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Abstract: The carburizing and coking of ethylene cracking furnace tubes are the important factors
that affect the energy efficiency of ethylene production. To realize the diagnosis and prediction of the
different coking degrees of cracking furnace tubes, and then take corresponding treatment measures,
is of great significance for improving ethylene production and prolonging the service life of the
furnace tube. Therefore, a fusion diagnosis and prediction method based on artificial bee colony
(ABC) and adaptive neural fuzzy inference system (ANFIS) is proposed, which also introduces a
coking-time factor (CTF). The actual data verification shows that the method not only improves
the training efficiency and diagnosis accuracy of the coking diagnosis and inference system of the
cracking furnace tube, but also realizes the prediction of the development trend of the coking degree
of the furnace tube.

Keywords: ethylene cracking furnace tube; ABC; ANFIS; coking-time factor; coking diagnosis
and prediction

1. Introduction

The petrochemical industry is one of the important energy-based industries for the development
of the national economy [1]. While ethylene is the foundation of the chemical industry, its production
level usually represents the level of development of a country’s petrochemical industry [2]. It can be
seen that the ethylene industry has an extremely important position in the petrochemical industry.

In ethylene industry, the ethylene cracking furnace is the key equipment to produce ethylene.
As the core component of the ethylene cracking furnace, the safe and stable operation of the cracking
furnace tubes is the key factor to ensure the ethylene yield [3]. However, in the ethylene production
process, carburizing and coking always inevitably occur in the cracking furnace tubes [4,5]. The presence
of carburization and coking will greatly shorten the service life of the ethylene cracking furnace tubes,
reduce the yield of ethylene, and affect the production efficiency and economic benefits of ethylene.

For the cause of coking formation, a lot of research was carried out as early as the 1950s. In 1988,
the three coking principles of catalytic coking, condensation coking, and free radical coking were
proposed by Albright [6], which are currently widely recognized as the principle of coking [7,8].
At present, the purpose of reducing the coking rate and inhibiting coking is to improve the material
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and structure of furnace tubes, the cracking material, and cracking process conditions [9]. In the
ethylene production process, if the coke deposition on the inner wall of the cracking furnace tube
reaches a certain level, it is necessary to use a mixture of steam and air for decoking to ensure the
normal operation of the ethylene production [8]. However, the premise of decoking treatment is to
accurately diagnose the coking degree of each cracking furnace tube in the current period. Therefore,
the research on the diagnosis method of the coking degree of cracking furnace tubes has important
practical significance.

Considering the performed literature review, there are essentially four ways of diagnosing the
coking degree of the ethylene cracking furnace tube: performing a coking mechanism model [10,11],
using an artificial intelligent algorithm [12,13], diagnosing the failure of the cracking furnace using
infrared thermal imaging technology [14,15], and using the empirical knowledge to diagnose the
problem [16]. However, coking is an extremely complex physico–chemical reaction that occurs during
pyrolysis, and some parameters of the mechanism model are difficult to obtain accurately in actual
production, therefore, the accuracy of the mechanism model can not be assured. In the application of
artificial intelligence algorithms, models generated by artificial neural networks (ANN) and support
vector machines (SVM) have a “black box” syndrome [17–19], and the difficulty in dealing with
qualitative information, which limited its applications in practice. In addition, the “black box” model
has higher requirements on the sample. If the change of influencing factors exceeds a certain range in
practical application, the reliability of the “black box” model will obviously decline. In the application
of infrared thermal imaging technology, due to the high equipment cost of infrared thermal imaging
technology, installation, operation, and maintenance are difficult, and it has not been widely used in
actual production. Moreover, the actual production experience shows that the application of empirical
knowledge to diagnose the coking of the furnace tube has great defects in real-time and reliability.

In order to overcome the shortcomings of the above existing coking diagnosis methods in many
aspects, it is necessary to build a coking diagnosis system with a clear physical meaning for each
network layer, and the ability to generate interpretable diagnostic IF–THEN rules, which is very
important for improving the accuracy and interpretability of the coking diagnosis of cracking furnace
tubes. In view of the previous research and cognition, an adaptive neural fuzzy inference system
(ANFIS) is a good solution to achieve the above goals. Moreover, by searching a large number of
literatures related to coking of cracking furnace tubes, ANFIS has not been effectively applied in the
diagnosis of coking of cracking furnace tubes in the ethylene industry, which will become a good
experimental and application practice.

