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Abstract: Large-scale wind power integrated into power grids brings serious uncertainties and risks
for power system safe operation, and it is imperative to evaluate power system security risk pertinent
to high-level of uncertainties. In this paper, a comprehensive source–network–load probabilistic model,
representing the typical uncertainties penetrated in power generation transmission consumption
portion, is firstly set for power system operation. Afterwards an integrated LHS–CD approach based
on the Latin hypercube sampling (LHS) and Cholesky decomposition (CD) is tailored to effectively
conduct the security risk assessment, in which the LHS is utilized to stratified sample the uncertainties
of wind power and thermal power, transmission line outage, and load demands, while the CD part is
adopted to address the correlations of uncertainties by rearranging the sampled matrix generated by
LHS. Moreover, static voltage risk and transmission line overloaded risk index are properly defined
for quantitatively evaluating power system operational security risk. Simulation results of a modified
New England 39-bus system confirm that the proposed integrated LHS–CD approach is effective
and efficient for power system security risk assessment with consideration of source–network–load
demand uncertainties.

Keywords: power system; security risk assessment; source–network–load uncertainties; integrated
LHS–CD approach

1. Introduction

Power system operation usually involves various uncertainties stemming from, for instance,
stochastic load demands, power source output fluctuations, and transmission line failure, etc. With the
rapid increase of wind power generation worldwide, the variability and uncertainty of wind power
bring heavy power fluctuations into power networks and increase power system operation risk, such
as the voltage fluctuations and transmission line overloaded caused by the high level of wind power
penetration [1,2]. To effectively evaluate power system security risk with consideration of various
uncertainties is significant for power grid safe operation.

The objective of power system security risk assessment is to simultaneously consider the probability
and severity of certain accidents from a risk perspective [1]. Although security risks cannot be completely
eliminated due to always-existing uncertain perturbances in power systems, the risks can be quantized
and managed at an acceptable level during the planning, design, and operation phases. In [3], a
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risk-based security assessment model was presented for the operational security risk assessment of a
power system with the network topology, loads, and renewable generation uncertainties and solved by
copula function-based Monte Carlo (MC) methodology. A bi-level optimization model was proposed
in [4] to conduct the risk assessment of transmission systems, in which the lower level is to dispatch
power generation for minimizing the total load shedding while the upper-level is to maximize the
severity risk of the worst N-k contingency. In recent decades, the application of risk assessment
technology for wind power penetrated power systems has attracted high academic interest [5]. In [6],
an uncertain model for short-term wind power generation was established, and the conditional risk
value-based safe distance (S-D) was intended to reveal the tail risk of system operation. On the basis
of S-D, four new risk indicators were defined to reflect the risks of short-term wind power output
changes in the near future. Prof. Karki et al. proposed a short-term wind power forecast method and
quantified the wind power generation commitment risk in [7,8]. A risk-based admissibility assessment
method was proposed in [9] to quantitatively evaluate how much wind power generation can be
accommodated by a large-capacity power system under a given unit commitment strategy. In [10],
Nataf transformation was used to establish a wind speed correlation model, and the effect of wind
speed correlation on voltage stability margin was studied. Prof. Mehdizadeh introduced the correlation
autoregressive moving average time series and copula function to predefine the correlations among
wind farms, and afterward evaluated the power system static security risk with consideration of wind
power correlations [11]. However, there are few reports simultaneously considering correlated wind
power and load demands, as well as the uncertain network for power system risk assessment.

So far, power system security risk assessment methods can be classified into the following two
branches: The analytical method and the sampling simulation method. For power systems with
high complexity, the analytic method is usually very complicated and with low accuracy due to the
linearization process. As a representative sampling simulation method, straightforward MC has
been widely used in power system risk assessment and some improved variations of MC have also
been developed [12–14]. The auxiliary importance sampling density function was employed in [15]
to reduce the computational effort of MC for power system risk assessment. However, with the
rapid development of renewable generation, many more uncertainties have penetrated power system
operation, and MC has encountered the disadvantages of a huge sample size and low efficiency [16].
In recent years, the Latin hypercube sampling (LHS) method has been introduced for power system
risk assessment [17], which is a hybrid of stratified strategy and random sampling [18]. In [19], an
improved sequential simulation method combining the discrete LHS and importance sampling was
presented for composite system reliability assessment [20].

