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Abstract: This paper explores five multivariate techniques for information fusion on sorting the
visual ripeness of Cape gooseberry fruits (principal component analysis, linear discriminant analysis,
independent component analysis, eigenvector centrality feature selection, and multi-cluster feature
selection.) These techniques are applied to the concatenated channels corresponding to red, green,
and blue (RGB), hue, saturation, value (HSV), and lightness, red/green value, and blue/yellow value
(L*a*b) color spaces (9 features in total). Machine learning techniques have been reported for sorting
the Cape gooseberry fruits’ ripeness. Classifiers such as neural networks, support vector machines,
and nearest neighbors discriminate on fruit samples using different color spaces. Despite the
color spaces being equivalent up to a transformation, a few classifiers enable better performances
due to differences in the pixel distribution of samples. Experimental results show that selection
and combination of color channels allow classifiers to reach similar levels of accuracy; however,
combination methods still require higher computational complexity. The highest level of accuracy
was obtained using the seven-dimensional principal component analysis feature space.

Keywords: Cape gooseberry; color space selection; color space combination; food engineering

1. Introduction

In the advent of the fourth industrial revolution, the growing tendency of automation of human
activities encourages the use of robotic systems in the food industry [1]. In this context, the automation
of food packing processes is essential to accelerating the production rate, and reducing human contact
and possible contamination of food products. Moreover, machine vision techniques allow robotic
systems to retrieve information from food products, using different sensors that depend on the
particular characteristics to be measured, and each sensor represents an additional cost to construct an
information retrieval system. For instance, an application that requires such automation systems is
the classification of Cape gooseberry (Physalis peruviana L.) fruits according to their level of ripeness.
Current industry practices address this repetitive task through visual inspection of color, size, and
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shape parameters [2]. While automated sorting systems based on computer vision techniques have
been proposed to improve production methods and provide high-quality products, their operation
relies on classification algorithms that consider either different color spaces or a combination of
them [3,4].

The most common representation of color images employed by computer vision systems is a
combination of the three primary colors: Red, green, and blue (RGB). The triplet with the values for
each primary color is typically considered as a coordinate system with either Euclidean, Mahalanobis,
Hamming, or a different metric of distance. In such a three-dimensional coordinate system, each point
(e.g., 3D vector) represents a different color in the visible spectrum. Other color spaces different than
RGB are commonly employed, providing different three-dimensional representations, and can be
classified into three categories according to [5]: Hardware-orientated spaces, human-orientated spaces,
and instrumental spaces. In the first category, hardware-orientated spaces (e.g., RGB, YIQ, and CMYK )
are defined based on the properties of the hardware devices used to display images. On the other hand,
human-orientated spaces (e.g., HSI, HSL, HSV, and HSB ) are based on hue and saturation, following
the principles of an artist and based on inherent color characteristics. Finally, instrumental spaces
(e.g., XYZ, L*a*b*, and L*u*v* ) are those used for color instruments, where the color coordinates of an
instrumental space are the same on all output media.

As will be considered in Section 2, the color spaces that are most commonly employed in the
classification of fruits are RGB, L*a*b*, and HSV. However, the accuracy of the same classifier on
the same dataset may vary from one color space to the other. Some authors have investigated these
differences in classification accuracy due to the variation of the distribution of pixels in distinct
color spaces or the use of different segmentation techniques. According to [6,7], the practice of color
measurement in food engineering, the L*a*b* color space, is the most commonly used. The main
reasons are related to the uniform distribution of colors and because the L*a*b* is perceptually uniform
(i.e., equal changes in data are visually perceived as equal changes in the color space). However, it is
known that color spaces like RGB, L*a*b*, and HSV are equivalent up to a transformation.

Regardless of the color space used for classification, the objective of classifiers applied to fruit
sorting consists of finding a criterion to separate samples from one or other ripeness levels in the
so-called feature space. The goal is to establish a decision boundary that may be applied as a fixed
borderline between categories. Supervised classifiers employ labeled samples to learn a model that is
used to predict a category in new, never seen unlabeled samples. Supervised classifiers commonly
employed in the food industry include support vector machines (SVM), k-nearest neighbors (KNN),
artificial neural networks (ANN), and decision tree (DT) [8,9].