ANFIS is a fuzzy inference system structure that combines fuzzy logic and neural network
organically [20]. ANFIS can not only use the learning mechanism of neural networks to automatically
extract the optimal membership relationship and fuzzy rules between input and output variables from
the training data, but also the combination of fuzzy logic and neural network makes the structure and
parameters of each layer of the neural network have a clear physical meaning [21]. Therefore, compared
with traditional machine learning and neural network algorithms, ANFIS is widely employed for
solving engineering problems because of its advantages of being easy to understand, with strong
interpretability and low requirements on training samples [22].

A key issue in the application of the ANFIS system is the setting of system structure parameters.
The quality of the multivariable system parameters will directly affect the overall performance of
the system. For multivariable optimization, Karaboga [23] proposed a novel intelligent clustering
optimization algorithm, artificial bee colony (ABC), in 2005. The ABC algorithm can quickly find
the global optimal solution in honey sourcing (set of parameter solutions) through the cooperation
among three different bee species, and can avoid the problem of the local optimal solution in the search
process, to a large extent. Furthermore, compared with the traditional multi-parameter optimization
methods, the ABC algorithm has faster convergence speed and better optimization performance [24].

Based on the above research, a fusion-diagnosis and prediction method for the coking degree of
cracking furnace tubes based on the artificial bee colony algorithm and adaptive fuzzy neural network
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is proposed in this paper, which also introduces a coking-time factor (CTF), named ABC-ANFIS-CTF.
This method mainly has the following three contributions:

(1) A coking diagnosis and inference system based on ANFIS is proposed, and an adjacent
processing function layer is added after the output layer of the system, which can make the system
output of the quantified coking degree of the cracking furnace tube more accurately.

(2) The ABC algorithm is used to optimize the structural parameters of the ANFIS-based coking
diagnosis and inference system, which effectively improves the training efficiency of the system and
the accuracy of coking diagnosis.

(3) A coking-time factor is introduced, to predict the development trend of the coking degree
during the operation period of the furnace tube, which provides a reliable basis for early warning and
efficiency protection of the furnace tube.

The remainder of this paper is organized as follows: Section 2 provides the framework of the coking
diagnosis and inference system of the cracking furnace tube. Section 3 introduces the specific principles
and implementation steps of ABC-ANFIS-CTF method in detail. Section 4 presents a verification of the
proposed model based on real data and comparisons with other models. Finally, the conclusions of the
study are drawn in Section 5.

2. Framework

The framework of the coking diagnosis and inference system for ethylene cracking furnace tube is
shown in Figure 1. It can be seen from the figure that the system is mainly composed of: the ethylene
cracking furnace (furnace tube temperature data acquisition source), infrared thermometer (furnace
tube temperature collection equipment), database (pressure data acquisition source), model training
machine (using for training diagnosis and inference system) five parts, and the specific application of
this system is divided into training process and diagnosis and prediction process.
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Figure 1. The framework of the coking diagnosis and inference system.

2.1. Training Process

2.1.1. Data Collection

The data used for the coking diagnosis and inference system are actually collected in the
petrochemical ethylene plant of a large state-owned petrochemical enterprise in China. The collected
data includes the tube metal temperature (TMT), cross-section pressure, venturi pressure, coil outlet
temperature (COT), and coking degree of each cracking furnace tube. The temperature of the cracking
furnace tube is collected by the infrared thermometer running on the side of the ethylene cracking
furnace, and the collected data is transmitted to the model training machine through the long range radio
(LoRa) wireless communication mode. The real application scene is shown in Figure 2. The infrared
thermometer is integrated with industrial infrared temperature measuring sensor MI31002M (Raytek,
USA) and laser ranging probe LR-TB5000 (KEYENCE, Japan), with a temperature measuring range
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of 250–1400 ◦C, and a temperature measuring accuracy ≤0.5%. The cross-section pressure, venturi
pressure, and coil outlet temperature are collected by the model training machine in real time by
reading the database of the petrochemical ethylene plant, and the coking degree of the cracking furnace
tube is obtained by manual marking by cracking technicians.
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2.1.2. Data Processing

• Extraction of the tube metal temperature.

The original temperature data collected by the infrared thermometer includes the tube metal
temperature of the furnace tube and the wall temperature of the cracking furnace. The difference
between these two temperatures is usually small and the boundary is not obvious. Thus, it is difficult
to extract the tube metal temperature by setting the threshold value. However, there is an obvious
difference between the tube distance data and the wall distance data collected by the laser ranging
probe, as shown in Figure 3, where the abscissa indicates the number of collected data, and the ordinate
indicates the distance or temperature value, and the infrared thermometer measures the temperature
and distance data synchronously.
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Figure 3. The original temperature and distance data collected by the infrared thermometer.

