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Abstract: The thermal performances based on the interaction of nanoparticles are the topic of great
interest in recent years. In the current continuation, we have utilized the activation energy and
thermal radiation consequences in the bioconvection flow of magnetized Oldroyd-B nanoparticles
over a stretching cylinder. As a novelty, the second order slip features (Wu’s slip) and convective
Nield boundary assumptions are also introduced for the flow situation. The heat performances
of nanofluids are captured with an evaluation of the famous Buongiorno’s model which enables
us to determine the attractive features of Brownian motion and thermophoretic diffusion. The
suggested thermal system is based on the flow velocity, nanoparticles temperature, nanoparticles
volume fraction and motile microorganisms. The governing flow equations for the flow problem
are constituted with relevant references for which numerically solution is developed via shooting
algorithm. A detailed graphically analysis for the assisted flow problem is performed in view of the
involved parameters. Although some studies are available in the literature which deals with the flow
of various fluids over-stretching cylinder, the phenomenon of bioconvection and other interesting
features are not reported yet. Therefore, present scientific computations are performed to fill this gap
and the reported results can be more useful for the enhancement of thermal extrusion processes, solar
energy systems, and biofuels.

Keywords: Oldroyd-B nanofluid; motile microorganisms; activation energy; stretching cylinder;
shooting technique

1. Introduction

In order to enhance the consumption of fossil fuels and alleviating the environmental crises, modern
nanotechnology suggested some effective resources based on the interaction of nanoparticles. In fact, the
improvement of energy resources by using traditional techniques results in some serious environmental
crunch like global warming, depletion of ozone layer and emission of CO2 and CO. Therefore, scientists
are devoted to providing renewable and clean sources for enhancement of energy to the society.
On this end, nanofluids have been commenced to cope with this issue effectively. The nanoparticles,
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due to excellent thermophysical features are proffered for heat transfer performances associated
with diverse engineering and mechanical industries. Owing to the higher thermal performances,
the nanoparticles attain a valuable scientific significance in the field of engineering, chemical and
mechanical industries and biomedical applications like diagnosis of various diseases, chemotherapy,
artificial lungs, destroying of damage tissues, etc. The nanoparticles are a mixture of metallic
particles with base liquid which was first suggested by Choi [1] in 1995. Based on experimental
computations, Choi [1] proved that the thermal performance of relatively poor working liquid like
water is enhanced with proper utilization of such nanoparticles. This amusing idea has been widely
justified by numerous contributors in order to examine heat transportations in diverse flow situations.
Later on, Buongiorno [2] determined the convective transport of nanoparticles with evaluation of
Brownian motion and thermophoretic features. Azam et al. [3] utilized the slip features in the flow
of Carreau nanoparticles over a moving configuration where non-similar computation has been
carried out numerically. Alblawi and co-workers [4] addressed the thermophysical of nanoparticles by
using Buongiorno nanofluid model in a curved stretched geometry. The interaction of four types of
nanoparticles immersed in the base liquid with additional features of magnetic field was numerically
attributed by Elgazery [5]. Hayat et al. [6] imposed the novel convective transport constraints for an
unsteady flow of Jeffrey nanoparticles where solution was depicted via convergent algorithm. The Hall
effects in the two-phase flow of dusty nanofluid have been reported by Gireesha and co-workers [7].
They used Khanafer-Vafai-Lightstone (LVL) model to distinguish the important consequences of
effective thermal viscosity and nanoparticle viscosity. Hashim et al. [8] performed a numerical based
continuation for the flow of non-Newtonian nanoparticles over a stretched surface. An interesting
continuation in a similar direction was performed by Waqas et al. [9] which dealt with the flow
of Maxwell viscoelasticity-based micropolar nanofluid over a porous surface. They developed a
numerical solution for the dimensionless flow problem via shooting procedure. Turkyilmazoglu [10]
examined the two-phase flow of nanoparticles over a circular jet. The peristaltic transport in the
flow of nanoparticles under additional effects of hall and ion-slip was focused by Rafiq et al. [11].
Tlili et al. [12] simulated convective flow of nanoparticles in the circular cylinder influenced by applied
magnetic force. Some more recent studies on this topic organized by numerous investigators can be
found in references [13–18].

Recently, valuable work on the flow of non-Newtonian has been presented by various investigators
because of their exceptional importance in various manufacturing and chemical industries, nuclear
industries, bio-engineering, geophysics, and material processing. Many industrially important liquids
like slurries, emulsion and polymer solutions attained a relatively convoluted rheological structure
like shear thickening, shear-thinning, elasticity and extraordinary hardening associated with the
flow. On this end, the importance of non-Newtonian fluids is still challenging and therefore, various
non-Newtonian models are proposed in the literature to illustrate their complex rheological perspective.
Among these non-Newtonian fluids, Oldroyd B is one that captures simultaneous relaxation and
retardation features. Oldroyd B fluid also enables to explain of the creep and normal stress differences
which is associated with simple shear flow. However, Oldroyd B fluid does not describe the shear
thickening and shear thinning features, unlike other polymeric materials. Oldroyd-B fluid includes the
substantial viscoelastic applications for Maxwell fluid and viscous fluid as a limiting case. Due to such
prestigious consequences, a detailed scientific contribution based on the flow of Oldroyd-B fluid is
inspected in the existed literature [19–26].