In practice, any pattern classifier may be employed, presenting a trade-off between accuracy
and complexity. While the equivalence between color spaces is well-known [10], it has been found
that different color spaces allow the same classifier to produce distinct classification rates, due to
variations in the distribution of color samples [3,11]. Moreover, the combination of color spaces using
multivariate analysis may provide a feature space where an increase in classification accuracy is
possible. For instance, in [3], a methodology to compare different combinations of machine learning
techniques and color spaces (RGB, HSV, and L*a*b*) was proposed in order to evaluate their ability
to classify Cape gooseberry fruits. The results showed that the classification of Cape gooseberry
fruits by their ripeness level was sensitive to both the color space and the classification technique
used. The models based on the L*a*b* color space and the support vector machine (SVM) classifier
showed the highest performance regardless of the color space. An improvement was obtained by
employing principal component analysis (PCA) for the combination of the three-color spaces at the
expense of increased complexity. An extension of such a study was proposed in [4], where a supervised
multivariate analysis method was compared with previous results (linear discriminant analysis, LDA).

In this paper, an extension of previous work described in [3,4] is proposed to compare multivariate
analysis methods and machine learning techniques for ripeness classification. The color channels
from RGB, HSV, and L*a*b* color spaces were concatenated to spam a nine-dimensional feature
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space. The five multivariate methods employed to combine information from the nine color channels
include PCA, LDA, independent component analysis (ICA), multi-cluster feature selection (MCFS),
and eigenvector centrality feature selection (ECFS). In the last case, selection methods applied to find
the most relevant features for classification were MCFS and ECFS. The main contribution of this paper
is the use of multivariate techniques to find an appropriate feature space for classification.

The manuscript is organized as follows. Section 2 summarizes the most recent works published
on ripeness classification, including diverse approaches and methodologies. Some of the most popular
methods were selected for this comparison, and Section 3 describes the material and methods employed
in experiments to compare the distinct approaches. Section 4 presents the results and a discussion on
the relevant findings. Finally, Section 5 presents conclusions and future work.

2. Ripeness Classification

As reported in the literature, different color spaces have been used to create automated fruit
classification systems, presenting different levels of accuracy that are related to both, the color space
and the sorting algorithm. Table 1 shows common methods and color spaces reported in the literature
used to classify distinct fruits according to their ripeness level.

Table 1. Color spaces and classification approaches for fruit classification in literature. NA stands
for non-available information MDA stands for multiple discriminant analysis, QDA for quadratic
discriminant analysis, PLSR for partial least squares regression, RF for the random forest, and CNN for
the convolutional neural network. The table was taken from [3] and updated with new findings.

Item Colorspace Classification Method Accuracy Ref

Apple HSI SVM 95 [12]
Apple L*a*b* MDA 100 [13]

Avocado RGB K-Means 82.22 [14]
Banana L*a*b* LDA 98 [15]
Banana RGB ANN 96 [16]

Blueberry RGB KNN and SK-Means 85-98 [17]
Date RGB K-Means 99.6 [18]
Lime RGB ANN 100 [19]

Mango RGB SVM 96 [5]
Mango L*a*b* MDA 90 [20]
Mango L*a*b* LS-SVM 88 [21]

Oil palm L*a*b* ANN 91.67 [22]
Pepper HSV SVM 93.89 [23]

Persimmon RGB + L*a*b* QDA 90.24 [24]
Tomato HSV SVM 90.8 [25]
Tomato RGB DT 94.29 [26]
Tomato RGB LDA 81 [27]
Tomato L*a*b* ANN 96 [28]

Watermelon YCbCr ANN 86.51 [29]
Soya HSI ANN 95.7 [8]

Banana RGB Fuzzy logic NA [9]
Banana RGB CNN 87 [9]

Watermelon VIS/NIR ANN 80 [30]
Watermelon RGB ANN 73.33 [31]

Tomato FTIR SVM 99 [32]
Kiwi Chemometrics MOS E-nose PLSR, SVM, RF 99.4 [33]

Coffee RGB + L*a*b* + Luv + YCbCr + HSV SVM 92 [34]
Cape Gooseberry RGB + HSV + L*a*b* ANN, DT, SVM and KNN 93.02 [3,4]

According to Table 1, the most common color space used for classification is RGB, with 50% of the
works, followed by L*a*b* with 32%, and HSV with 14%. Similarly, the most common classifiers are
ANN and SVM, with 32% of the experiments reporting results using color spaces that include RGB,
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L*a*b*, and HSV. The accuracy obtained by each approach depends on the experimental settings and
are not comparable at this point. However, reported accuracy ranges between 73 and 100 percent.