Therefore, the specific extraction method of the tube metal temperature is described as follows:
Assuming that To = {a1, a2, · · · , an} is the temperature data set of the original collection, where

an is the nth temperature value, Do = {b1, b2, · · · , bn} is the distance data set of the original collection,
where bn is the nth distance value, and bdiv is the boundary threshold of the furnace tube distance and
the furnace wall distance data. Therefore, the starting and ending position of the distance data of each
furnace tube in the original distance data can be obtained by Equation (1).{

Pstart = {i1, i2, · · · , ik, · · · , im} , bik+1 < bdiv < bik−1

Pend =
{
j1, j2, · · · , jk, · · · , jm

}
, b jk−1 < bdiv < b jk+1

, k = 1, 2, · · · , m (1)
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where m represents the number of furnace tubes in the collected data, and ik, jk are in [1,n].
According to Equation (1), the starting and ending position (ik, jk) of the data of the kth furnace

tube in the original distance data can be obtained, and then mapping them to the original temperature
data, so that the data set of tube metal temperature of the kth furnace tube can be extracted.

If the data set of tube metal temperature of the kth cracking furnace tube extracted is Tk ={
a′1, a′2, · · · , a′n

}
, where a′n is the nth tube metal temperature value, the final value of the tube metal

temperature of the kth cracking furnace tube can be calculated according to Equation (2).

TMT =
sum

(
a′1, a′2, · · · , a′n

)
length(Tk)

(2)

• Calculation of absolute pressure ratio.

In the process of ethylene cracking production, cracking technicians usually take the absolute
pressure ratio as an indicator to judge whether the cracking furnace tube is running normally or not,
which is defined as follow:

KAPR =
Pw + Pa
Ph + Pa

(3)

where KAPR, Ph, Pw and Pa represent the absolute pressure ratio, cross-section pressure, venturi
pressure, and standard atmospheric pressure, respectively.

2.1.3. Training of the Coking Diagnosis and Inference System

Firstly, the network structure of the coking diagnosis and inference system based on ANFIS is
constructed according to the composition characteristics of the training data, and then the obtained
sample data of TMT, absolute pressure ratio, COT, and the marked coking degree are input into the
coking diagnosis and inference system for training. In the training process, the ABC algorithm is used
to search the optimal solution of the structural parameters of the system. If the yield of the search
solution is no longer increased or the search cycle is larger than the preset range, the search process is
terminated and the optimal parameter solution is obtained [25].

2.2. Diagnosis and Prediction Processes

2.2.1. Coking Diagnosis

After the training of the coking diagnosis and inference system is completed, the coking degree
of the cracking furnace tube can be diagnosed in real time by inputting the tube metal temperature,
absolute pressure ratio, and coil outlet temperature into the system.

2.2.2. Prediction of the Development Trend of Coking Degree

Similarly, by using the trained coking diagnosis and inference system and combining with the
coking-time factor proposed in this paper, the development trend of the coking degree of the cracking
furnace tube in the future period can be predicted, which plays the function of early warning and
efficiency protection of the furnace tube.

3. ABC-ANFIS-CTF

The realization of the coking diagnosis and prediction method named ABC-ANFIS-CTF is mainly
divided into three stages: the first is the construction of the coking diagnosis and inference system
based on ANFIS, the second is the optimization of the system structure parameters based on ABC
algorithm, and the third is the prediction of the development trend of the coking degree based on the
coking-time factor.
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3.1. Construction of the ANFIS-Based System

ANFIS mainly consists of Mamdani type and T-S (Takagi-Sugeno) type [26]. The difference
between the two types is that the output of Mamdani type is fuzzy value, and the output of T-S type is
a linear combination of input variables. In this paper, by analyzing the correlation between the TMT,
absolute pressure ratio, COT, and coking degree of the furnace tube, a T-S type ANFIS coking diagnosis
and inference system with multiple input and single output is adopted. Its system structure is shown
in Figure 4.
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Figure 4. The structure of the ANFIS-based coking diagnosis and inference system.

It can be seen from Figure 4 that the ANFIS-based coking diagnosis and inference system structure
is divided into six layers, and the specific meaning of each layer is described as follows:

Input layer. The total number of nodes in this layer is N1 = n, and each node is directly connected
to the input variable X = {x1, x2, · · · , xn}. The input variables of this system are TMT, absolute pressure
ratio and COT.