The macroscopic convective fluid particle movement results from the variation in the density
gradient are termed as bioconvection. The macroscopic motion is encountered due to collective motile
microorganisms swimming which altered the density of base fluid. The phenomenon of bioconvection
accomplished wide range applications in biological sciences, biotechnology and bio-microsystems
like enzyme biosensors and microfluidic devices. The bioconvection also plays a valuable role in
mechanical engineering where an electric field is used to organize the bioconvection process for
producing mechanical power resources and energy. Further, another attractive characteristic of
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bioconvection is when nanoparticles are accumulated with microorganisms, it enhanced the stability
and mass transportation of nanoparticles. The first and foremost contribution to the bioconvection of
microorganisms in existence of nanoparticles was successfully investigated by Kuznetsov [27,28]. Based
on such useful contributions, it was verified that an enhanced truncation in the stability of nanoparticles
may be possible via gyrotactic microorganisms phenomenon. Chakraborty et al. [29] added the
effects of magnetic field in the bioconvection flow of nanoparticles considered over a convective heat
configuration. The flow of nanofluid influenced by a strong magnetic force in the presence of gyrotactic
microorganisms has been examined by Alsaedi et al. [30]. Another interesting work on this topic
deals with the convective movement of nanoparticles which encountered the effects of gyrotactic
microorganisms that have been determined numerically by Khan et al. [31]. Xun and co-workers [32]
analyzed the combined features of time-dependent thermal conductivity and viscosity in bioconvection
flow of nanofluid in a rotating frame. Beg et al. [33] find out the numerical simulations in the flow of
non-Newtonian nanoparticles in a free stream where the effects of microorganisms are also utilized.
Recently Waqas et al. [34] studied the phenomenon of motile gyrotactic microorganism in Falkner-Skan
flow magnetized nanoparticles over a stretching surface. The thermally developed flow of Williamson
nanoparticles in the presence of gyrotactic microorganisms and Newtonian boundary constraints was
analyzed by Zaman and Gul [35]. Rehman et al. [36] summarized the flow of water-based nanoparticles
with gyrotactic microorganisms over a vertically moving geometry. Bhatti et al. [37] simulate the
flow of viscous nanoparticles over a stretching cylinder in the presence of thermal radiation and heat
absorption/generation features.

After examining the literature survey presented above, it is noticed that no contribution has been
devoted to revealing the flow of Oldroyd-B nanofluid over a stretched cylinder in the presence of
gyrotactic microorganisms, activation energy, and thermal radiation effects. The proposed analysis
has been performed with the simultaneous second order slip features and convective boundary
assumptions [38–43]. The interaction of second order slip (Wu’s slip) is quite different from the first
order slip as it results two slip parameters that can effectively control the development in boundary
layer. This condition is applied in order to make the model more realistic and practical. In fact, the
present study is the extension of Irfan et al. [21] in three directions, first by considering the phenomenon
of bioconvection, second by introducing the effects of activation energy and third by utilizing the
second order slip features. The highly coupled nonlinear boundary value problem is numerically
simulated with the shooting procedure. Later on, each physical parameter is expansively expressed
with relative physical consequences.

2. Physical Model

We assume a two-dimensional radiative flow of Oldroyd-B fluid with addition of nanoparticles
over a stretched cylinder of radius R. Following the cylindrical polar coordinates (r, z), the r−axis is
taken in the radial direction while z−axis is assumed along the cylinder axis. The effects of magnetic
fields are utilized in r−axis. Owing to the smaller Reynolds number assumptions, the induced magnetic
field effects are ignored (see Figure 1). Let T, C, and N denotes the nanoparticles’ temperature,
concentration, and microorganism, respectively. The nanoparticles concentration and motile organisms
near the surface are expressed with Cw and Nw, respectively. Further, far away from the surface, the
nanoparticles concentration is symbolized by C∞ and motile microorganisms is expressed by N∞.



Processes 2019, 7, 914 4 of 19

Processes 2019, 7, x FOR PEER REVIEW 4 of 22 

 

where T  is stress tensor, p  represents the pressure, I  is identity vector, S  relates the extra 

stress tensor,   is dynamic viscosity, 1  relaxation time, 1  retardation time while 1A  is Rivlin-

Ericksen tensor which is defined as 

( )1 ,
T

A =  + V V  (3) 

 , , ,u v w=V  (4) 

where V  is the velocity vector. Since we have considered the steady-state flow problem, therefore, 

time derivative terms disappear. The continuity, momentum, thermal heat, concentration, and 

gyrotactic microorganism’s equations are expressed as [21,37,44]. 