2.1. Methods for Color Selection and Extraction

The distribution of samples in the feature space depends on the measurements obtained from
sensors, and in this case, the color channels for the distinct color spaces. The search for the color
channels that are most relevant for classification is important to help classifiers to find the decision
frontier between classes. Features that are noisy or not relevant may difficult classification problems
and may conduce to a low performance even by the most sophisticated classifiers. Finding a subset of
the k most relevant features, either by selecting them or applying feature extraction techniques, favors
the reduction of redundant and irrelevant information. The so obtained k-dimensional feature space
employed for classification instead of the original d-dimensional feature space is suitable to facilitate
finding a separation criterion between classes. Whereas feature extraction algorithms find a mapping
to a new feature space, feature selection methods aim to select a subset of vectors that spans a feature
subspace that facilitates classification.

Feature extraction approaches can be categorized according to the use of data labels in supervised
and unsupervised. Unsupervised feature extraction techniques consider the underlying distribution of
data solely, and aim to find a mapping to a new feature space with desired characteristics. An example
of unsupervised methods is PCA, which employs the Eigenvectors of the covariance matrix of
samples to maximizes their spread in each new axis. Additionally, supervised approaches employ
the information from class-labels to find the mapping. A representative supervised approach is the
linear discriminant analysis (LDA), that aims to maximize the spread of samples distinct classes, and
minimize the within-class spread.

Analogously, supervised feature selection considers class labels to find the most relevant features,
and unsupervised feature selection strategies are based exclusively on the underlying distribution
of samples. The selection of the subset of the most relevant features is a computational expensive
combinatorial problem. The optimally of an algorithm to find a good enough feature subset may
depend on the strategy followed for ranking or selection of features.

In feature selection and extraction, the problem can be stated by considering a set of points
(sample tuples or feature vectors) X = {x1, x2, ..., xN}, where xi ∈ Rd. The algorithms for feature
extraction and selection, find a new set X′ = {x′1, x′2, ..., x′k}, where x′i ∈ Rk, and k ≤ d is the new
dimension of the feature vectors.

2.2. Principal Component Analysis (PCA)

The PCA method is applied to find a linear transformation that finds the directions of maximum
variance data. Sample patterns are projected onto a new feature space, and the axes with more
explained variance provide a distribution that facilitates the separation between classes. The algorithm
is shown in the Figure 1 depicts the general procedure to transform data samples from X to their new
representation in the k-dimensional feature space X’. The new k-dimensional feature space corresponds
to the k eigenvectors of the covariance matrix C. The axis with the highest eigenvalues expresses a
higher explained variance.
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Figure 1. The procedure followed by principal component analysis (PCA) to map the input data
samples to the new k-dimensional feature space.

2.3. Linear Discriminant Analysis (LDA)

The LDA method allows obtaining and applying a linear transformation that finds the directions
of maximum variance input data samples. The main difference with PCA is that LDA aims to minimize
intraclass variability, whereas it maximizes interclass variability employing class labels. The main
limitation is that the number of classes bounds the number of features in the new k-dimensional
space (e.g., 1 < k < c, where c is the number of classes). This limitation makes this approach
advantageous only with a high number of classes, and unpractical for data with a few classes
(e.g., c << d). The procedure followed in computing the mapping and transforming the data is
shown in Figure 2.

Figure 2. The procedure followed by linear discriminant analysis (LDA) to map the data samples to
the new k-dimensional feature space.

2.4. Independent Component Analysis (ICA)

The ICA method finds underlying components from multivariate statistical data, where data is
decomposed into components that are maximally independent in an appropriate sense (e.g., kurtosis
and negentropy). The difference between PCA and LDA is that low-dimensional signals do not
necessarily correspond to the directions of maximum variance; rather, the ICA components have
maximal statistical independence and are nongaussian. In practice, ICA can be used to find disjoint
underlying trends in multi-dimensional data [35].

