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Abstract: Brownian motion and thermophoresis diffusions are the fundamental ideas of abnormal
upgrading in thermal conductivity via binary fluids (base fluid along with nanoparticles). The influence
of Brownian motion and thermophoresis are focused on in the Buongiorno model. In this problem,
we considered the Buongiorno model with Brownian motion and thermophoretic effects. The nonlinear
ordinary differential equations are recovered from the partial differential equations of the boundary
flow via compatible similarity transformations and then employed to the Keller-box scheme for
numerical results. The physical quantities of our concern including skin friction, Nusselt number, and
Sherwood number along with velocity, temperature and concentration profile against involved effects
are demonstrated. The impacts of the involved flow parameters are drawn in graphs and tabulated forms.
The inclination effect shows an inverse relation with the velocity field. Moreover, the velocity profile
increases with the growth of the buoyancy effect.

Keywords: Keller-Box method; micropolar nanofluid; MHD; power law fluid; inclined surface

1. Introduction

Nanofluids set up a subclass of atomic liquids intended to work at the nanoscale. Nanofluids constitute
the relation between bulk materials and molecular structure. The fast development of nanotechnology has
witnessed exceptional attention in such liquids through the whole breadth of manufacturing, including
engineering, aerospace, medical productions, and energy technologies. Nanofluid is a mix of various
nanoparticles, for example, aluminum, silver, copper, and titanium with or without their oxides and
base liquids, including water, ethylene glycol, oil, and so on. When nanoparticles strategically disperse
in the base fluids, the resulting nanofluids have been confirmed to attain significant improvement in
the properties of thermal conductivity presented by Choi [1]. The factors that play an important role in
upgrading the thermal conductivity of nanofluid have been studied by Buongiorno [2]. Nanofluid flow
over an inclined surface was reviewed by Sandeep and Kumar [3]. They investigated energy and mass
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transport of dusty nanoparticles enhanced because of the volume fraction. Suriyakumar and Devi [4]
studied the effects of internal heat generation and suction on mixed convective nanofluid flow through
slanted surfaces. They found that the increment in the volume fraction of the copper water nanofluid
diminishes the velocity field. Ziaei-Rad et al. [5] inspected the similarity solution of the boundary
layer nanofluid flow over an inclined surface. They found that the energy transport increases with
increasing the suction. Rashad [6] studied nanofluid flow by considering convective boundaries. Mitra [7]
investigated computational modeling of nanofluid flow over an inclined surface. He concluded that
the boundary layer thickness diminishes with the increase in inclination. Hatami et al. [8] discussed
three-dimensional steady nanofluid over an inclined disk. For detailed literature about the flow of
nanofluid with different geometries, see references [9–14].

The boundary layer flow over an inclined stretching surface becomes an interesting field of
research because of its uses in designing, for example, paper production, skin grating, grain storage,
and drag creation. The investigation of boundary layer flow over a steady surface was performed by
Sakiadis [15]. Moreover, Crane [16] extended the work of Sakiadis [15] by studying the closed-form
solution of boundary layer flow over an extending sheet. The boundary layer flow of dusty liquid over
a slanted surface with heat source/sink was displayed by Ramesh et al. [17]. Singh [18] investigated
the energy exchange of viscid liquid on a penetrable slanted surface numerically. A similarity
solution of a magnetohydrodynmaic flow over an inclined sheet was calculated by Ali et al. [19].
Ramesh et al. [20] worked on the boundary layer flow towards an inclined surface. They considered
the convective boundaries. The boundary layer-free convection flow over an inclined porous surface
was scrutinized by Malik [21]. Hayat et al. [22] investigated the radiation effect on the flow produced
by the stretching cylinder. Balla et al. [23] examined an inclined spongy cavity packed with nanofluid
saturated in permeable medium.