 

Figure 1. Geometry of the problem. 

0,
u u w

r r z

 
+ + =

 
 

(

5

) 

2 2 2 2
2 2 2

1 0 12 2 2

2 2

2

2 2 2 2 3 3

2 2 2 2 3

1
2

1 2

2

w w w w w w w w
u w w u uw v B w u

r z z r r z r r r r

u w w w u w w w w w

r r r r z r r r r r z r r z
v

w u u w w w w w
w u

r r r r z r r z r

  



           
+ + + + = + + − − +    

            

        
− − + −

         


      
− + − + +

       

( ) ( )

( ) ( )

( ) ( )

1

1
,

f

p f

f

m f

C g T T

g C C

n n g

 

 


  



 







  − − −
 
  + − − −
 
   − −  

 
(6) 

( )22

1 2

1 1
,

( )

rT
B

f

rqDT T T T C T T
u w D

r z r r r r r T r c r
 



          
+ = + + + −   

            
 (7) 

( )
2

21 1
exp ,aT

B

EDC C C T T
u w D r r Kr C C

r z r r r T r r r T kT


 

  −          
+ = + − −       

           
 (8) 

Figure 1. Geometry of the problem.

The constitutive equation for Oldroyd B fluid can be represented as [19].

T = −pI + S, (1)

S + λ1
DS
Dt

= µ
(
A1 + λ2

DA2

Dt

)
, (2)

where T is stress tensor, p represents the pressure, I is identity vector, S relates the extra stress tensor, µ
is dynamic viscosity, λ1 relaxation time, λ1 retardation time while A1 is Rivlin-Ericksen tensor which is
defined as

A1 = ∇V + (∇V)T, (3)

V = [u, v, w], (4)

where V is the velocity vector. Since we have considered the steady-state flow problem, therefore, time
derivative terms disappear. The continuity, momentum, thermal heat, concentration, and gyrotactic
microorganism’s equations are expressed as [21,37,44].

∂u
∂r

+
u
r
+
∂w
∂z

= 0, (5)

u∂w
∂r + w∂w

∂z + λ1
[
w2 ∂2w

∂z2 + u2 ∂2w
∂r2 + 2uw ∂2w

∂r∂z

]
= v

[
∂2w
∂r2 + 1

r
∂w
∂r

]
+ σB2

0

(
−w− λ1u∂w

∂r

)
+

vλ2

 u
r2
∂w
∂r −

1
r
∂w
∂r

∂w
∂z −

2
r
∂u
∂r
∂w
∂r + w

r
∂2w
∂r∂z −

∂w
∂r

∂2w
∂r∂z

−2∂w
∂r

∂2u
∂r2 + u

r
∂2w
∂r2 −

∂w
∂z

∂2w
∂r2 + w ∂3w

∂2r∂z + u∂
3w
∂r3

+ 1
ρ f


(1−C∞)ρ fβ

∗g(T − T∞)−(
ρp − ρ f

)
g(C−C∞)−

(n− n∞)gγ∗
(
ρm − ρ f

)
, (6)

u
∂T
∂r

+ w
∂T
∂z

= α1

[
∂2T
∂r2 +

1
r
∂T
∂r

]
+ τ

DB
∂C
∂r
∂T
∂r

+
DT

T∞

(
∂T
∂r

)2− 1
(ρc) f

∂(rqr)

∂r
, (7)

u
∂C
∂r

+ w
∂C
∂z

= DB
1
r
∂
∂r

(
r
∂C
∂r

)
+

DT

T∞
1
r
∂
∂r

(
r
∂T
∂r

)
−Kr2(C−C∞)

( T
T∞

)2
exp

(
−Ea

kT

)
, (8)

u
∂N
∂r

+ w
∂N
∂z

+
bWc

(Cw −C∞)

[
∂
∂r

(
N
∂C
∂r

)]
= Dm

(
∂2N
∂r2

)
, (9)

The developed flow is examined under the following boundary assumptions.

w(r, z) =
U0z

l
+ uslip, u(r, z) = 0, − k

∂T
∂r

= h f
(
T f − T

)
, DB

∂C
∂r

+
DT

T∞
∂T
∂r

= 0, N = Nw at r = R (10)
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w→ 0, T→ T∞, C→ C∞, N→ N∞ as r→∞, (11)

We introduced the slip effects of the second order as follows [38–42].