In this paper, an integrated LHS–Cholesky decomposition (LHS–CD) based approach is proposed
to quantitatively evaluate power system operational security risk with consideration of various
representative uncertainties. Firstly, a source–network–load probability model considering uncertain
network outages, probabilistic wind power, thermal power, and load demand is first established.
And afterward, the LHS method is used to sample the uncertainties of wind power and thermal
generators, probabilistic transmission line outages, and load demands; meanwhile, the Cholesky
decomposition is adopted in order to rearrange the sampling matrix for dealing with wind power
correlations and load demand correlations. Finally, voltage risk and transmission line overloaded risk
index are defined to evaluate the power system security risk. The contributions of this manuscript
are threefold.

(1) A completed source–network–load probabilistic model with consideration of wind power and
load demand correlations is proposed, and the proposed model could well reflect representative
uncertainties of power system generation–transmission–consumption portion.

(2) With the help of introducing LHS to sample the source–network–load demand uncertainties
and adopting CD to handle wind power and load demand correlations by rearranging
the sampling matrix, an integrated LHS–CD approach is tailored to handle power system
generation–transmission–consumption uncertainties for security risk assessment.
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(3) Simulation results of the modified New England 39-bus system demonstrate that the proposed
integrated LHS–CD approach is effective and efficient for power system security risk assessment
with comprehensive consideration of source–network–load uncertainties.

The paper is organized as follows: Section 2 establishes the source–network–load probabilistic model
for power system security risk assessment, and Section 3 presents the LHS and Cholesky decomposition
strategy for correlated uncertainties processing. Section 4 proposes the nodal voltage and transmission
line overloaded index to quantify power system security risks. In Section 5, simulations of New
England 39-bus system validate the efficiency and effectiveness of the proposed LHS–CD approach for
risk assessments, and conclusions are drawn in the last section.

2. Source–Network–Load Probabilistic Model for Power System Security Risk Assessment

This section presents the source–network–load probabilistic model for describing the uncertainties
of transmission line outages, load demands, wind power generation, and thermal power generation
for power system security risk assessment.

2.1. Discrete Probabilistic Model of Transmission Line Outage

In general, the operation state of power network transmission line can be modeled by a two-state
running–outage model for power system risk assessment. For a transmission line r, if its outage
probability is Pr, the state Sr of the line r can be expressed in discrete form as Formula (1):

Sr =

{
0 (Outage) 0 ≤ Ur < Pr

1 (Run) Ur > Pr
(1)

where Ur represents a random number uniformly distributed in [0,1] interval. According to the
two-state model in Formula (1), the samples for the transmission line operation state are generated
based on the idea of Figure 1, where Xr represents the sampled transmission line state, and the value
in [0,a) indicates the outage state (Sr = 0) and in [a,b) indicates the run state (Sr = 1). Yr represents the
state probability in [0,1].
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−
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where v represents wind speed; k and c are the shape and scale parameters. According to Formula (2),
the cumulative probability distribution function of wind speed is:

F(v) = 1− exp
[
−

(v
c

)k
]

(3)

Assume Uw is a uniform distribution in the [0,1] interval and equivalent to the cumulative
probability distribution function F(v) of wind speed (Uw = F(v)), the wind speed v can be derived from
Formula (4) by using the inverse transformation operator.

v = c(− ln U)
1
k (4)

where U = 1 − Uw also satisfies the uniform distribution in [0,1] interval.
It is well known that the rotor of a wind turbine starts to rotate only if the wind speed striking the

turbine blades reaches the cut-in speed Vin, then the wind turbine will generate non-zero wind power
output with increased wind speed. When the wind speed reaches the so-called rated wind speed Vrate,
the wind turbine automatically adjusts the blade angle to hold the power at a constant level, and the
corresponding power output is around the rated power Prate. When the wind speed further increases
to the cut-out speed Vcut, the wind turbine stops rotating in case of any damages to wind blades [22,23].
The typical wind speed–power curve of a wind turbine is shown in Figure 2 and can be described as
Formula (5).