Micropolar fluids are those which comprise of firm arbitrarily-oriented elements immersed in
a sticky moderate with microstructure constituents, where distortion of the particle is unnoticed.
Eringen [24] established a new philosophy of micropolar fluid to check the impact of micro-rotations
on liquid movement. Rahman et al. [25] scrutinized the flow of micropolar liquid by incorporating
the variable properties. They concluded from the results that the velocity profile shows an inverse
correspondence with the inclination effect. The flow of micropolar fluid over an inclined surface with
different effects has been studied by Das [26]. He discussed the energy and mass transport in this article.
Kasim et al. [27] examined the micropolar fluid flow on the inclined plate numerically. Srinivasacharya
and Bindu [28] explored how micropolar liquid moves through a slanted channel having parallel plates.
Hazbavi and Sharhani [29] examined the flow of micropolar liquid among corresponding plates with
a consistent pressure gradient. Rafique et al. [30] studied the heat and mass exchange of micropolar
nanofluid fluid flow on a slanted surface. The effect of dual dispersion on micropolar liquid flow over
a slanted surface was discussed by Srinivasacharya et al. [31]. Recently, Rafique et al. [32] probed the
energy and mass transport of micropolar nanofluid flow over an inclined stretching surface. They found
that the velocity profile diminishes with the increment in the inclination and magnetic effect. For the
latest literature on micropolar fluid flow over an inclined surface, see [33–35].

In the light of the above-stated literature and its applications in engineering, it is the basis of
motivation to scrutinize the inclination impact on micropolar nanofluid flow passed over an inclined
nonlinear stretching surface. To the best of the author’s knowledge, the inclination effect along with
the magnetic field on the flow of micropolar nanofluid towards an inclined nonlinear stretching surface
has not been yet reported. The current study is conducted to fulfill this gap. Suitable similarities
transformations are utilized to recover the ordinary differential equations. The attained system of
equations is then elucidated via the Keller-box scheme of Anwar et al. [36]. The Keller-box technique
has been widely applied because it is the most flexible as compared to other approaches. It is informal
to practice, much quicker, friendly to program, and effective.
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2. Problem Formulation

Here we focus on the micropolar type nanofluid flow over an inclined surface by considering an
angle γ. Where, uw(x) = axm is the extending speed, and u∞(x) = 0 is free stream speed in which x is
the coordinate stately towards the extending sheet and ‘a’ is considered as constant. The transverse
magnetic field B(x) = B0x

m−1
2 is taken normal to the stretching sheet with strength B0. It is supposed

that the electric and magnetic field properties are very insignificant as the magnetic Reynolds number
is less, according to Mishra et al. [37]. The micropolar finite-size particles, along with Nanoparticles, are
constantly distributed in the base fluids. The fluid particles have extra space to travel about formerly
hitting the other fluid particles, where these particles revolve in the fluid field and fallouts for spinning
effects in the micropolar nanofluid. The temperature T and nanoparticle fraction C take the values Tw

and Cw at the wall, while the encompassing structures for nanofluid temperature and mass divisions
T∞ and C∞ are achieved as y keeps an eye on infinity (see Figure 1).
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The governing equations for the problem under study are:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

=

(
µ+ K∗1
ρ

)
∂2u
∂y2 +

(K∗1
ρ

)
∂N∗

∂y
+ g[βt(T − T∞) + βc(C−C∞)]cosγ−

σB2(x)
ρ

u, (2)

u
∂N∗

∂x
+ v

∂N∗

∂y
=

(
γ∗

j∗ρ

)
∂2N∗

∂y2 −

(
K1
∗

j∗ρ

)(
2N∗ +

∂u
∂y

)
, (3)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + τ

DB
∂C
∂y
∂T
∂y

+
DT

T∞

(
∂T
∂y

)2, (4)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT

T∞
∂2T
∂y2 , (5)

where in the directions x and y, the velocity constituents are u and v, individually, g is the gravitational
acceleration, the uniform magnetic field strength is given by B0, σ denotes the electrical conductivity,
the viscosity is denoted by µ, the density of the base liquid is given by ρ f , the density of the nanoparticle
is given by ρp, the vortex viscosity is defined as k∗1, the factor of thermal increase is given by βt, βc