uslip =
2
3

(
3− αl2

α
−

3
2

1− l2

Kn

)
β
∂w
∂r
−

1
4

[
l4 +

2
K2

n

(
1− l2

)]
β2 ∂

2w
∂r2 , (12)

uslip = A∗
∂w
∂r

+ B∗
∂2w
∂r2 , (13)

where λ1 is the relaxation time coefficient, λ2 represents the retardation time, B is magnetic field
strength, σ denotes electrical conductivity, g is gravity, ρp stands for liquid density, ρm signify motile
microorganism particles density, C determine volume concentration of magnetic particles, N is density
of microorganism, T f represents the convective fluid temperature, h f is heat transfer coefficient, ρ f
determine nanoparticles density, T is nanoparticles temperature, α1 is thermal diffusivity, DB being
Brownian motion constant, DT thermophoretic diffusion coefficient, Wc speed of gyrotactic cell, Kn

notify the Knudsen number, A and B stands for constant, b1 chemotaxis constant, β molecular mean
path, α accomplished momentum coefficient. It is remarked that second order slip appeared in Equation
(8) is termed as Wu’s slip condition which has already been used by numerous researchers [38–42].

In order to modify Equation (7) for thermally developed flow, the expression based on Rosseland
approximation can be expressed as [22].

qr = −
16σ∗∗T3

∞

3k∗∗

(
∂T
∂r

)
, (14)

where σ∗∗ is the Stefan-Boltzmann constant while k∗∗ represents the mean absorption coefficient.
Before computing the numerical solution, let us convert the flow equations in dimensionless form

by inserting the following variables [21,37,43,44].

u = −R
r

√
U0ν

l f (ζ), w = U0z
l f ′(ζ), θ(ζ) = T−T∞

T f−T∞ ,

φ(ζ) = C−C∞
Cw

, χ(ζ) = N−N∞
Nw−N∞ , ζ =

√
U0
vl

(
r2
−R2

2R

)
 (15)

where ζ is similarity variable, l is the characteristic length while f , f ′, θ, φ and χ are dimensionless
quantities. Operated above transformations in the governing flow equations, we result in following
dimensionless forms [21,37,44].

(1 + 2αζ) f ′′′ + 2α f ′′ + f f ′′ − f ′2 + 2β1 f 2 f ′′′ − αβ1
(1+2αζ) f 2 f ′′ + (1 + 2αζ)β2

(
f ′′ 2 − f f iv

)
−4αβ2 f f ′′′ −M2( f ′ − β1 f f ′′ ) + Γ(θ−Nrφ−Ncχ) = 0,

(16)

(
1 +

4R
3

)
[(1 + 2αζ)θ′′ + 2αθ′] + Pr fθ′ + (1 + 2αζ)PrNbθ′φ′ + (1 + 2αζ)PrNtθ′2 + Pr[δ f ′ + δ1θ] = 0, (17)

(1 + 2αζ)θ′′ + 2αθ′+ LePr fθ′+(1 + 2αζ)
( Nt

Nb

)
θ′′ + 2α

( Nt
Nb

)
θ′ − PrLeσ(1 + δθ)n exp

(
−E

1 + δθ

)
φ = 0, (18)

(1 + 2αζ)χ′′ + Lb[(1 + 2αζ)( f ′χ)] − Pe[φ′′(χ+ Ω1) + χ′φ′] = 0, (19)

f (0) = 0, f ′(0) = 1 +ω f ′′(0) + Ω f ′′′(0),θ′(0) = Bi(θ(0) − 1), Nbθ′(0) + Ntφ′(0) = 0, χ(0) = 1
f ′ → 0 , θ→ 0 , φ→ 0 , χ→ 0 as ζ→∞

}
. (20)

where α
(
= 1

R

√
vl
U0

)
is constant curvature parameter, β1

(
= λ1U0

l

)
denotes the Deborah number in

terms of relaxation time [31], β2
(
= λ2U0

l

)
is Deborah number in terms of retardation time, M

(
=

σB2
0l

U0ρ f

)
Hartmann number, Γ =

β∗(1−C∞)(Tw−T∞)
U2

0
mixed convection parameter, Nc =

γ(ρm−ρ f )(Nw−N∞)
(1−C∞)(Tw−T∞)β∗

Rayleigh
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number, Nr =
(ρp−ρ f )(Cw−C∞)
(1−C∞)(Tw−T∞)β∗

is buoyancy ratio constant, Nt
(
=

τDT(T f−T∞
υT∞

)
thermophoresis parameter,

Nb
(
=

τDB(Cw)
υ

)
denoted the Brownian motion, R

(
=

4σ∗∗T∗∞
kk∗∗

)
thermal radiation parameter, Pr

(
= v

α1

)
is

Prandtl number, Le
(
= α1

DB

)
is the Lewis number, γ

(
=

h f
k

√
vl
U0

)
denotes the Biot number, Pe = bWc

Dm
is the

Peclet constant, Lb = ν
Dm

Lewis number, Ω1 = N∞
Nw−N∞ is bioconvection constant, ω = A∗

(
r
R

)√U0
2l is the

first order slip constant while Ω = B∗
(

r
R

)√U0
2l determines the second order slip constant.