Fuzzy layer. Each node in this layer represents a fuzzy set, and the number of fuzzy values in the
fuzzy set represents the number of fuzzy segmentation of input variables. The function of this layer is
to calculate the membership degree of each input variable relative to each fuzzy value in the fuzzy set
according to different membership function µ j

i , such as gaussmf, gbellmf, trimf, and trapezium, etc.,
which is obtained by Equation (4).

µ
j
i = µ j(xi), i = 1, 2, · · · , n, j = 1, 2, · · · , mi (4)

where n is the dimension of the input variable, and mi is the fuzzy segmentation number of the
input variable.

The total number of nodes in this layer is:

N2 =
n∑

i=1

mi (5)

Rule layer. Each node in this layer represents a fuzzy rule, and the applicability of each fuzzy rule
is the product of membership degree input by each node. The total number of nodes in this layer is
N3 = m. The output of this layer is shown as below:

αk =
n∏

i=0

µ j(xi), k = 1, 2, · · · , m, m ≤
n∏

i=1

mi (6)
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Normalized layer. The function of this layer is to normalize the output fuzzy rules of the last layer.
The output of this layer is:

αk = αk/
m∑

t=1

αt (7)

Computing layer. This layer is used to realize the joint calculation of neural network and fuzzy
rules. pik is the weight corresponding to input variables in neural network. The total number of nodes
in this layer is the same as that in the previous layer, and the output is:

Zk =
n∑

i=1

pikαk (8)

Output layer. This layer is the system output layer of ANFIS, which is used to output the coking
diagnosis results corresponding to the input variables. The output formula is as follows:

y(X) =
m∑

k=1

Zk (9)

In the actual production, the coking degree of the furnace tube is usually quantified into several
grades, so this coking diagnosis system is added an adjacent processing function layer ϕy after the
output layer, in order to make the output result more accurately represent the coking degree of the
furnace tube, and its expression is:

ϕy =

vl,
∣∣∣y− vl

∣∣∣ < 0.5

vl+1, y− vl = 0.5
(10)

where vl represents different quantization grades of the coking degree of the furnace tube.

3.2. Optimization of System Structure Parameters

The ABC algorithm is an optimization method to simulate honey collecting behavior of bees in
nature. In the ABC algorithm, bee species are divided into three types: employed bees, onlookers, and
scouts [27]. The space for bees to collect nectar is called honey source or food source, which means
the set of possible solutions to the parameters that need to be adjusted. The amount of nectar at each
honey source represents the fitness or yield of different solutions.

In the initial state, the number of employed bees and onlookers accounts for half of the total
number of bees, and honey source Xs = {x1, x2, · · · , xr} generates SN initial solutions randomly from
Equation (11).

xr = xr,d − Ld + rand(0, 1)(Ud − Ld), r = 1, 2, · · · , SN (11)

where xr is the rth honey source, xr,d is the position of the honey source, d ∈ Dim, Dim is the dimension
of the honey source, Ud and Ld are the upper and lower bounds of the space searched by the bee colony
for honey, respectively.

The fitness or yield of each honey source is calculated by the following formula:

f it(xr) =

 1
f (xr)+1 , f (xr) ≥ 0

1 + abs( f (xr)), f (xr) < 0
(12)

where f (xr) represents the objective function value of each honey source.
In the search process of the optimal solution of honey source, the employed bees first collect and

memorize the amount of nectar at each honey source position, then onlookers obtain the honey source
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information from the employed bees and select a honey source by judging the amount of nectar. The
probability of the honey source being selected is given by Equation (13).

Pr =
f it(xr)

SN∑
r=1

f it(xr)

(13)

Finally, it also needs to update the memory position of the selected honey source. The formula for
position update is as follows:

vr,d = xr,d + φr,d
(
xr,d − xr′,d

)
, r′ = 1, 2, · · · , SN, r′ , r (14)

where φr,d is a random number in [−1,1].
If the honey source of a certain position is exhausted or the position is no longer updated, the

employed bee at the current honey source will become a scout bee, and a new honey source will be
generated according to Equation (11).

The maximum round of the bee colony searching for honey source is called the number of foraging
cycles. If the number of searching is greater than the number of foraging cycles, the ABC algorithm will
output the honey source with the highest yield, and the bee colony will finish the searching process.