denotes the constant of concentration extension, the gyration ascent viscosity is given by γ∗, the micro
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inertia each component mass is given by j∗, the micro-rotation is given by N∗, DB denote the Brownian
dispersal factor, DT denotes the thermophoresis dispersion amount, (ρc)p signifies the heat capacity of
the nanoparticles, (ρc) f represents the heat capacity of the conventional liquid, the thermal diffusivity

parameter is denoted by α = k
(ρc) f

, and the relation between the active heat capacity of the nanoparticle

and heat capacity of the liquid is represented by τ =
(ρc)p

(ρc) f
.

The boundary settings in for concern problem are:

u = uw(x) = axm, v = 0 , T = Tw , N∗ = −m0
∂u
∂y

, C = Cw at y = 0,

u→ u∞(x) = 0, v→ 0 , T→ T∞ , N∗ → 0, C→ C∞ at y→∞. (6)

The nonlinear ordinary differential equations are obtained from nonlinear partial
differential equations. The stream function ψ = ψ(x, y) for that purpose is given as

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (7)

For this study, the transformations are demarcated as:

ψ =

√
2νaxm+1

m + 1
f (η), θ(η) =

T − T∞
Tw − T∞

,

φ(η) =
C−C∞

Cw −C∞
, η = y

√
(m + 1)axm−1

2ν
. (8)

N∗ = axm

√
a(m + 1)xm−1

2v
h(η), u = axm f ′(η),

where V = −

√
av(m+1)xm−1

2

[
f (η) + m+1

m−1 η f ′(η)
]
,

The Equations (2) to (5) are converted to the following nonlinear ordinary differential equations
by utilizing Equation (8):

(1 + K) f ′′′ + f f ′′ −
( 2m

m + 1

)
f ′2 + Kh′ +

2
m + 1

(Grxθ+ Gcxφ)cosγ−
2

m + 1
M f ′ = 0, (9)

(
1 +

K
2

)
h′′ + f h′ −

3m− 1
m + 1

f ′h−
2K

m + 1
(2h + f ′′ ) = 0, (10)( 1

Pr

)
θ′′ + fθ′ + Nbφ′θ′ + Ntθ′2 = 0, (11)

φ′′ + Leφ′ + Ntbθ
′′ = 0, (12)

where,

M =
σB2

0

aρ
, Le =

ν
DB

, Pr =
ν
α

, Nb =
τDB(Cw −C∞)

ν
, Nt =

τDt(Tw − T∞)
νT∞

, K =
k∗1
µ

,

Grx =
gβt(Tw − T∞) x−2m+1

a2 , Rex =
uw(x)x
ν

, Gcx =
gβc(Cw −C∞) x−2m+1

a2 , Ntb =
Nt

Nb
. (13)

Here, primes mean the differentiation concerning η, the magnetic parameter is given by M, ν is
kinematic viscosity, Pr is the Prandtl number, Grx denotes the local Grashof number, and Gcx signifies
the local modified Grashof number; to achieve the true similarity solution, the parameters Grx and Gcx
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must be constant. This condition is achieved if the thermal expansion coefficient βt and concentration
expansion coefficient βc are proportional to x2m−1. Hence, we assume that (see references [38–40])

βt = nx2m−1, βc = n1x2m−1. (14)

where n and n1 are constants. Substituting Equation (14) in to the parameters Grx and Gcx, we get

Gr =
gn(Tw − T∞)

a2 and Gc =
gn1(Cw −C∞)

a2 , (15)

The transformed boundary conditions are

f (η) = 0, f ′(η) = 1, h(η) = 0, θ(η) = 1, φ(η) = 1, at η = 0,

f ′(η)→ 0, h(η)→ 0, θ(η)→ 0, φ(η)→ 0 as η→∞, (16)

It is found that by eliminating the vertex viscosity (K = 0), the situation agrees with a nanofluid
model deprived of micropolar properties. The physical quantities for the current study are
demarcated as

Nux =
xqw

k(Tw − T∞)
, Shx =

xqm

DB(Cw −C∞)
, C f =

tw

uw2ρ f
, (17)

where

qw = −k
∂T
∂y

, qm = −DB
∂C
∂y

, τw =
(
µ+ k∗1

)∂u
∂y

+ k∗1N∗, at y = 0.