It is remarked that for β2 = 0, the fluid model is converted to Maxwell fluid model while
β1 = β2 = 0 results viscous case.

In order to determine the rate of heat transfer, rate of mass transfer and gyrotactic microorganism
transfer, we defined local Nusselt number, local Sherwood number and motile density number with
following expressions:

Nuz =
zql

k(T f − T∞)
,Shz =

zjl
DB(Cw −C∞)

,Nxz =
zjn

DB(Nw −N∞)
, (21)

where ql is symbolized as heat flux, jl is mass flux and jn represents the motile flux, which are
defined below

ql = −
16σ∗∗T3

∞

3k∗∗

(
∂T
∂r

)
r=R

, jl = −DB

(
∂C
∂r

)
r=R

, jn = −DB

(
∂N
∂r

)
r=R

, (22)

NuxRe
−

1
2

x = −θ′(0), ShxRe
−

1
2

x = −φ′(0), NnxRe
−

1
2

x = −χ′(0). (23)

where Re−1/2
x = w(z)z/ν is the Reynolds number [21], Nux is local Nusselt number, Shx is local

Sherwood number while Nnx determined the motile density number.

3. Numerical Computations

Since dimensionless Equations (16)–(19) are highly nonlinear in nature, therefore the exact solution
is quite challenging. On this end, we employ a famous numerically based shooting procedure to
simulate the numerical solution. To start simulations, we first convert the dimensionless boundary
value flow problem into initial value problems as follows:

f = r1, d f
dζ = r2, d2 f

dζ2 = r3, d3 f
dζ3 = r4, d4 f

dζ4 = r′4, θ = r5, dθ
dζ = r6, d2θ

dζ2 = r′6,

φ = r7, dφ
dζ = r8, d2φ

dζ2 = r′8,χ = r9, dχ
dζ = r10, d2χ

dζ2 = r′10,
(24)

d f
dζ = r2, d2 f

dζ2 = r3, d3 f
dζ3 = r4, d4 f

dζ4 = r′4,

y′4 =

 (1 + 2αζ)r4 + 2αr3 − r2
2 − 2β1r1r2r3 − β1r2

1r4 −
( αβ1

1+2αζ

)
+(1 + 2αζ)β2r3

2
− 4αβ2r1r4 −M(r2 − β1r1r3) − λ(y5 −Nry7 −Ncy9)


(1+2αζ)β2r1

θ = r5, dθ
dζ = r6, d2θ

dζ2 = r′6,

r′6 = − 1
(1+ 4

3 Rd)

[
Prr1r6 + Pr(1 + 2αζ)Nbr5r7 + Pr(1 + 2αζ)Ntr2

6

]
φ = r7, dφ

dζ = r8, d2φ
dζ2 = r′8,

(1 + 2αη)θ′′ + 2αθ′ + LePr fθ′ + (1 + 2αη)
(

Nt
Nb

)
θ′′ + 2α

(
Nt
Nb

)
θ′

−PrLeσ(1 + δθ)n exp
(
−E

1+δθ

)
φ = 0,

r′8 = 1
(1+2αζ)

 −(1 + 2αζ)
(

Nt
Nb

)
r6
′
− 2α

(
Nt
Nb

)
r6 − PrLer1r8

+LePr
(
σ(1 + δr5)

n exp
(
−E

1+δr5

))
r7

,
χ = r9, dχ

dζ = r10, d2χ
dζ2 = r′10,

r′10 = 1
(1+2αζ)Pe[r8

′(r9 + Ω1) + r10r8] − Lb(1 + 2αζ)r1r10



(25)
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The transformed conditions are

r1(ζ) = 0, r2(ζ) − (1 + γr3(ζ) + δr4(ζ)), r6(ζ) − Bi(r5(ζ) − 1) = 0,
Nbr6(ζ) + Ntr8(ζ) = 0, r9(ζ) = 1, as ζ = 0,

}
(26)

r2(ζ)→ 0, r6(ζ)→ 0, r8(ζ)→ 0, r10(ζ)→ 0, as ζ→∞, (27)

Following the iterative procedure, the solution is accurate up to convincing accuracy of 10−4. The
step size for present simulation is taken as ∆ξ = 1× 10−4.

Validation of Result

In order to verify the solution, the present results are compared with Abel et al. [42], Megahed [43]
and Iran et al. [43] in Table 1. It is easily noted that the obtained numerical results have an excellent
agreement between these reported results.

Table 1. Comparison of − f ′′ (0) for different β1 in limiting cases when α = 0, β2 = 0, Nr = 0, Nc = 0,
Γ = 0 and M = 0.