Based on the above theories, the method of structural parameter optimization of the coking
diagnosis and inference system using the ABC algorithm is described as follows:

In the traditional way, the structural parameters of ANFIS are artificially determined, which are
arbitrary and irrational. As a result, the explosion of fuzzy rules and the disaster of network dimension
can easily be caused in the process of network training [28], and the training time of network can be
greatly affected. However, using the ABC algorithm to optimize the structural parameters of ANFIS
can largely solve various problems caused by the above way.

Therefore, the optimization strategy proposed in this paper is to take the three structural parameters
involved in the coking diagnosis and inference system, including the membership function type, the
fuzzy segmentation number and the training iteration number of the network, as the honey source of
the ABC algorithm, and set a reasonable honey source search range. Then, the ABC algorithm is used
to find the optimal solution for the structural parameters within the search range. The structure of the
honey source in this optimization strategy is shown in Figure 5.
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Figure 5. The structure of honey source.

For the bee colony search, root mean square error Ermse is selected as the objective function value
to calculate the yield of honey source, and the Ermse is calculated from the true value and the predicted
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value output by the coking diagnosis and inference system with different honey source. The expression
of the Ermse is shown in Equation (15).

Ermse =

√√√√
1
N

N∑
t=1

(yt − ft(xr))

2

(15)

where N is the dimension of the input training sample, and xr is the rth honey source.
To sum up, the algorithm of structural parameter optimization strategy of the coking diagnosis

and inference system based on the ABC algorithm is described as Algorithm 1.

Algorithm 1. ABC Algorithm Optimization Strategy Algorithm

Input: honey source, Xs

Output: best parameters of the system, xr

1. Initialize the number of bees NP
2. Initialize the space of the nectar source SN
3. Initialize the max step of the search maxCycle
4. best_source_fit = fit(x1)
5. While r ≤ maxCycle do
6. Calculate the objective function value f(xr) of the system output corresponding

to the honey source xr

7. Calculate the yield of the nectar source fit(xr) on the basis of the value of the
objective function f(xr)

8. If best_source_fit < fit(xr) do
9. best_source_fit = fit(xr)
10. best_source = xr

11. End if
12. End while
13. Return best_source

3.3. Prediction of the Development Trend of Coking Degree

During ethylene production, the operating cycle of the cracking furnace tube is usually 60–80 d [29].
However, in the actual production, the rate of coke formation of each cracking furnace tube is not the
same due to differences in the material of the tube, the residence time of the cracking raw material
in the tube and hydrocarbon partial pressure etc., so that the operating cycle of the furnace tube is
different from the normal operating cycle. If there is failure to achieve timely decoking in the event of a
change in operating cycle, it will severely affect the service life of the cracking furnace tube and normal
cracking production.

In order to predict the development trend of the coking degree of the furnace tube during the
operation, this paper proposes a method for predicting the development trend of the coking degree of
the tube in combination with a coking-time factor Φ(t). The coking-time factor is defined as follows:

Φ(t) =
{
TMT(t), KAPR(t), COT(t)

}
(16)

where TMT(t), KAPR(t), and COT(t) are the real-time change trend of the tube metal temperature,
absolute pressure ratio, and coil outlet temperature with respect to running time t during ethylene
production, respectively. Their expressions are shown as below:

TMT(t) =
n∑

i=0

aiti (17)
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KAPR(t) =
m∑

j=0

b jt j (18)

COT(t) =
z∑

k=0

cktk (19)

In Equations (17)–(19), a, b, c, n, m, and z are all constant coefficients, and their values are
determined by the actual operation of the cracking furnace tube.

Therefore, the steps to predict the development trend of the coking degree of the furnace tube in
combination with the coking-time factor are described as follows:

Firstly, the coking-time factor is calculated according to the historical data of the TMT, absolute
pressure ratio, and COT of the cracking furnace tube before the predicted time.

Secondly, the time value in the time period that needs to be predicted is substituted into the
coking-time factor to calculate the predicted values of TMT, absolute pressure ratio and COT.

Thirdly, the predictive value of each variable is input into the trained coking diagnosis and
inference system, and the corresponding diagnosis result of coking degree is output.

Finally, the curve of the coking degree with respect to the time change is drawn according to
the diagnosis result, so as to realize the prediction of development trend of the coking degree of the
furnace tube. The algorithm is described as Algorithm 2.