The associated terms for C f x(0) = (1 + K) f ′′(0), −θ(0), −φ′(0), are denoted as

C f x(0) =
C f

2

√
2

m + 1
Rex, −θ′(0) =

Nu√
Rex

(
m+1

2

) , −φ′(0) =
Sh√

Rex
(

m+1
2

) , (18)

where Rex =
uw(x)x
ν represents the local Reynolds number.

3. Results and Discussion

This part demonstrates the numerical outcomes of the present study in the form of tables and
graphs against involved parameters for different physical quantities. Table 1 is prepared for the
authentication of the current outcomes with available results of Khan and Pop [41]. The outcomes
are proven to have good agreement. Table 2 reveals the numerical outcomes of −θ′(0), −φ′(0), and
C f x(0), against altered magnitudes of Nb, Nt, M, K, Gr, Gc, γ, m, Le, and Pr. It is clearly seen from
Table 2 that −θ′(0) decreases with the growth of Nb, Nt, M, Le, m, and γ, and increases against K, Gr,
Gc, and Pr. In addition, −φ′(0) upsurges on improving Nb, Gr, Gc, Nt, Le, K, and Pr and diminishes
on enhancing M, m, and γ. In the same vein, C f x(0) upturns by increasing Le, M, K, Pr, γ, and m, and
falls with the growth of Nt, Gr, Gc, and Nb.

Table 1. Results of −θ′(0) and −φ′(0) when M, K, Gr, Gc = 0, with m = 1, Pr = Le = 10 and γ = 90◦.

Nb Nt
Khan and Pop [41] Present Results

−θ′(0) −φ′(0) −θ′(0) −φ′(0)

0.1 0.1 0.9524 2.1294 0.9524 2.1294
0.2 0.2 0.3654 2.5152 0.3654 2.5152
0.3 0.3 0.1355 2.6088 0.1355 2.6088
0.4 0.4 0.0495 2.6038 0.0495 2.6038
0.5 0.5 0.0179 2.5731 0.0179 2.5731



Processes 2019, 7, 926 6 of 14

Table 2. Numerical values of −θ′(0), −φ′(0) and C f x(0).

Nb Nt Pr Le M K Gr Gc m γ −θ′(0) −φ′(0) Cfx(0)

0.1 0.1 7.0 5.0 0.1 1.0 1.0 0.9 0.5 450 1.1618 1.2482 0.6326
0.5 0.1 7.0 5.0 0.1 1.0 1.0 0.9 0.5 450 0.2147 1.7428 0.6065
0.1 0.5 7.0 5.0 0.1 1.0 1.0 0.9 0.5 450 0.5199 1.9167 0.3007
0.1 0.1 10.0 5.0 0.1 1.0 1.0 0.9 0.5 450 1.1902 1.2594 0.6514
0.1 0.1 7.0 10.0 0.1 1.0 1.0 0.9 0.5 450 1.0231 2.2201 0.7370
0.1 0.1 7.0 5.0 0.5 1.0 1.0 0.9 0.5 450 1.1458 1.1979 0.9755
0.1 0.1 7.0 5.0 0.1 5.0 1.0 0.9 0.5 450 1.1744 1.3052 1.3112
0.1 0.1 7.0 5.0 0.1 1.0 3.0 0.9 0.5 450 1.1823 1.2887 0.0514
0.1 0.1 7.0 5.0 0.1 1.0 1.0 2.0 0.5 450 1.1783 1.2864 0.2174
0.1 0.1 7.0 5.0 0.1 1.0 1.0 0.9 5.0 450 1.1251 1.1644 1.5270
0.1 0.1 7.0 5.0 0.1 1.0 1.0 0.9 0.5 900 1.1345 1.1862 1.3003