P(v) =


0 0 ≤ v < vin(
A + Bv + Cv2

)
Prate vin ≤ v < vrate

Prate vrate ≤ v < vcut

0 v ≥ vcut

(5)

where A, B, and C are constant parameters, which can be calculated from Formula (6) [24].

A = 1
(vin−vrate)

2

[
vin(vin + vrate) − 4vinvrate

( vin+vrate
2vrate

)3
]

B = 1
(vin−vrate)

2

[
4(vin + vrate)

( vin+vrate
2vrate

)3
− (3vin + vrate)

]
C = 1

(vin−vrate)
2

[
2− 4

( vin+vrate
2vrate

)3
] (6)
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Figure 2. Wind speed–power curve for a wind turbine.

When a power network contains multiple wind farms, especially located in the same wind belt,
the correlation of wind farms is significant and needs to be considered for wind power generation
analysis. Assuming that a system includes p wind farms, their correlation coefficient could be described
by a matrix ηWF with the element ηij representing the correlations between the ith and jth wind farm.
Considering that the self-correlation coefficient for a wind farm is always 1, i.e., ηii = 1, and the mutual
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correlation coefficient of any two wind farms is equal, i.e., ηij = ηji, the correlation matrix is described
as Formula (7).

ηWF =


1 η12 · · · η1p
η12 1 · · · η2p

...
...

...
η1p η2p · · · 1


p×p

(7)

It is clear that for a system containing p wind farms, the correlation matrix in Formula (7) has
p(p − 1)/2 different coefficients, which can be obtained from the wind power historical data.

2.2.2. Probabilistic Model of Thermal Generator Operation State

The operation–failure two-state model is also used for the conventional thermal power generators
running and outage state, i.e., Sr = 0, for outage state when 0 ≤ Ur < Pr and Sr = 1 for running state
when Ur > Pr, where Ur represents a random number uniformly distributed in [0,1] and Pr is the
threshold of outage probability.

2.3. Probabilistic Model of Correlated Load Demands

The load demand in power systems is usually uncertain with time-varying fluctuations, which
are generally described by a normal distribution function. In this manuscript, the probability density
functions for the uncertain active load and reactive load are modeled as Formulas (8) and (9).

f (Pi) =
1

√
2πσPi

exp
[
−
(Pi−µPi)

2

2σ2
Pi

]
f (Qi) =

1
√

2πσQi

exp
[
−
(Qi−µQi)

2

2σ2
Qi

] (8)

where Pi is the active power of load demand I, µPi and σPi are the mean value and standard deviation
of active power, respectively; Qi is the reactive power of load demand i, µQi and σQi are the mean value
and standard deviation of reactive power, respectively.

Influenced by factors such as weather conditions and electricity usage habits, load demands
at nearby buses of power network usually have correlations. Assuming a system has m load buses
subjected to the normal distribution in Formula (8) and any two load buses have a correlation, then the
load covariance matrix Cload of the whole system can be formed with m × m elements and the load
vector X of the whole network obeys the m-dimensional correlated normal distribution, which can be
generated from the standard normal distribution random vector Z as Formula (9).

Cload = LLT

X = LZ + µ
(9)

where L is the lower triangular matrix decomposed from the covariance matrix Cload and µ is the
mean vector.

3. Integrated LHS–CD Approach for Power System Security Risk Assessment

Latin hypercube sampling (LHS) is a layered sampling method, which can well cover the
distribution space of random variables with small-scale sampling points. Based on effective
combinations of the LHS and Cholesky decomposition (CD) strategy, an integrated LHS–CD approach
is proposed for power system security risk assessment with the advantages of high efficiency.
The proposed integrated LHS–CD approach mainly includes two steps to address the correlated
uncertainties: (1) Sampling and (2) permutation. The objective of sampling is to ensure that the
sampled points could cover the random distribution features of uncertain input variables, and the
purpose of permutation is to control the correlations among these sampled points.
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3.1. Sampling Based on LHS

Assuming there are K random input variables X = [X1, X2, ..., Xk]T, and their probabilistic
cumulative functions are Yk = Fk(Xk), (k = 1,2, ..., K). The schematic diagram of the LHS is shown in
Figure 3. For an assumed sample size N, the range of the probability of Yk from 0 to 1 is equally divided
into N non-overlapping intervals with a length of 1/N. Any point in the interval can be selected as the
sample value of Yk. In this paper, the midpoint is selected and the corresponding Xk at this point is
calculated using the inverse function as Formula (10).