Algorithm 2. Development trend prediction algorithm for coking degree of cracking furnace tube

Input: period of predicted days, t − t + n
Output: predicted degree of coking, V
1. Calculate the coking-time factor Φ(t) from historical data
2. For each day in [t, t + n] do
3. Calculate the corresponding TMT, KAPR and COT for each day
4. Input the TMT, KAPR and COT value into the trained coking diagnosis system
5. Output the coking diagnosis result V of each day
6. End for
7. Plot the development trend of coking degree over time
8. Obtain the development trend of coking degree

4. Experiment and Analysis

The experimental data in this paper were actually collected from the #1 ethylene cracking unit of
the super-large petrochemical enterprise. The cracking unit has 11 USC cracking furnaces, numbered
H-110 to H-120. Each cracking furnace has eight observation windows and 48 U-shaped furnace tubes,
and 12 furnace tubes can be observed in each observation window. In order to verify the effectiveness of
the proposed method, three experiments were carried out and the experimental results were analyzed.

4.1. Optimization of System Structure Parameters

In the actual production process, the cracking materials used for the differently numbered cracking
furnaces are not exactly the same. If the cracking furnaces are grouped according to the difference of
cracking materials, H-110 to H-113, H-119, and H-120 cracking furnaces can be divided into one group,
H-114 to H-117 cracking furnaces can be divided into one group, and the H-118 cracking furnaces is
divided into a separate group. In order to facilitate the implementation of the experiment, the furnace
tubes of H-114 and H-115 cracking furnaces were randomly selected as the experimental data collection
objects. The data set for training, testing, and optimizing the structural parameters of the coking
diagnostic reasoning system based on ANFIS were collected during the complete operation cycle of
H-114 and H-115 cracking furnaces, and the collection frequency was daily.
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In this experiment, the operating cycle of the H-114 and H-115 cracking furnace tubes was 65
days and 73 days respectively. Sample data for training and verification of the coking diagnosis and
inference system were collected in H-114 cracking furnace, and sample data for testing were collected
in H-115 cracking furnace. The experimental data is shown in Table 1.

Table 1. Experimental data.

Dataset Number Input Variables Output Variable

Train 2184
TMT, KAPR, COT Coking degreeVerification 936

Test 3504

In actual production, the cracking technician usually divides the coking degree of the furnace tube
into v1, v2, v3, and v4 four grades, which respectively represent normal, light coking, moderate coking,
and serious coking. During the operation cycle of the furnace tube, there are often some differences and
regularities in the proportion of samples with different degrees of coking. In general, the proportion
of light coking samples is the largest, while the proportion of moderate coking and serious coking
samples is small. Accordingly, the sample structure of each degree of coking in the experimental data
shown in Table 1 is shown in Table 2.

Table 2. The data structure of coking degree samples.

Coking Degree Train Verification Test

v1 426 182 680
v2 1567 671 2517
v3 82 30 144
v4 109 53 163

Total 2184 936 3504

Then, the experiment based on the ABC algorithm for system structural parameter optimization
can be carried out. The steps of the experiment are described as follows:

First, set the search range of the honey source in the ABC algorithm. It can be seen from
the composition of the honey source described in Section 3.2 that the honey source includes three
parameters: the membership function type, the fuzzy segmentation number, and the training iteration
number of the network. By analyzing the system requirements, the selection range of these three
parameters is set as follows:

The selection range of membership function types includes gaussmf, gbellmf, trimf, trapezium,
dsigmoid, and psigmoid.

The selection range of fuzzy segmentation number of the input variables of the TMT, absolute
pressure ratio and COT is set as [2,5].

The selection range of the training iteration number of the network is set as [100,2000].
Next, set the maximum number of foraging cycles and the number of employed bees and

onlookers. In this experiment, the maximum number of foraging cycles was set as 100, and the number
of employed bees and onlookers was set as 10, respectively.

Finally, the bee colony begins to search for the best source of honey. In the process of honey-source
search, the change curve of the yield represented by honey-source is shown in Figure 6. The honey
source corresponding to the maximum yield found during the foraging cycle is the optimal solution of
the structural parameters. The results of the optimal solution are shown in Table 3.
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Table 3. The results of the optimal solution.

Parameters TMT KAPR COT Number

Membership function type dsigmf gbellmf gaussmf —
Fuzzy segmentation number 3 4 2 —
Training iteration number of

ANFIS — — — 2000

4.2. Training and Verification of the Coking Diagnosis and Inference System

The training process of the coking diagnosis and inference system is as follows: firstly, the optimal
honey source searched by the ABC algorithm is set as the structural parameters of the system. Then
the training set from the experimental data described in Section 4.1 is input into the system for training.
In the training process, the change curve of the training error output by the system is shown in Figure 7.
As can be seen from Figure 7, when the number of trainings reaches 1200, the change rate of the training
error curve tends to zero, which indicates that the training effect of the system tends to be optimal, and
also proves that the results of the network training iterations in the optimal solution set searched by
the ABC algorithm meet the requirements of the system.