The algorithm is shown in the Figure 3 depicts the procedure followed by the FastICA algorithm
to obtain the independent components from X, using kurtosis as a measure of non-gaussianity. In this
case, dimensionality reduction is not obvious, given that there is no measure of how important a
particular independent component is. The relevance of the individual features obtained with PCA and
LDA is given by the algorithms shown in Figures 1 and 2, respectively. In the case of ICA, feature
selection techniques may be employed to provide a relevance level for each of the features that result
from the transformation, as described in Sections 2.5 and 2.6.
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Figure 3. The procedure followed by FastICA to map data samples in X to the new feature space that
respects nongaussianity using kurtosis.

2.5. Eigenvector Centrality Feature Selection (ECFS)

The feature selection via eigenvector centrality is a supervised method that ranks features by
identifying the most important ones. It maps the selection problem to an affinity graph with features
as nodes and assesses the rank features according to the eigenvector centrality (EC) [36].

The algorithm shown in the Figure 4 presents the method to rank and select the most relevant
features from the data samples X. While this does not constitute a proper transformation in
terms of linear algebra, every sample is represented in a new k-dimensional feature space with
the highest-ranked features.

Figure 4. The procedure followed by eigenvector centrality feature selection to select the variables that
constitute the new feature space.

2.6. Multi Cluster Feature Selection (MCFS)

Multi-class feature selection (MCFS) is an unsupervised technique that aims to find those features
that preserve the multi-cluster underlying structure of the samples used for training [37]. Given that
the number of clusters is unknown a priori, it is a good practice to explore distinct values to find a
good feature subspace. The most relevant features are found following the procedure shown in the
algorithm shown in the Figure 5.
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Figure 5. The procedure followed by eigenvector centrality feature selection to select the variables that
constitute the new feature space.

While the simplest method to choose W was presented in Step 1, other methods exist that range
between accuracy and complexity (See [37]). According to the authors, the default number of nearest
neighbors is p = 5, and the default number of eigenfunctions is K = 5. This last parameter K usually
influences the accuracy of the algorithm and should be optimized before usage.

2.7. Classification for Fruit Sorting

According to Table 1, some of the most popular supervised classifiers in fruit sorting are the
artificial neural networks (ANN), decision trees (DT), support vector machines (SVM), and k-nearest
neighbor (KNN). These classifiers were used in this paper for the experimental settings. While these
techniques have been present in the literature for many years now, see [3,38], their usage in practice
increased due to their capacity to address diverse real-world problems.

ANN is a non-linear classifier that simulates biological neural networks. A common
implementation of ANN corresponds to the probabilistic ANN, which produces an estimated posterior
probability for each input sample to belong to any of the classes, and the max function allows to select
the most likely class. In this research, the Matlab’s Neural Network Toolbox was used to implement
the probabilistic ANN classifier, byways of the newpnn function, tunned to optimize hyperparameters
using linear search.

DT is a tree-based example of the knowledge used to represent the classification rules. Internal
nodes are representations of tests of an attribute; each branch represents the outcome of the test, and
leaf nodes represent class labels. In this paper, the Matlab’s Machine Learning Toolbox (MLT) was
used the train and simulate DTs, using the Classification & Regression Trees (CART) algorithm to
create decision trees, with the fitctree and predict functions. The function fitctree employes standard
classification and regression trees algorithm to create DTs.

SVM is a non-parametric statistical learning classifier that constructs a separating hyperplane (or a
set of hyperplanes) in a high-dimensional feature space. Some versions use the so-called kernel trick to
map data to higher dimensional feature space and find the separating hyperplane there. The functions
fitcecoc and predict functions were used for simulations, both implemented in Matlab’s MLT. The
fitcecoc function was tunned to use a linear kernel and Bayesian hyperparameter optimization.

KNN is a non-parametric classifier that keeps all training samples, and prediction is based on
the number of closest neighbors belonging to a class. Given an input sample, the distance to all
stored samples is computed and compared to all pre-stored samples, presenting a high computational
complexity at prediction. For simulations, the fitcknn and predict functions from Matlab’s MLT were
used. This function employs Bayesian hyperparameter optimization.