Xkn = F−1
k

(
n−0.5

N

)
n = 1, 2 · · ·N (10)
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N points are sampled for the uncertain variable Xk (k = 1, 2, ..., K) and randomly arranged in a
row, then a K × N primary sampled matrix can be obtained for K input random variables as described
by Formula (11).

XKN =


X11 X12 · · · X1N
X21 X22 · · · X2N

...
...

...
XK1 XK2 · · · XKN

 (11)

3.2. Permutation Based on CD

It is evident that (1) if the input uncertain variables are independent of each other in theory,
the correlation of the sampled matrices should be correspondingly minimized; (2) when there are
assumed correlations among random input variables, their sampled matrices should satisfy the very
similar correlations. However, since the sampled matrix XKN is randomly arranged and the correlation
is uncontrollable, the primary sampled matrix in Formula (11) needs to be properly rearranged to
satisfy the assumed correlations. CD strategy has the merits of light computation burdens and high
precisions, and thus in this manuscript, the CD is used to rearrange Formula (11) for obtaining satisfied
correlations according to the following procedures.

3.2.1. CD-Based Permutation for Independent Random Input Variables

The CD-based permutation procedure for independent random input variables is as follows:

(1) Generate a K × N random ordering matrix Lr, where the element in each row is an integer
number 1 to N, which represents the rank position according to the element numerical value in a
descending order in that row.
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(2) Calculate the correlation coefficient matrix CLr of the random ordering matrix Lr. Since CLr is a
positive definite symmetric matrix, it could be decomposed by CD to obtain the lower triangular
matrix Q.

CLr = QQT (12)

(3) Then a matrix G can be calculated based on the lower triangular matrix Q.

G = Q−1Lr (13)

It is not difficult to prove that the correlation coefficient matrix of matrix G is a unit matrix:

CG = cov
(
G, GT

)
= cov

(
Q−1Lr, Lr

T
(
Q−1

)T
)
= Q−1

· cov
(
Lr, Lr

T
)
·

(
Q−1

)T
= Q−1CLr

(
Q−1

)T
= Q−1QQT

(
Q−1

)T
= I (14)

(4) With the help of above transformation, there is no correlation between the row and column
elements of matrix G, so the sample matrix of independent variables can be arranged according to
G. However, since the elements in G may not be positive integers, it cannot be arranged directly
according to G. The common solution is to obtain the ordering matrix L0 of G, and then the
primary sample matrix XKN can be arranged according to L0 for obtaining a new sample matrix
X0, which meets the characteristic of independent input variables.

3.2.2. CD-Based Permutation for Correlated Random Input Variables

The core idea of permuting correlated random input variables X = [X1, X2, ... XK]T is to create a
standard normal distribution sampled matrix Zc,KN, which has the same correlation as that of original
input variables X. Since the cumulative probability function F(·) of the input random variable X and
the cumulative probability function Φ(·) of the standard normal distribution are both monotones
increasing functions, the ordering matrix of the standard normal distribution sampled Zc,KN and
the input random variables X is the same. Therefore, as long as the ordering matrix LZ of Zc,KN is
obtained, the primary sample matrix XKN in Formula (11) can be rearranged according to LZ to obtain
satisfactory correlations.

Generating a non-independent random vector Zc = [Z1, Z2, ... Zk ... ZK]T subject to the standard
normal distribution to satisfy Formula (15).

Zk = Φ−1
k (Fk(Xk)) k = 1, 2 · · ·K (15)

whereΦk(·) is the cumulative probability distribution function of the standard normal distribution, and
Fk(·) is the cumulative probability distribution function of the input random variable Xk. Assuming
that the correlation coefficient matrix of input random variables X = [X1, X2, ... XK]T is CX and the
correlation coefficient matrix of non-independent random vector Zc = [Z1, Z2, ... ZK ]T is CZ:

CX =


1 ρ12 · · · ρ1K
ρ21 1 · · · ρ2K

...
...

