full symbols are the simulation results. 

Figure 6 provides the calculation results of mutual diffusion coefficients using Darken’s 
Equation (5). There is evidence of weak concentration dependence of these coefficients, excepting 
regions with low alcohol content. A comparison of the calculated transport diffusion coefficients 
according to Equation (9) and experimental data [56] is given in Figure 7; good alignment between 
the calculated and experimental data is visible. 

Figure 5. The transport diffusion coefficient for the water-ethanol mixture as a function of the water
mole fraction at T = 298 K, p = 1 bar; open symbols are the experimental data [54,56] (open triangles
are the diffusion coefficients calculated by Equation (9) based on experimental data [53] and the
non-random two-liquid (NRTL) model), full symbols are the simulation results.

Figure 6 provides the calculation results of mutual diffusion coefficients using Darken’s Equation (5).
There is evidence of weak concentration dependence of these coefficients, excepting regions with
low alcohol content. A comparison of the calculated transport diffusion coefficients according to
Equation (9) and experimental data [56] is given in Figure 7; good alignment between the calculated
and experimental data is visible.

Analysis of the temperature relationship to the coefficients of mutual diffusion D∗12 has
demonstrated its exponential nature. Considering the weak dependence of mutual diffusion coefficients
concentration D∗12, the approximation was identified as:

D∗12 = 0.00052 exp(0.025 T) (10)

The calculation results using Equation (10) are provided in Figure 7 in the form of lines.
The deviation in the calculation of the transport diffusion coefficients DT for the ethanol-water
mixture is no more than 10% for the temperature range 278–348 K and the entire concentration region,
excluding regions with a low concentration of one of the components.



Processes 2019, 7, 947 10 of 17

Processes 2020, 8, x FOR PEER REVIEW 10 of 18 

 

 
Figure 6. Dependence of the Darken’s diffusion coefficients D12 on water mole fraction at various 
temperatures at p = 1 bar; calculations using force field FF-1. 

Analysis of the temperature relationship to the coefficients of mutual diffusion D∗  has 
demonstrated its exponential nature. Considering the weak dependence of mutual diffusion 
coefficients concentration D∗ , the approximation was identified as: D∗ = 0.00052 exp (0.025 T) (10) 

The calculation results using Equation (10) are provided in Figure 7 in the form of lines. The 
deviation in the calculation of the transport diffusion coefficients DT for the ethanol-water mixture is 
no more than 10% for the temperature range 278–348 K and the entire concentration region, 
excluding regions with a low concentration of one of the components. 

 
Figure 7. The transport diffusion coefficient for the water-ethanol mixture versus as a function of 
water mol fraction at various temperatures and p = 1 bar; open symbols are the experimental data 
[56], full symbols are the results of simulation with force field FF-1, the lines represent approximation 
Equation (10) and the NRTL model. 

6. Isopropanol-Water Mixture 

For the isopropanol-water mixture, calculations were carried out with the FF-3 force field. The 
experimental data on the internal diffusion coefficients are not known for this mixture. In [57], the 
transport diffusion coefficients in the isopropane-water mixture were measured on a large scale. The 
authors revealed an abnormal increase in the transport diffusion coefficient in the region of 0.2 mole 

Figure 6. Dependence of the Darken’s diffusion coefficients D12 on water mole fraction at various
temperatures at p = 1 bar; calculations using force field FF-1.

Processes 2020, 8, x FOR PEER REVIEW 10 of 18 

 

 
Figure 6. Dependence of the Darken’s diffusion coefficients D12 on water mole fraction at various 
temperatures at p = 1 bar; calculations using force field FF-1. 

Analysis of the temperature relationship to the coefficients of mutual diffusion D∗  has 
demonstrated its exponential nature. Considering the weak dependence of mutual diffusion 
coefficients concentration D∗ , the approximation was identified as: D∗ = 0.00052 exp (0.025 T) (10) 

The calculation results using Equation (10) are provided in Figure 7 in the form of lines. The 
deviation in the calculation of the transport diffusion coefficients DT for the ethanol-water mixture is 
no more than 10% for the temperature range 278–348 K and the entire concentration region, 
excluding regions with a low concentration of one of the components. 

 
Figure 7. The transport diffusion coefficient for the water-ethanol mixture versus as a function of 
water mol fraction at various temperatures and p = 1 bar; open symbols are the experimental data 
[56], full symbols are the results of simulation with force field FF-1, the lines represent approximation 
Equation (10) and the NRTL model. 

6. Isopropanol-Water Mixture 

For the isopropanol-water mixture, calculations were carried out with the FF-3 force field. The 
experimental data on the internal diffusion coefficients are not known for this mixture. In [57], the 
transport diffusion coefficients in the isopropane-water mixture were measured on a large scale. The 
authors revealed an abnormal increase in the transport diffusion coefficient in the region of 0.2 mole 

Figure 7. The transport diffusion coefficient for the water-ethanol mixture versus as a function of water
mol fraction at various temperatures and p = 1 bar; open symbols are the experimental data [56], full
symbols are the results of simulation with force field FF-1, the lines represent approximation Equation
(10) and the NRTL model.

6. Isopropanol-Water Mixture

For the isopropanol-water mixture, calculations were carried out with the FF-3 force field.
The experimental data on the internal diffusion coefficients are not known for this mixture. In [57],
the transport diffusion coefficients in the isopropane-water mixture were measured on a large scale.
The authors revealed an abnormal increase in the transport diffusion coefficient in the region of 0.2 mole
fractions of water content in the mixture. However, it was demonstrated later [58] that such growth
was absent. The authors of [59] state that when water content is less than 0.2 (which corresponds to
mole fraction of 0.45), it is hard to interpret the results. In this regard, experimental data from [57] are
provided without this interval.