3. Materials and Methods

For experiments, a set of 925 samples of Cape gooseberry fruits were collected from a plantation
located in the village of El Faro, Celendin Province, Cajamarca, Peru (UTM: −6.906469, −78.257071).
Fruit samples were homogeneously disposed on a conveyor belt used in a production line (160× 25 cm,
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and 80 cm high). A Halion-HA-411 VGA webcam was used for image capture, which provides RGB
raw images in JPG format. The resolution of the resulting images is 1280× 1720 pixels. The camera
was fixed 35 cm over the conveyor belt, and the captured scene was covered with black matte panels to
reduce variations in light, as implemented by Pedreschi et al. [39]. The illumination system included
two long fluorescent tubes (Philips TL-D Super, cold daylight, 80 cm, 36 W) that were placed on both
sides of the conveyor belt. Additionally, a circular fluorescent tube (Philips GX23 PH-T9, cold daylight,
21.6 cm, 22 W) was located at the top of the setting. Images captured with the camera were stored on a
portable computer running Matlab to control image acquisition and data analysis.

Seven levels of ripeness were employed for visual classification, following the standard for Cape
gooseberry, and the visual scale proposed in [40] and shown in Figure 6. The process followed for
evaluation is depicted in Figure 7. Images captured from the conveyor belt (step 1) were employed to
find the regions of interest corresponding to Cape gooseberry fruits in the image, employing standard
segmentation techniques (steps 2 and 3); the size of resulting regions depends on the size of the actual
fruit. Color versions of segmented fruits were labeled by five experts according to the categorization
proposed by Fischer et al. in [40] (step 4). One-color sample was selected for each fruit region in each
of the RGB, HSV and L*a*b* color spaces, by computing the average for each color channel; and a
nine-dimensional feature vector was built through concatenation: x = [R, G, B, H, S, V, L∗, a∗, b∗]T
(step 5). Then, multivariate analysis techniques for feature extraction/selection were applied to the
set of feature vectors (step 6), and the resulting samples were organized for five-fold cross-validation.
Four standard classifiers were trained (step 7) and performance evaluation computed (step 8).

Figure 6. Levels of ripeness employed for supervised visual classification.

Figure 7. Experimental process followed to evaluate the system with distinct feature
extraction/selection methods and different classifiers.
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The performance of the seven-class classifiers was evaluated using the F-measure, as defined
in [3]. First, the confusion matrix is computed according to the responses of each classifier, and true
positives (TPi), false positives (FPi), true negatives (TNi), and false negatives (FNi) are obtained for
each class i, using the elements Nij of the confusion matrix. Class-specific precision and recall are
computed using Equations (1) and (2), respectively.

Precisioni =
TPi

TPi + FPi
(1)

Recalli =
TPi

TPi + FNi
(2)

Finally, the multiclass F-measure was used for comparison along with the experimental results,
due to its representativeness of the classification performance on target classes (Equation (3)).

F−measurei = 2× Precisioni × Recalli
Precisioni + Recalli

(3)

The three analyses followed to characterize the performance of the system started by fixing the
classifier (e.g., SVM). First, the k (number of clusters) was explored in order to find the k that allows the
highest classification performance. Then, the size of the feature space was explored in terms of average
F-measure. The last analysis explores the performance using the parameters found in previous steps,
and the four classifiers presented in Section 2 ANN, SVM, DT, and KNN.

4. Experimental Results

As explained in Section 2.6, MCFS needs a search to find the number of clusters that maximizes
the classification performance. The number of characteristics was set to seven, to make it comparable
with previous results using PCA [3].

Figure 8 shows the box plots that summarize the distribution of performance for the SVM classifier
trained with seven color channels (features) selected with the MCFS algorithm. The parameter that
controlled the number of clusters was moved from 1 to 9 (i.e., the maximum number of possible
features). In most cases, the median of the F-measure was maintained around 71.75, and only two
cases were different: 2 and 9. Using nine clusters appears to provide lower performance related to the
creation of an excessive number of clusters. On the other hand, using only two clusters for feature
selection seems to provide a higher level of accuracy. However, and regardless of the median accuracy,
the variability between cases shows a difference that makes no significant difference in using a different
number of clusters. Therefore, in the following experiments, the number of clusters is fixed at 2, and it
explored other variables.
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Figure 8. Boxplots corresponding to the F-measure for nine distinct values of the parameter controlling
the number of clusters in multi-cluster feature selection (MCFS). The number of characteristics was
fixed at 7, and the experimentation follows a five-fold cross-validation strategy.