β1
−f”(0)

Present Results
Reference [42] Reference [43] Reference [44]

0.0 0.999978 1.000000 1.000000 1.000000
0.2 1.051945 1.051889 1.0518898 1.0518899
0.4 1.101848 1.101903 1.1019033 1.1019033

4. Analysis of Results

After successfully computing the numerical simulation [45–52], now we examine the flow
mechanism of various engineering parameters like constant curvature parameter α, Deborah number
in terms of relaxation time β1, Deborah number in terms of retardation time β2, Hartmann number
M, mixed convection parameter Γ, Rayleigh number Nc, buoyancy ratio constant Nr, thermophoresis
parameter Nt, Brownian motion Nb, thermal radiation parameter R, Prandtl number Pr, Lewis number
Le, Biot number γ, Peclet constant Pe, Lewis number Lb, bioconvection constant Ω1, first order
slip constant ω and second order slip parameter Ω on the distribution of velocity f ′, temperature
θ, concentration φ and motile microorganisms χ. Following to the traditional theoretical scientific
contributions for similar analysis, we have allocated some fixed value to each physical parameter
like α = 0.1, β1 = 0.2, β2 = 0.1, M = 0.5, Γ = 0.2, Nc = 0.2, Nr = 0.3, Nt = 0.4, Nb = 0.4, R = 0.6,
Pr = 0.71, Le = 0.3, γ = 0.3, Pe = 0.2, Lb = 0.4, Ω1 = 0.1, ω = 0.2 and Ω = 0.3. It is remarked that for
present flow problem, the viscosity of fluid is assumed to be constant and all the graphical analysis has
been performed with this fact for all parameters. The physical illustration of Hartmann number M
and mixed convection parameter Γ on f ′ has been visualized in Figure 2. The velocity distribution
truncated with M as being an interaction of Lorentz force which is of resistive nature and subsequently
reduced the movement of fluid particles. On contrary, an enhanced distribution of f ′ has been observed
for leading values of Γ. The graphical computations are performed in Figure 3 which deals with the
impact first order slip parameter Ω and buoyancy ratio parameter Nr on f ′. With variation of Nr,
the alteration in f ′ shows a decreasing trend due to presence of buoyancy forces which retarded the
movement of fluid particles effectively. Similarly, the presence of the slip factor also declined the
velocity of the particles near the surface. Figure 4 depicts the variation for the progressive values of
Rayleigh number Nc and second order slip factor ω on velocity distribution f ′. With variation of both
parameters, a decrement in the velocity distribution is observed. With utilization of second order slip
consequences also leads to being a depressed velocity profile.
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In order to examine the fluctuation in nanoparticle temperature θ against different values of
Hartmann number M and mix convection parameter Γ, Figure 5 is presented. While observing the
variation in θ with M, an improved nanoparticle temperature is originated due to the evaluation of
Lorentz force. The implementation of a strong magnetic force slightly enhanced the nanoparticles’
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temperature and concerned boundary layer. However, quite opposite observations were being found
due to the alteration of Γ. The mixed convection parameter is usually related to the Grashoff number
which boosts up nanoparticle temperature efficiently.
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Figure 6 intrigued the influence of the thermophoresis parameter Nt and first order slip parameter
ω on θ. A progressive nanoparticles distribution was observed for Nt. However, change in nanoparticle
temperature was quite minimal due to the occurrence of smaller temperature difference. Physically,
thermophoresis process was a migration of fluid particles from the hot configuration to the relatively
cold region. Due to such fluctuation of nanoparticles, temperature profile enhanced. Another
interesting observation examined for the variation of the slip constant reveals that the presence of the
slip parameter also played a collective role in the enhancement of thermo-physical systems. Figure 7
designed the envision of nanoparticle temperature θ for leading values of curvature parameter α1 and
Prandtl number Pr. With increasing α1, distribution of θ enlarged maximum values. The variation
in θ, due to existing values of Pr, controled the nanoparticles’ temperature as Pr attained inverse
relation with thermal diffusivity. The variation in thermal diffusivity becomes slower as Pr gets
maximum values. The graphical explorations are portrayed in Figure 8 to depress the impact of Biot
number Bi and Radiation parameter Rd on θ. A boosting nanoparticles temperature has been examined
with involvement of Rd. Physically, the enrolment of radiation parameter provided extra heat to the
nanoparticles’ temperature due to which temperature increases. While observing the role of thermal
Biot number Bi. on θ, we note that an upshot of nanoparticles was exhibited due to large Bi. The
physical justification behind such a trend was justified as Bi, directly related to the coefficient of heat
transfer which results in an increased temperature distribution. Moreover, more heat is transmuted
from the hot surface to cold region particles which raise the temperature distribution.
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Figure 9 illustrates the effect of thermophoresis Nt and second order slip parameter ω on volume
fraction concentration distribution φ. We have examined that nanoparticles concentration φ. slightly
enhanced with Nt. While examining the variation of ω on φ., it was noted that the concentration
distribution had again fluctuated with leading values of ω effectively. However, the increasing trend
in φ. was relatively slower for ω as compared to the Nt. The combined effect of activation energy
E and Prandtl number Pr on concentration distribution φ is discussed in Figure 10. The activation
energy was the minimum energy amount to start the reaction process. Therefore, while increasing
activation energy, the reaction process increased, which enhanced the concentration distribution φ.
Such results could play useful role in processes where the reaction process needs to be improved.
On the other hand, the Prandtl number controlled the concentration distribution. With increase of Pr,
the nanoparticles concentration declined. Figure 11 illustrates the behavior of Hartmann’s number M
and mix convection parameter Γ on concentration field φ. It was noted that concentration distribution is
increased with increase of M. Due to magnetization of nanoparticles, the concentration distribution was
altered with specified range. Physically, the Hartmann number is associated with large Lorentz force
which reduced the velocity of nanoparticles but enhanced the nanoparticle concentration. However,
the effects of mixed convection constant Γ were quite opposite i.e., concentration profile decay for
leading values of Γ. Figure 12 exposed the impact of Brownian motion constant Nb and Lewis number
Le on φ. It is noteworthy that both the parameters decreased the function of concentration field. The
Brownian motion constant involves the random movement of fluid particles in the whole system
which is truncated as Nb get maximum values. Further Nb appeared in (1/Nb) form the formulated
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dimensionless concentration equation due to which φ declined. It is remarked that negative values to
concentration distribution do not mean that concentration is negative but magnitude of concentration
is positive. Similar trend of concentration distribution has been found in Atif et al. [45].
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The variation in X for various values of Hartmann number M mixed convection parameter Γ Peclet
number Pe and bioconvection Lewis number Lb has been inspected in Figures 13 and 14. Figure 13
deals with the variation of Hartmann number M and mixed convection parameter Γ on motile density
profile χ The motile organism profile sufficiently improved with M however, a decrement in χ has been
noted for Γ To determine the effects of Peclet number Pe and bioconvection Lewis number Lb on motile
microorganism distribution χ, Figure 14 is sketched. The maximum values of Pe results decrement of
microorganisms diffusivity and so X declined. Moreover, it can be also observed that increasing values
of bioconvection Lewis number Lb also causes lower motile microorganism distribution X.
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Table 2 presents the numerical variation in − f ′′(0) for different values assigned to the various
parameters like M, α1, β1, β2, Γ, Nr, Nc, ω and Λ. Here it was observed that − f ′′(0) attained maximum
values for α1, β1, Γ and Nc. From Table 3, the local Nusselt number −θ′(0) has been varied for various
involved parameters. An increasing variation in −θ′(0) has been notified with β1, Nc, Pr and Bi.
A restively lower variation in the local Nusselt number was observed for M, α1 and Γ. In Table 4, the
trend of local Sherwood number −φ′(0) was specified, which showed that local Sherwood number
increase for Nr, Nc and Le. Finally results for motile density number −χ′(0) were executed in Table 5,
which shows motile density number get larger values for Pe, Lb and Nc.