...
ρK1 ρK2 · · · 1


K×K

(16)

CZ =


1 ρ′12 · · · ρ′1K
ρ′21 1 · · · ρ′2K

...
...

...
ρ′K1 ρ′K2 · · · 1


K×K

(17)



Processes 2019, 7, 900 8 of 17

And ρij is the correlation coefficient for input random variables X calculated by Formula (18).

ρi j =
cov

(
Xi, X j

)
σiσ j

(18)

where σi and σj are the standard deviations of random variables Xi and Xj, respectively. And the
off-diagonal elements of CX and CZ satisfy the following relation:

ρ′i j = T
(
ρi j

)
ρi j (19)

where T(ρij) is related to the distribution of Xi and Xj, if Xi and Xj are the normal distributions, T(ρij) = 1;
if Xi and Xj are Weibull distributions, T(ρij) is approximately equal to Formula (20) [25].

T
(
ρi j

)
= 1.063− 0.004ρi j − 0.2

(
σi
µi
+

σ j
µ j

)
− 0.001ρi j

2 + 0.337
(
σ2

i
µ2

i
+

σ2
j

µ2
j

)
+ 0.007ρi j

(
σi
µi
+

σ j
µ j

)
− 0.007

σiσ j
µiµ j

(20)

where µi and µj are the mean value of random variables Xi and Xj, respectively.
The correlation coefficient matrix CZ of the non-independent random vector Zc can be easily

obtained by CD to get its lower triangular matrix B, i.e., CZ = BBT. Then, Zc can be obtained from a
vector of independent standard normal variables w = [w1, w2, ..., wK]T as Formula (21).

Zc =


Z1

Z2
...

ZK

 = Bw =


b11

b21 b22
...

...
. . .

bK1 bK2 · · · bKK




w1

w2
...

wK

 (21)

Then, the independent standard normal distribution random variables wi (i = 1,2 . . . K) are
sampled N times to obtain the sample matrix WKN, and the normal distribution sample matrix Zc,KN
with the correlation coefficient matrix CZ can be obtained by Formula (22).

Zc,KN =


Z11 Z12 · · · Z1N
Z21 Z22 · · · Z2N

...
...

...
ZK1 ZK2 · · · ZKN


K×N

= BWKN =


b11

b21 b22
...

...
. . .

bK1 bK2 · · · bKK




W11 W12 · · · W1N
W21 W22 · · · W2N

...
...

...
WK1 WK2 · · · WKN

 (22)

The ordering matrix Lz of Zc,KN is a K ×N matrix, and the elements in each row are a non-repeated
number of integers 1 to N. Afterward, by arranging the sampled matrix XKN according to Lz, the
rearranged matrix will have the required correlations of random input variables X = [X1, X2, ... XK]T.

The main steps of the permutation method for handling the correlated input random variables are
as follows:

(1) Calculate the correlation coefficient matrix CZ from CX according to Formulas (16)–(20);
(2) Use CD to obtain the lower triangular matrix B of CZ, i.e., CZ = BBT;
(3) Sample K independent random variables of standard normal distribution N times to obtain WKN;
(4) Calculate the normal distribution sample matrix Zc,KN = BWKN in Formula (22), which has the

same correlations of the original input random variables X;
(5) Obtain the ordering matrix Lz of Zc,KN;
(6) Rearrange the sample matrix XKN generated in Formula (11) according to Lz, and the perfect

sampled matrix is finally obtained.