4.1. Analysis of Feature Spaces

Table 2 shows the average F-measure and standard deviation corresponding to the outputs
generated by the SVM classifier after training on feature spaces selected or extracted with the different
methods explained in Section 2. The feature space was varied from d ∈ {1...9} features, generating
nine d-dimensional feature spaces for classification. The performance was estimated using a five-fold
cross-validation strategy to obtain a measure of dispersion.

Table 2. Average F-measure of the support vector machine (SVM) classifier applied to distinct feature
spaces obtained with the four methods for feature extraction/selection. IC stands for the independent
component, bold numbers symbolize the highest F-measure obtained for each method, and numbers in
parenthesis symbolize standard deviation.

Method 1D 2D 3D 4D 5D 6D 7D 8D 9D

PCA 40.89 68.56 69.48 71.23 71.83 71.69 71.99 71.70 71.65
(0.34) (0.91) (0.95) (0.82) (0.92) (0.70) (0.81) (0.92) (0.91)

LDA 52.43 69.10 69.48 70.05 70.02 71.48 - - -
(0.81) (1.24) (1.17) (1.00) (1.05) (0.74) - - -

ICA 8.12 25.21 53.89 58.93 62.18 63.74 68.10 70.38 71.67
(0.40) (0.45) (1.16) (1.12) (1.16) (1.02) (0.91) (0.87) (0.90)

MCFS − 2 clusters 64.74 65.67 70.04 70.72 71.02 71.92 71.99 71.83 71.66
(0.70) (0.68) (1.13) (1.04) (0.96) (0.76) (0.79) (0.89) (0.87)

Color channel L*(7) V(6) H(4) b*(9) R(1) G(2) B(3) S(5) a*(8)

ECFS 40.93 68.81 69.55 71.33 71.89 71.76 71.86 71.84 71.66
(0.32) (1.18) (1.2) (0.72) (0.72) (0.79) (0.83) (0.79) (0.87)

Color channel G(2) R(1) a*(9) b*(8) H(4) L*(7) S(5) V(6) B(3)

ICA + ECFS 23.21 25.18 28.82 36.14 51.84 51.70 61.22 62.71 71.67
(0.41) (0.46) (0.54) (0.71) (0.79) (0.74) (0.73) (0.75) (0.90)

IC 2 1 9 8 4 7 5 6 3

ICA + MCFS 26.61 44.68 57.24 61.13 61.81 63.07 65.14 68.57 71.67
(0.57) (1.07) (1.08) (1.09) (1.15) (1.26) (1.14) (0.84) (0.90)

IC 3 2 4 8 9 1 6 5 7

Results showed in Table 2 evidence that was using seven features provide a level of performance
that is similar either using MCFS or PCA. On the other hand, ECFS and LDA present the highest level
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of performance using five and six features, respectively, with a slightly lower average performance
compared to PCA and MCFS. Moreover, in all cases, using more than three features allows classifiers
to obtain a significantly higher performance with a lower standard deviation. In that sense, when a
feature space with more color channels—or features—is employed, the SVM classifier presents a higher
and more stable classification performance, at the expense of the evident increase in computational
complexity. This is evident either if features are selected (e.g., MCFS, ECFS) or extracted (e.g., PCA,
LDA). Different behavior is presented when ICA is employed for feature extraction, due to the strategy
to find the independent components instead of the axis of maximum spread.

In the hypothetic case that only three-color channels were allowed, and these channels could be
arbitrarily chosen from the nine provided by our three-color spaces, in this case, a selection method
should be used. Then, a quick look at the 3D column of Table 2 evidences that the MCFS provided a
better channel selection, achieving the highest performance level with a feature space composed of
channels [L∗, V, H].