Table 2. Variation of − f ′′ (0) for M, α1, β1, β2, Γ, Nr, Nc, ω and Λ.

M α1 β1 β2 Γ Nr Nc ω Λ −f”(0)

0.2 0.3 0.3 0.3 0.8 0.5 0.5 1 −1 0.3592
0.6 0.3566
1.0 0.3532
0.5 0.1 0.3547

0.4 0.3573
0.7 0.3841
0.3 0.1 0.3374

0.4 0.3649
0.7 0.3811
0.3 0.2 0.2641

0.4 0.2093
0.6 0.1733
0.3 0.1 0.3547

0.3 0.3555
0.5 0.3562
0.8 0.1 0.3584

0.6 0.3570
1.0 0.3560
0.5 0.1 0.3584

1.0 0.3560
2.0 0.3570
0.5 2.0 0.2641

3.0 0.2093
4.0 0.1733
1.0 −2.0 0.2836

−3.0 0.2362
−4.0 0.2028

Table 3. Variation of −θ′(0) for M, α1, β1, β2, Γ, Nr, Nc, Pr, Nt, Le, Bi and Rd.

M α1 β1 β2 Γ Nr Nc Pr Nb Nt Le Bi Rd
−θ

′

(0)
0.5 0.3 0.3 0.3 0.8 0.5 0.5 2.0 0.3 0.3 5.0 2.0 0.8

0.2 0.3001
0.6 0.2746
1.0 0.2549

0.1 0.3062
0.4 0.2693
0.7 0.2904

0.1 0.3158
0.4 0.2670
0.7 0.2377

0.2 0.2829
0.4 0.2778
0.6 0.0374

0.1 0.2356
0.4 0.2079
0.7 0.1893

0.1 0.2784
0.6 0.2808
1.0 0.2827

0.1 0.2681
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Table 3. Cont.