3.3. LHS–CD for Generating the Correlated Sampling Matrix for Power System Source–Network–Load
Uncertainties

In order to conduct the risk analysis, the uncertain input variables shall be sampled properly in
terms of a sampling matrix, which should reflect the completed power system source–network–load
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uncertainties. Based on the probabilistic model of transmission network outages, wind power, and
thermal power output, as well as the load demands presented in Section 2, the sampling matrices of
thermal generators and transmission lines are generated as independent input variables according to
the procedure in Section 3.2.1, and the sampling matrices of correlated wind speeds (which was later
converted into wind power samples based on the wind speed–power curve according to Formulas (5)
and (6)) and correlated load demands are generated according to the steps in Section 3.2.2. The final
input variable sampling matrix XF is generally formed as:

XF =
[
XW1, · · ·XWp, XG1, · · ·XGq, XL1, · · ·XLs, XD1, · · ·XDm

]T
(23)

where XW1, ..., XWp are for wind power samples; XG1, ..., XGq are thermal generators running state
samples; XL1, ... XLs are transmission line operation–outage state; XD1, ... XDm are load demand
samples; p, q, s, and m are the numbers of wind power generation, thermal generators, transmission
lines, and load demands, respectively, and the total number of input random variables is K, i.e., K = p +

q + s + m. Since each row of XF represents one sampling vector for power system source–network and
load uncertainties, it could be used in the power flow procedures to conduct power system security
risk analysis in the next section.

4. Index for Power System Security Risk Assessment

4.1. Static Voltage Risk Index

The risk index of bus voltage can quantify the severity of overvoltage or under voltage, which is
defined as the product of the severity SEUik of bus i voltage deviation and the corresponding probability
PUik:

RUi =
N∑

k=1

PUikSEUik =
N∑

k=1

PUik

∣∣∣∣∣Uik −Ui_rate

Ui_rate

∣∣∣∣∣ (24)

where N is the number of sample points, and RUi is the overridden voltage risk index of the bus i; Uik
is the voltage calculated from power flow for the kth sampling point; Ui_rate is the rated voltage of the
bus i; PUik is the probability of sample k. For an LHS–CD approach with N sampling points, PUik is
calculated as PUik =

1
N .

4.2. Transmission Line Overloaded Risk Index

The line overloaded risk index RLj of line j can be defined as the product of the transmission
line overloaded severity SELjk and the corresponding probability PLjk, and Formula (25) can be
used to quantify the transmission line overloaded risk for overall N sampling points of power
system uncertainties.

RLj =
N∑

k=1

PLjkSELjk =
N∑

k=1

PLjk ×
max(S jk − S j_rate, 0)

S j_rate
(25)

where Sjk is the apparent power flow of transmission line j for the kth sampling point; Sj_rate is the
rated apparent power. Similarly, for an LHS–CD approach with N sampling points, PLjk is calculated
as PLjk = 1/N.

4.3. Main Steps of Proposed LHS–CD Approach for Power System Static Risk Assessment with Consideration
of the Source–Network–Load Uncertainties

The main steps of the proposed LHS–CD approach for power system risk assessment are shown
in Figure 4.
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5. Simulation Results

The effectiveness of the proposed method is verified on the New England 10-generator 39-bus
system [26], and the system base power is 100 MVA and the base voltage is 345 kV. As indicated in
Figure 5, there are four wind farms connected to buses 11, 13, 18, and 22, respectively. Wind speed of
these four wind farms is assumed as the Weibull distribution with parameters detailed in Table 1, and

the correlation coefficient of four wind farms is ηWF =


1 0.1 0.3 0.2

0.1 1 0.2 0.1
0.3 0.2 1 0.3
0.2 0.1 0.3 1

. The outage probability

Pr of thermal generators and transmission lines are 0.001 and 0.02, respectively. The probabilistic
loads are modeled by a multi-dimensional normal distribution, the baseload given in [26] is assumed
as the mean value with the standard deviation fixed as 10% of the mean value, and the correlation
coefficients of the 21 correlated loads are assumed as 0.5. In order to verify the efficiency and accuracy
of LHS–CD, the standard MC is adopted as a benchmark for risk assessment, and both the LHS and
MC methods are run on a PC with a 2.8 GHz Intel Core i5-8400 CPU and 8 GB RAM. The power flow
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calculation of LHS–CD and MC risk assessment are both conducted by the modified Matpower and
Psat in MATLAB R2016a.
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Table 1. Wind speed parameters of four wind farms.