Processes 2019, 7, x FOR PEER REVIEW 12 of 17 

 

Membership function type dsigmf gbellmf gaussmf — 
Fuzzy segmentation number 3 4 2 — 

Training iteration number of ANFIS — — — 2000 

4.2. Training and Verification of the Coking Diagnosis and Inference System 

The training process of the coking diagnosis and inference system is as follows: firstly, the 
optimal honey source searched by the ABC algorithm is set as the structural parameters of the system. 
Then the training set from the experimental data described in Section 4.1 is input into the system for 
training. In the training process, the change curve of the training error output by the system is shown 
in Figure 7. As can be seen from Figure 7, when the number of trainings reaches 1200, the change rate 
of the training error curve tends to zero, which indicates that the training effect of the system tends 
to be optimal, and also proves that the results of the network training iterations in the optimal 
solution set searched by the ABC algorithm meet the requirements of the system. 

  
Figure 7. Change curve of the training error. 

Finally, input the verification set to verify the trained system. Through verification, the 
comparison result between the real value and the predicted value of the system output is shown in 
Figure 8, and the comparison result between the real value and the predicted value processed by the 
adjacent processing function layer is shown in Figure 9. After adjacent processing, the accuracy of 
coking diagnosis and inference system reaches 99.57%, which is completely in line with the applicable 
accuracy range of actual production. 

 
Figure 8. Real and predicted value. 

Figure 7. Change curve of the training error.

Finally, input the verification set to verify the trained system. Through verification, the comparison
result between the real value and the predicted value of the system output is shown in Figure 8, and the
comparison result between the real value and the predicted value processed by the adjacent processing
function layer is shown in Figure 9. After adjacent processing, the accuracy of coking diagnosis and
inference system reaches 99.57%, which is completely in line with the applicable accuracy range of
actual production.
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Figure 9. Real and processed predicted value.

In order to verify the superiority of the proposed method in coking diagnosis, this paper also made
a comparison experiment with radical basis function (RBF) neural network algorithm, support vector
machine (SVM) algorithm, k-nearest neighbor (KNN) algorithm, and back propagation neural network
(BPNN) on the accuracy of coking diagnosis, and the comparison results are shown in Figure 10.
Figure 10a–d shows the comparison between the output results of each algorithm and the real results
under four different coking degrees. The pink bar represents the number of original samples in the
verification set, and the other color bar represents the number of samples with the coking degree
output by each algorithm.
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Figure 10. Comparison of diagnostic results of different degrees of coking in validation set. (a) normal;
(b) light coking; (c) moderate coking; (d) serious coking.
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It can be seen from Figure 10 that using the above five kinds of methods to diagnose the tube of
different coking degrees, only the ABC-ANFIS-CTF method proposed in this paper can achieve a high
accuracy of diagnosis, while the other four algorithms have certain errors in the diagnosis results of
the different degrees of coking, which will affect the accurate judgment of the running status of the
furnace tube in actual production.

In order to further prove the generalization performance of the proposed method in coking
diagnosis, the test sets were used again to conduct comparative experiments on the above five methods,
and the experimental results are shown in Figure 11.Processes 2019, 7, x FOR PEER REVIEW 14 of 17 

 

 

Figure 11. Comparison of diagnostic results of different degrees of coking in test set. (a) normal; (b) 
light coking; (c) moderate coking; (d) serious coking. 

The experimental results of Figure 11 show that the coking diagnostic method proposed in this 
paper still has the best performance in the diagnosis of different degrees of coking of the furnace tube. 

Accordingly, it can be concluded that the accuracy of the proposed ABC-ANFIS-CTF method in 
coking diagnosis of cracking furnace tubes is improved to a certain extent compared with other 
traditional neural networks and classification algorithms. 

4.3. Prediction of the Development Trend of Coking Degree 

In this experiment, two furnace tubes in the H-115 cracking furnace were randomly selected as 
experimental objects, which were named as a tube and b tube respectively. The experimental data is 
TMT, absolute pressure ratio, COT, and marked coking degree data in the operation cycle of the two 
furnace tubes. The objective of the experiment is to predict the development trend of coking degree 
of the two furnace tubes at different operating moments according to the coking-time factor, and the 
predicted time interval is in days. 