Figure 2 gives a picture of the upshot of factor M on f ′(η). The velocity outline slow down as we
upsurge the constraint M. This is because the use of a magnetic field yields a Lorentz force, by means of
which retards the fluid motion. A similar result has been seen in the instance of angular velocity against
changed values of M in Figure 3. The variations in material parameter K show the velocity profile
upturn (see Figure 4). The variation in angular velocity against the material parameter is portrayed in
Figure 5. Clearly h(η) increases with growing magnitudes of K on matching with the Newtonian case
(K = 0); also, the boundary layer thickness reduces with the growth of K. The velocity shape upturns
in Figure 6 by enhancing Grashof number Gr. Physically, the growing magnitude of the Grashof
number declines with the viscous force that offers a favor to the fluid flow, which causes faster motion.
Moreover, a similar result for the local modified Grashof number Gc on velocity disruption is prominent
in Figure 7. Physically, the length, concentration difference and kinematic viscosity of the fluid affected
the parameter Gc. On the other hand, there is an inverse relation between the viscosity and velocity
of the fluid. Therefore, the viscosity of the fluid declines with the growing magnitude of Gc, and the
concentration upsurges directly due to which the velocity field rises. Finally, the factor Gc shows a direct
relation with the velocity outline. Figure 8 portrays the consequence of γ on f ′(η). It is demonstrated
that the velocity outline depreciates as we enhance the values of inclination parameter γ. This can be
ascribed to the circumstance that when the inclination parameter γ = 0 the gravitational force acting on
the flow will be on the peak. Whereas, for γ = 900, the velocity profile diminishes due to the weaker
bouncy forces. Similarly, the velocity profile shows an inverse relation with m, as depicted in Figure 9.
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Figures 10 and 11 display the of effect of Nb on θ(η) and φ(η) respectively. θ(η) increases
with increasing Nb, whereas, φ(η) shows inverse behavior. Physically, Brownian motion warms the
boundary layer which inclines to travel nanoparticles from the stretching surface to the fluid at rest,
due to which the concentration of nanoparticles declines.
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Figure 11. φ(η) versus Nb.

Figures 12 and 13 present θ(η) and φ(η) against several magnitudes of Nt. It is observed that
both θ(η) and φ(η) increase by enhancing Nt. Thermophoresis works to heat up the boundary layer
against several values of Prandtl and Lewis numbers. Besides the amount of heat and mass exchange
reduced by improving thermophoresis constraint Nt. Figure 14 reveals that by growing the values
of Pr, θ(η) drops, the reason behind this is the lessening of the thermal boundary layer viscosity by
increasing Pr. In other words, an improvement in Pr means slowing the extent of thermal dispersion.
Figure 15 displays the result of Lewis number Le on concentration profile. The boundary layer viscosity
lessens by improving the values of Lewis number Le.

Processes 2019, 7, x FOR PEER REVIEW 10 of 15 

 

 

Figure 11. 𝜙(𝜂) versus 𝑁𝑏. 

Figures 12 and 13 present 𝜃(𝜂) and  𝜙(𝜂) against several magnitudes of 𝑁𝑡. It is observed that 
both 𝜃(𝜂) and  𝜙(𝜂) increase by enhancing 𝑁𝑡. Thermophoresis works to heat up the boundary 
layer against several values of Prandtl and Lewis numbers. Besides the amount of heat and mass 
exchange reduced by improving thermophoresis constraint  𝑁𝑡. Figure 14 reveals that by growing 
the values of 𝑃𝑟, 𝜃(𝜂) drops, the reason behind this is the lessening of the thermal boundary layer 
viscosity by increasing 𝑃𝑟. In other words, an improvement in 𝑃𝑟 means slowing the extent of 
thermal dispersion. Figure 15 displays the result of Lewis number 𝐿𝑒 on concentration profile. The 
boundary layer viscosity lessens by improving the values of Lewis number 𝐿𝑒. 