Wind Farm
Connected Bus

Shape
Parameter k

Scale
Parameter c

Cut-In
Speed Vin

(m/s)

Cut-Out
Speed Vcut

(m/s)

Rated
Speed Vrate

(m/s)

Rated
Power Prate

(MVA)

11 2 12 3 25 12 200
13 2 12 3 25 12 200
18 2 10 3 25 12 200
22 2 10 3 25 12 200

5.1. Comparison of MC and LHS–CD for Wind Speed Sampling

In order to verify the effectiveness of the LHS–CD approach, wind speed is sampled by LHS–CD
and MC, respectively, for the same scale of 3000 sampled points. The actual wind speed and the
sampled wind speed probability curves of Wind Farm 1 by LHS–CD and MC are, respectively, shown
in Figure 6.
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From the comparisons in Figure 6, it is clear that with the same number of sampling points, wind
speed generated by LHS is much more close to the actual wind speed, while the wind speed obtained
by MC has large deviations. This is because LHS–CD is a stratified sampling method, which can fully
reflect the distribution features of random variables. However, MC is just a random sampling method,
and its sample points cannot completely cover the density distribution function when the sampling
scale is not large enough. Compared with MC, LHS–CD results are smoother and more accurate with
the small-scale sampled points.

5.2. LHS–CD Convergence for Power Security Risk Assessment

In order to clearly compare the performance of MC and LHS–CD for system security risk
assessment, we investigated the convergence of risk index under different sampling scales. Taking the
voltage risk index of Bus 37 as an example, the convergence curves of MC and LHS–CD with increasing
sampling scale are shown in Figure 7. It is clear that LHS–CD has a faster convergence than MC, and
the former could reach a stable value with several hundreds of sampling points. Since LHS–CD is
based on a stratified sampling strategy, only a few sampling points are required to well reflect the
entire probability distribution characteristics of input variables. It is clear that the LHS–CD approach
has the good convergence for sampling the system uncertainties and evaluating system security risk.
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In order to verify the advantage of the LHS–CD-based risk assessment method, MC is deployed as
a benchmark for power system security analysis considering source–network–load system uncertainties.
According to convergence theory in [15], the required number of samples for MC is estimated to be
20,000 for satisfying an accuracy of 0.01, while the sampling scale of LHS–CD is determined by the mean
and standard deviation errors εx

µ =
(∣∣∣µMC − µLHS

∣∣∣)/µMC and εx
σ = (|σMC − σLHS|)/σMC benchmarked

with MC, where µMC, µLHS and σMC, σLHS are the mean and standard deviation of random input
variables sampled by MC and LHS, respectively. After testing, LHS–CD can meet the same accuracy
when there are only 500 sampling points, and this also indicates that the LHS–CD approach has
good accuracy.

5.3. Influence of Wind Power Correlation and Load Correlation

To clearly reflect the influence of correlated wind speeds on total wind power, the probability of
total wind power of four wind farms is estimated by LHS–CD under two conditions: Regardless of
wind speed correlations and with consideration of wind speed correlations. As shown in Figure 8, there
are noticeable differences in the probability curve of total wind power with and without consideration
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of the wind speed correlations. When the correlations are taken into account, the probability of the
total wind power is lower in the middle part and higher on the two sides. This is because when wind
speed of one wind farm is larger (or smaller), the wind speeds in other wind farms are correspondingly
larger (or smaller) due to the positive correlations, so the probability of the total wind power is raised
for the larger (or smaller) part, and the probability density curve considering correlations is smoother.
Based on these observations, the wind speed correlations for different wind farms in nearby areas
could affect the total wind power output, and they should be considered in the security risk assessment
of power systems penetrated with multiple wind farms.
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Figure 8. Influence of wind speed correlation on total wind power generation.

Owing to the influence of climate, geographical factor, and electricity usage habits, etc., there are
obvious correlations among multiple load demands at different locations. The total load demand is
sampled by LHS–CD, and the total load demand probability with and without consideration of load
correlations are shown in Figure 9. It is quite clear that there are distinguished differences in the total
load demand whether to consider the load correlations.
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Figure 9. Influence of load correlations on total load demand.