Figure 8 represents a comparison of the transport diffusion coefficient in the isopropanol-water
mixture at a temperature of 298 K for the FF-1 and FF-3 force fields with experimental data [57–59].
The thermodynamic factor in Equation (9) was calculated according to the Wilson model. The Figure 8
shows that the FF-3 force field has a lower value. Therefore, calculations are provided for the FF-1 force
field with respect to the other temperatures.
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mole fraction at T = 298 K and p = 1 bar; open symbols are the experimental data [57–59]; full symbols
are the simulation results.

For the isopropanol-water mixture, similar to that for ethanol, a weak concentration dependence
of the mutual diffusion coefficient was observed. The temperature dependence analysis of the mutual
diffusion coefficients, exclusive of the thermodynamic factor, results in the following approximation:

D∗12 = 0.000486 exp(0.025T) (11)

Figure 9 describes the calculation results for a pressure of 1 bar at various temperatures. The lines
represent the results of the transport diffusion coefficient calculation by Equation (11). A good alignment
between the calculation results and the experimental data is visible.Processes 2020, 8, x FOR PEER REVIEW 12 of 18 
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7. Tert-Butanol-Water Mixture

Figure 10 describes the simulation results of the internal diffusion coefficients for a mixture of
tert-butanol and water at a temperature of 298 K using the FF-4 force field. Good alignment was noticed,
when compared to the available experimental data [60,61].
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Unfortunately, experimental data could not be found in the literature for the transport diffusion
coefficient in a tert-butanol–water mixture. There was weak concentration dependence in calculations
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of mutual diffusion coefficients by Darken’s Equation (5). For the tert-butanol–water mixture, similar to
the other mixtures reviewed above, the thermodynamic factor determines the concentration dependence
of the transport diffusion coefficients. The temperature dependence analysis of the mutual diffusion
coefficients, excluding the thermodynamic factor, results in approximation as follows:

D∗12 = 0.000076 exp(0.0286 T) (12)

It can be seen that temperature dependence of the mutual diffusion coefficients for the
tert-butanol–water mixture is stronger than that for the aqueous ethanol solution. Comparison of the
simulation results with the calculation by Equation (12) are presented in Figure 11.
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8. Conclusions

Five force fields for intermolecular interactions of three alcohols (ethanol, isopropanol, tert-butanol)
were analyzed in this research work when calculating the self-diffusion coefficients and diffusion
coefficients in aqueous solutions. Analysis of the calculated self-diffusion coefficients and the internal
diffusion coefficients in aqueous solutions for ethanol has demonstrated that the FF-1 FF-2 force fields
provide comparable satisfactory accuracy. Furthermore, the calculations with FF-2 lower the result of
internal diffusion in the mixture and have greater accuracy for the ethanol self-diffusion coefficient.
The values of the internal diffusion coefficients in the mixture obtained with FF-1 have greater accuracy
for water and increased values for alcohol. As a result, the accuracy of calculation for the transport
coefficients in the ethanol-water mixture by Equation (9) is higher for FF-1. In this regard, the use of
the FF-1 force field is recommended for the ethanol-water mixture.

A similar result was found for the isopropanol-water mixture. Among the FF-1 and FF-3 force fields,
the best description of a self-diffusion coefficient was provided by FF-3. However, when simulating the
water mixtures, this force field demonstrated a lowering in transport diffusion coefficients. Among all
studied force fields, the self-diffusion and transport diffusion coefficients for tert-butanol were provided
with a good description only by the FF-4 force field.

A reason for the transport diffusion coefficient lowering could be due to the fact that the whole
molecule is fixed in force fields FF-2 and FF-3, while the valence and torsion angles are established for
force fields FF-1 and FF-4.

Thus, to calculate the internal diffusion coefficients and transport diffusion coefficients by Equation
(9) for the ethanol-water and isopropanol-water mixtures, the FF-1 force field (TraPPE) was proven to
be the best, and for the tert-butanol-water mixture, it was FF-4. For practical use, transport diffusion



Processes 2019, 7, 947 14 of 17

coefficients are important, which determine a rate of molecular mass transport by Fick’s Equation.
It is promising to establish a behavior between internal diffusion coefficients (the calculation of which
has a relatively low complexity) and mutual diffusion coefficients (Stefan-Maxwell). A version of
such a behavior was established by Darken’s Equation, being a consequence of the approach for
independent diffusion of the mixture components. This equation was analyzed in this research work.
The ethanol-water mixture represents the most interest, for which experimental data were available
for the internal and transport diffusion coefficients, as well as reliable data on the thermodynamic
factor. It was demonstrated that Darken’s Equation provided lowered values for the transport diffusion
coefficients. The accuracy of calculation can be improved when using an approach demonstrated in [47],
where the thermodynamic factor is raised to the power of 0.64. It was further demonstrated that for
all solutions of alcohols in water considered in the research, Equation (9) provides a good alignment
between the calculated and the experimental transport diffusion coefficients. An analysis of Equation (9)
shows that the main contribution to the concentration dependence of the transport coefficients of
diffusion is made by the thermodynamic factor, and temperature dependence is determined by the
behavior of the mutual diffusion coefficients calculated by the Darken relation. Assuming that the
coefficients of mutual diffusion are independent of the composition, their temperature approximations
were obtained for all the considered alcohol solutions—Equations (10)–(12). Thus, the transport
coefficients of diffusion can be calculated using the relation in Equation (9) with the approximations in
Equations (10)–(12). The error of this calculation does not exceed 10% in a wide concentration region,
with the exception of small concentrations of water and alcohol.
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