 

Figure 12. 𝜃(𝜂) versus 𝑁𝑡. Figure 12. θ(η) versus Nt.



Processes 2019, 7, 926 11 of 14Processes 2019, 7, x FOR PEER REVIEW 11 of 15 

 

 

Figure 13. 𝜙(𝜂) versus 𝑁𝑡. 

 
Figure 14. 𝜃(𝜂) versus 𝑃𝑟. 

 
Figure 15. 𝜙(𝜂) versus 𝐿𝑒. 

Figure 13. φ(η) versus Nt.

Processes 2019, 7, x FOR PEER REVIEW 11 of 15 

 

 

Figure 13. 𝜙(𝜂) versus 𝑁𝑡. 

 
Figure 14. 𝜃(𝜂) versus 𝑃𝑟. 

 
Figure 15. 𝜙(𝜂) versus 𝐿𝑒. 

Figure 14. θ(η) versus Pr.

Processes 2019, 7, x FOR PEER REVIEW 11 of 15 

 

 

Figure 13. 𝜙(𝜂) versus 𝑁𝑡. 

 
Figure 14. 𝜃(𝜂) versus 𝑃𝑟. 

 
Figure 15. 𝜙(𝜂) versus 𝐿𝑒. Figure 15. φ(η) versus Le.



Processes 2019, 7, 926 12 of 14

4. Conclusions

Energy and mass transport of micropolar type nanofluid flow over a nonlinear inclined stretching
surface with a magnetic field effect is examined. For numerical simulation, the Keller box scheme is
employed. Table 1 is prepared for the validation of our current outcomes with already available literature.
This type of study plays an important role in industry and engineering fields such as cooling of metallic
plates, extrusion of polymers, nuclear reactors, electric devices and fiber construction. The key
conclusions of the problems under concern are as follows:

â The velocity profile reduces by strengthening the magnetic field.
â The inclination effect diminishes f ′(η) for higher values.
â The Grashof number boosts the velocity profile.
â The heat and mass exchange rate are decreased with the growth of the inclination effect.
â The mass flux improves against the cumulative values of the Brownian motion factor.
â The wall shear stress decreases with the growth of the Brownian motion effect.
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Nomenclature

C f Skin friction coefficient a Stretching rate Rex Reynolds number
C∞ Ambient nanoparticle volume fraction Le Lewis number Sh Sherwood number
Cw Surface volume fraction Nb Brownian motion parameter T Fluid temperature
cp Specific heat at constant pressure Nt Thermophoretic parameter Tw Wall temperature
DB Brownian diffusion coefficient Nu Nusselt number T∞ Ambient temperature
DT Thermophoretic diffusion coefficient Pr Prandtl number uw Wall velocity
f Similarity function for velocity g Gravitational acceleration u∞ Ambient velocity
ρcp Volume heat capacity µ Kinematic viscosity ν Dynamic viscosity
φ Dimensionless solid volume fraction w Condition at the wall ∞ Ambient condition
Gc Local modified Grashof number βt Thermal expansion coefficient βc Concentration expansion coefficient
σ Electric conductivity γ∗ Spin gradient viscosity k∗1 Vertex viscosity
j∗ Micro inertia per unit mass γ Inclination parameter ′ Differentiation with respect to η
u Velocity in x direction v Velocity in y direction x Cartesian coordinate
θ Dimensionless temperature m Non-linear stretching parameter k Thermal conductivity
ρ Fluid density Gr Grashof number B0 Uniform magnetic field strength
K Material parameter η Similarity independent variable α Thermal diffusivity
N∗ Non-dimensional angular velocity C Fluid concentration
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