In order to directly verify the influence of correlation on power system security risk, all transmission
lines overloaded risk index in New England 39-bus system is evaluated with and without considering
the wind power and load demand correlations. As demonstrated by the compared results in
Figure 10, the transmission line overloaded risk index for the condition ignoring the wind power
and load demand correlations is quite different from the results of considering these correlations.
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If correlation is not taken into account, critical errors will be caused, making the evaluation results
inaccurate and inconsistent with the actual situation. Therefore, the wind power correlation and
load correlation should be considered in the static security risk assessment of power system with
source–network–load uncertainties.
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5.4. Accuracy of Security Risk Assessment

In order to verify the accuracy and efficiency of the proposed LHS–CD method, the standard
MC is also used to conduct the security risk assessment under the same conditions. According to the
sampling scale analysis obtained by the previous simulation in Section 5.2, 500 samples are performed
for LHS–CD method and 20,000 samples for the MC method to obtain the wind speed curve of Wind
Farm 1, as shown in Figure 11. It is clear that the two methods can roughly accurately simulate the
actual wind speed.
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In addition, when comparing Figure 11 with Figure 6, it can be seen that increasing the sampling
scale of MC can effectively improve its sampling accuracy, and the wind speed simulation curve is
closer to the actual wind speed. While the number of LHS–CD samples is reduced from 3000 to 500,
it can still accurately simulate the wind speed. Furthermore, LHS–CD and MC are further used to
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sample the uncertainties of source–network–load mentioned in Section 2, and then the defined risk
indexes, including the voltage risk index of 39 buses and the overloaded risk index of 46 transmission
lines, are calculated according to Formulas (24) and (25) and shown in Figures 12 and 13.
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From voltage risk indexes of 39 buses in Figure 12 and the overloaded risk indexes of 46
transmission lines in Figure 13, it is obvious that the risks calculated by LHS and MC are consistent
with each other. These comparisons demonstrate that the LHS–CD-based risk assessment method is
quite accurate. However, in terms of time-consuming for security risk assessment, the LHS–CD-based
security risk method costs 246.10 s, of which 28.91 s is spent on sampling and permutation and 217.19 s
is spent on solving power flow. Meanwhile, the MC-based security risk method spends 9245.29 s, of
which 156.27 s is spent on sampling and permutation and 9089.02 s is spent on solving power flow.
These investigations indicate that the LHS can accurately reflect the uncertain features of random
input variables with only a small number of samples, and therefore, the proposed LHS–CD-based risk
assessment method is highly accurate and efficient.

6. Conclusions

In this paper, a completed power system source–network–load demand probabilistic model
representing the uncertainties of wind power and thermal power output, transmission line outage, and



Processes 2019, 7, 900 16 of 17

load demand is firstly established, and afterward, an integrated LHS–CD approach combining Latin
hypercube sampling with Cholesky decomposition is proposed to evaluate power system probabilistic
security by the defined nodal voltage risk and transmission line overloaded risk. Simulation results of
New England 39-bus system have indicated that (1) the wind speed correlations and load correlations
have a great impact on the total wind power output and total load demand, and these correlations should
be considered in power system security risk assessment; (2) LHS can well reflect the overall probabilistic
distribution of random variables via small-scale sampling points, and based on the defined voltage risk
index and line overloaded risk index, the proposed integrated LHS–CD approach is effective and efficient
for evaluating power system operation risk with consideration of source–network–load uncertainties.
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Nomenclature

Sr Operation state of the line r
Pr Outage probability of the transmission line r
Ur A random number uniformly distributed in [0,1] interval
v Wind speed
k, c Shape and scale parameter of wind speed
Vin, Vrate, Vcut Cut-in speed, rated and cut-out wind speeds
ηWF Correlation coefficient matrix of wind farms
Pi, Qi Active and reactive power for load i
µPi, σPi Mean and standard deviation of active power Pi
µQi, σQi Mean and standard deviation of reactive power Qi.
Cload Correlation coefficient matrix of load
RUi Overridden voltage risk index of bus i
Uik Voltage calculated at the kth sampling point
Ui_rate Rated voltage of bus i
PUik Probability of sample k
Sjk Apparent power flow of transmission line j for the kth sampling point
Sj_rate Rated apparent power of transmission line j
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