4.2. Performance across Classifiers

The comparative of performance in terms of F-measure, between the ANN, DT, SVM, and KNN
classifiers, evaluated on the best d-dimensional feature space found in Section 4.1, is presented in
Figure 9. The distinct feature spaces provided a different optimal number of characteristics, and those
features were employed in each case. In particular, seven features were selected for PCA and MCFS,
six features for LDA, and five features for ECFS. In the case of ICA, all nine features were employed to
obtain the highest level of performance.
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Figure 9. Boxplots representing the distribution of F-measure performance for the feature
selection/extraction approaches, using four different classifiers.

As shown in Figure 9, the SVM classifier F-measure outperforms the rest of the approaches,
and only ANN performance is close to SVM performance on the six-dimensional LDA feature space.
The highest level of F-measure achieved by ANN is shown in the space extracted with LDA. In general,
in these settings, the performance of all classifiers presents its highest level on the seven-dimensional
PCA space. The settings suggest that PCA provides a feature space that facilitates the work of
a classifier after combining information from multiple color spaces. On the other hand, focusing
on the two feature selection methods, a similar level of performance is provided by all classifiers,
without significant difference. The only case where KNN presents a lower performance is on the
nine-dimensional ICA feature space. However, if a minimum number of features is required for a
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given application (e.g., to reduce computational complexity and cost), a feature selection method may
provide the means to select a few color channels (sensors), at expenses of a reduction in performance.

5. Conclusions and Future Work

In this paper, an extension of a food packaging process was proposed for Cape gooseberry fruit
sorting, according to its ripeness level. As a difference from previous works, five techniques from the
multivariate analysis were employed to find the feature spaces that facilitate classification. Whereas
PCA, LDA, and ICA provided mapping to a new feature space, the two selection methods (MCFS and
ECFS) provided the most relevant features for classification. The configuration of the experiments
provided a realistic scenario, including accommodating Cape gooseberry fruits with distinct levels of
ripeness on a conveyor belt, that were captured with a VGA camera located on top. Segmentation and
manual sorting were performed before feature extraction/selection and classification. Four classifiers
commonly employed in literature for ripeness classification were compared, including ANN, SVM,
DT, and kNN.

Results reveal that selection and extraction methods allow classifiers to reach similar levels of
accuracy, but feature extraction methods require an increased computational complexity. This evidence
must be considered in a final implementation, and the real-time performance of the whole system
should be observed once running with the distinct algorithms on the selected computational platform.

Considering the classifiers, the SVM classifier outperformed the rest in terms of F-measure
regardless of the feature space. This may respond to the organization of samples in the feature
space, and the capacity of the Bayesian optimization on SVM to find a good separating hyperplane.
Moreover, the four classifiers employed in the test presented the highest level of accuracy on the
seven-dimensional PCA feature space. This combination of 7-D PCA feature space and the SVM
classifier should be considered when a final implementation. However, the hyperparameters for this
(and other classifiers) were fixed before training, and some optimization may allow finding a higher
level of performance for the distinct classifiers used in experiments.

On the other hand, the lowest level of accuracy was achieved on the one-dimensional feature
space, employing the ICA feature extraction technique without a feature selection method. This
evidences the need for a feature selection method when ICA is employed for finding new feature
spaces with independent spanning vectors. On the opposite, the highest level of accuracy for a
one-dimensional feature space was obtained with the MCFS channel selection, obtaining an F-measure
of 64.74 (0.07), with a single feature (L*) using the SVM classifier. This result suggests that the L*
color channel from the L*a*b* perceptually uniform color space is the feature that provides the highest
degree of separation between classes. The L* feature, combined with the other six features (R, G, B, b*,
H, and V), allows it to obtain a performance that is similar to PCA with the same seven features.

The results obtained in the experiments suggest some paths for further research. Future work
may include the use of distinct and more sophisticated algorithms for feature selection and extraction
that may be explored and combined to find the best combination for a particular application. Similarly,
other algorithms for classification may be tested in this configuration, such as those employing deep
learning and large data sets. Additionally, optimization techniques like particle swarm optimization or
evolutionary algorithms may be employed to find the best hyperparameters for the application.

On the other hand, information fusion techniques like classifier combination strategies may also
enhance the establishment of the decision borderlines between classes, with the inherent performance
increase. Finally, another kind of problem may benefit from feature extraction and selection techniques
in food engineering, like using multi- or hyperspectral sensors to measure the level of ripeness of Cape
gooseberry or any different type of fruit.
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