The specific experimental methods are as follows: first, the 20th and 40th day of the operation 
cycle of the furnace tube are selected as the starting points of the prediction, which are named as 
prediction point 1 and prediction point 2, respectively. Then, the coking-time factors corresponding 
to the two different prediction points are calculated. Finally, the development trends of the coking 
degree of the furnace tube within 10 days after the prediction points are predicted by combining the 
coking-time factor. Taking the above two furnace tubes as an example, the prediction curves of the 
development trend of the coking degree obtained by the above experimental method are shown in 
Figures 12 and 13. 

It can be seen from Figures 12 and 13 that the predicted development trend of coking degree is 
basically similar to the real development trend, and the predicted development trend will change in 
advance of the real trend change in the later stage of the operation cycle of the furnace tube. This 
situation can play a role of coking forewarning for actual production. Therefore, it is of great practical 
significance to predict the development trend of the coking degree of the cracking furnace tube by 
combining the coking-time factor. 

630

640

650

660

670

680

690

v1 degree of coking
(a)

2300

2350

2400

2450

2500

2550

v2 degree of coking
(b)

0
25
50
75

100
125
150
175
200

v3 degree of coking
(c)

0

30

60

90

120

150

180

v4 degree of coking
(d)

Original ABC-ANFIS-CTF RBF SVM KNN BPNN

Figure 11. Comparison of diagnostic results of different degrees of coking in test set. (a) normal;
(b) light coking; (c) moderate coking; (d) serious coking.

The experimental results of Figure 11 show that the coking diagnostic method proposed in this
paper still has the best performance in the diagnosis of different degrees of coking of the furnace tube.

Accordingly, it can be concluded that the accuracy of the proposed ABC-ANFIS-CTF method
in coking diagnosis of cracking furnace tubes is improved to a certain extent compared with other
traditional neural networks and classification algorithms.

4.3. Prediction of the Development Trend of Coking Degree

In this experiment, two furnace tubes in the H-115 cracking furnace were randomly selected as
experimental objects, which were named as a tube and b tube respectively. The experimental data is
TMT, absolute pressure ratio, COT, and marked coking degree data in the operation cycle of the two
furnace tubes. The objective of the experiment is to predict the development trend of coking degree
of the two furnace tubes at different operating moments according to the coking-time factor, and the
predicted time interval is in days.

The specific experimental methods are as follows: first, the 20th and 40th day of the operation
cycle of the furnace tube are selected as the starting points of the prediction, which are named as
prediction point 1 and prediction point 2, respectively. Then, the coking-time factors corresponding
to the two different prediction points are calculated. Finally, the development trends of the coking
degree of the furnace tube within 10 days after the prediction points are predicted by combining the
coking-time factor. Taking the above two furnace tubes as an example, the prediction curves of the
development trend of the coking degree obtained by the above experimental method are shown in
Figures 12 and 13.
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It can be seen from Figures 12 and 13 that the predicted development trend of coking degree is
basically similar to the real development trend, and the predicted development trend will change in
advance of the real trend change in the later stage of the operation cycle of the furnace tube. This
situation can play a role of coking forewarning for actual production. Therefore, it is of great practical
significance to predict the development trend of the coking degree of the cracking furnace tube by
combining the coking-time factor.

5. Conclusions

Aiming at the inevitable problems of carburizing and coking in the cracking furnace tube during
ethylene production, this paper proposes a fusion diagnostic and prediction method based on the ABC
algorithm and ANFIS, which also introduces a coking-time factor method, named ABC-ANFIS-CTF.
This method can be used for real-time diagnosis of the coking degree and prediction of the development
trend of the coking degree. Experimental results show that compared with the traditional neural
network and classification algorithm, this method not only improves the accuracy of coking diagnosis,
but also predicts the development trend of the coking degree of the furnace tube, which is of great
practical significance in the actual production process of ethylene cracking.

However, the method proposed in this paper is currently only applicable to the furnace tube of
ultra-selective conversion (USC) type cracking furnaces, but there are many other cracking furnace
types in the actual ethylene industry. In order to make the coking diagnosis and inference system in
this paper more applicable, it is very important to increase the autonomous learning and evolution
ability of the system. Therefore, the main task of this paper in the future is to study how to combine
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the mechanism of autonomous learning and evolution with the coking diagnosis and inference system,
so as to realize the independent recognition and coking diagnoses of different types of cracking
furnace tubes.
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