M α1 β1 β2 Γ Nr Nc Pr Nb Nt Le Bi Rd
−θ

′

(0)
0.5 0.3 0.3 0.3 0.8 0.5 0.5 2.0 0.3 0.3 5.0 2.0 0.8

1.0 0.2949
2.0 0.3210

1.0 0.1744
3.0 0.3828
5.0 0.5435

0.1 0.2824
0.3 0.2797
0.5 0.2798

0.1 0.2595
0.4 0.2910
0.8 0.3340

1.0 0.2787
2.0 0.2788
3.0 0.2793

1.0 0.2452
1.4 0.2641
1.8 0.2759

0.1 0.4037
0.3 0.3585
0.5 0.3222

Table 4. Variation of −φ′(0) for M, α1, β1, β2, Γ, Nr, Nc, Pr, Nt, Le, Bi and Rd.

M α1 β1 β2 Γ Nr Nc Pr Nb Nt Le Bi E
−θ

′

(0)
0.5 0.3 0.3 0.3 0.8 0.5 0.5 2.0 0.3 0.3 5.0 2.0 0.1

0.2 0.4501
0.6 0.4119
1.0 0.3824

0.1 0.4594
0.4 0.4040
0.7 0.4358

0.1 0.4736
0.4 0.4005
0.7 0.3565

0.2 0.4244
0.4 0.4166
0.6 0.0564

0.1 0.4294
0.4 0.4269
0.7 0.4247

0.1 0.4176
0.6 0.4241
1.0 0.4212

0.1 0.4022
1.0 0.4424
2.0 0.4815

1.0 0.2615
3.0 0.5742
5.0 0.8152

0.1 0.8472
0.3 0.2797
0.5 0.1675

0.1 0.1297
0.4 0.5819
0.8 1.3360

1.0 0.4180
2.0 0.4182
3.0 0.4190

1.0 0.3678
1.4 0.3961
1.8 0.4139

0.5 0.6056
1.0 0.5378
1.5 0.4833
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Table 5. Variation of −χ′(0) for M, α1, β1, β2, Γ, Nr, Nc, Lb and Pe.

M α1 β1 β2 Γ Nr Nc Lb Pe
−χ

′

(0)
0.5 0.3 0.3 0.3 0.8 0.5 0.5 1.0 0.1

0.2 0.3620
0.6 0.3261
1.0 0.2992

0.1 0.3567
0.4 0.3244
0.7 0.6409

0.1 0.3850
0.4 0.3155
0.7 0.2758

0.2 0.3378
0.4 0.3305
0.6 0.0389

0.1 0.3424
0.4 0.3401
0.7 0.3377

0.1 0.3314
0.6 0.3348
1.0 0.3375

0.1 0.3170
1.0 0.3548
2.0 0.3927

0.1 0.1643
0.5 0.2378
0.8 0.2956

0.2 0.3752
0.6 0.5399
1.0 0.7046

5. Conclusions

The salient features of gyrotactic microorganisms in a steady flow of Oldroyd-B nanofluid has
been characterized over a stretching cylinder. The convective Nield conditions and second order slip
effects are employed for the assumed flow configuration. The developed dimensionless equations
are numerically solved by using shooting techniques. Following are the major findings of current
numerical work:
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Nomenclature

(u, v, w) velocity component
T nanoparticles temperature
T∞ atmospheric temperature
N microorganisms density
λ2 retardation time
B magnetic field strength
ρm motile microorganism particles density
ρ f nanoparticles density
α momentum coefficient
α1 thermal diffusivity
DT thermophoretic diffusion coefficient
Kn Knudsen number
b1 chemotaxis constant
α constant Curvature parameter
β2 Deborah number in terms of retardation time
Γ mixed convection parameter
Nr buoyancy ratio constant
R thermal radiation parameter
Le Lewis number
Pe Peclet constant
Ω1 bioconvection constant
Ω second order slip constant
(r, z) cylindrical coordinate
C Concentration profile
C∞ atmospheric concentration
λ1 relaxation time coefficient,
σ electrical conductivity,
g gravity
C volume concentration of magnetic particles,
T nanoparticles temperature,
ρp liquid density
DB Brownian motion constant,
Wc speed of gyrotactic cell,
(A, B) stands for constant,
β molecular mean path
β1 Deborah number in terms of relaxation time
M Hartmann number,
Nc Rayleigh number,
Nb Brownian motion,
Pr Prandtl number,
γ Biot number,
Lb Lewis number
ω first order slip constant
Nt thermophoresis parameter
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