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Abstract: Relay protection equipment is important to ensure the safe and stable operation of power
systems. The risks should be evaluated, which are caused by the failure of relay protection. At present,
the fault data and the fault status monitoring information are used to evaluate the failure risks
of relay protection. However, there is a lack of attention to the information value of monitoring
information in the normal operation condition. In order to comprehensively improve monitoring
information accuracy and reduce, a generalized proportional hazard model (GPHM) is established
to fully exploit the whole monitoring condition information during the whole operation process,
not just the monitoring fault condition data, with the maximum likelihood estimation (MLE) used to
estimate the parameters of the GPHM. For solving the nonlinear equation in the process of parameter
estimations, the adaptive homotopy algorithm is adopted, which could ensure the reversibility
of the Jacobi matrix. Three testing cases have been reviewed, to demonstrate that the adaptive
homotopy algorithm is better than traditional algorithms, such as the Newton homotopy algorithm,
regarding the calculation speed and convergence. Therefore, GPHM could not only reflect the real
time state of the equipment, but also provide a sound theoretical basis for the selection of equipment
maintenance types.

Keywords: relay protection equipment; whole monitoring data; generalized proportional hazard
model (GPHM); adaptive homotopy algorithm; jacobi matrix

1. Introduction

Because a relay protection device can curb the deterioration of a power grid by its fast and correct
action [1], it is always seen as the first line of defense to ensure the safe and stable operation of power
systems. In recent years, there have been frequent blackouts around the world, and most of them
are related to the incorrect action of relay protection. Therefore, evaluation of the reliability of relay
protection is the focus of many scholars, and the relay protection failure rate is one of the indexes to
estimate its reliability [2,3].

At present, the research on the failure rate model is generally based on the time-failure rate model
and equipment state model [4]. The commonly used fault distribution forms for the time-failure rate
model are gamma distribution, Weibull distribution, and exponential distribution [5]. The failure
rate of exponential distribution is constant and it only represents the accidental failure period.
However, the failure rates of most electrical equipment follow the typical curve, namely the bathtub
curve, and the bathtub curve includes the early failure period, the accidental failure period, and the
three stages of loss failure period. Therefore, the exponential distribution generally is not adopted.
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By contrast, the Weibull distribution can match the bathtub curve well, so that it has been widely used.
Nevertheless, the Weibull distribution only pays attention to the effect of equipment running enlistment
age on the failure rate, which ignores the effect of some external factors such as the equipment
maintenance on the equipment failure rate [6]. Accordingly, Weibull distribution has some limitations.
The equipment state model is established based on the current state of the equipment [7], so that it
does not take the effects of man-made maintenance and historical condition on the failure rate into
account, and so it is difficult to predict the future failure rate. Furthermore, there are differences
between countries/power companies. The British EA company and Canada Kinectrics Company
focus on the health state [8,9]. In China, the failure rate model is an exponential function, which
considers the health state as the independent variable [10–12], and from the model, the failure rate
may increase exponentially when the equipment state worsens, and the failure rate is beyond 1,
so that it doesn’t conform to the actual situation. In other words, it is difficult to predict the future
failure rate. Aiming at the shortcoming of the two kinds of failure rate model, a Weibull proportional
hazards model (PHM), which considered the fault diagnosis value of failure time and used maximum
likelihood estimation (MLE) to estimate the model parameters, has been proposed in [13]. In [14],
the proportional covariate model (PCM) was put forward in order to solve the lack of data in the
fault interval. For a repairable system, the proportional intensity model (PIM) were first proposed
by Kumar [15]. Kumar said that the fault rate in a repairable system was affected by many factors,
such as operating environment, equipment materials, history operation, design features, and so on.
However, the PIM always assumed that the covariates were changed only when failure/maintenance
occurred, and maintained constant during the interval of failure/maintenance [16,17]. This assumption
ignored the influence of the concomitant variables on the failure rate during the failure/maintenance
interval. In [18], the PHM was used to estimate the reliability of thin oxide dielectrics, and used the
partial maximum likelihood method to estimate the parameters. In [19], the scholars pointed out
that the environmental factors influencing relay reliability mainly included temperature, humidity,
vibration, and so on. Additionally, the application of Cox-proportional hazards modeling with respect
to the effect of ambient temperature on electromagnetic relays was discussed.

For the above model, ignoring the whole monitoring condition values is the common point.
Therefore, based on the above model, this paper analyzes the influence of variables during the
failure/maintenance interval, and takes the time varying covariates in the failure/maintenance interval
into account, not only the monitoring state value at failure time; then, the generalized proportional
hazards model (GPHM) Weibull is built. In order to get the expressions of fault rate, the parameters
of Weibull distribution are needed to estimate, which involves the solution for nonlinear equations.
At present, there are many the solutions for nonlinear equations, such as the Newton method, the least
square method [20], the Marquardt method [21], and so on. There are also many achievements on the
solution of nonlinear equations, whereas they still have a fatal defect, namely, local convergence [22].
Because the initial value must be close to the exact one, the requirement of the initial value is very
harsh. In the meantime, the calculation is a large amount which brings certain challenges to the
running time and space. Actually, for many nonlinear equations, the initial value is not easy to
set, which brings inconvenience to the solution of nonlinear equations. Fortunately, the homotopy
algorithm has a large convergence range and its requirement on the initial value is not strict, so that it
brings a breakthrough to solve nonlinear equations [23]. Howver, the Jacobi matrix of the homotopy
algorithm must be reversible, otherwise the homotopy algorithm loses its significance [24]. For solving
this problem, the adjusting factor is introduced to construct an adaptive homotopy algorithm to
ensure the non-singularity of the Jacobi matrix in this paper. Then, the nonlinear equation can
be solved. In summary, in order to fully consider the influence of time–varying covariates in the
failure/maintenance interval on the failure rate, the GPHM-Weibull is proposed, which can reflect the
real-time state. MLE is used to estimate parameters of GPHM, and the adaptive homotopy algorithm
is used to solve nonlinear equation, where the piecewise function expression of fault rate is solved.
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According to the failure rate, the operation personnel can make the differential operation strategy and
realize the economic, stable operation of the power system.

Section 2 presents the generalized proportional hazard model. Section 3 describes the adaptive
homotopy algorithm. Section 4 discusses the estimation of Weibull distribution parameters, the solution
of nonlinear equations and the calculation of the initial value. Section 5 presents a summary of the
proposed method and draws relevant conclusions.

2. Generalized Proportional Hazard Model

With reference to survival function model in medical science [25], based on GPHM, the failure
rate model is constructed, and its mathematical expression is as follows:

λ( t|Z) = λ0(t)ψ(Z(t)) (1)

Here, λ0(t) is the basic failure rate. Ψ(Z(t)) is the link function, representing the impact of different
states Z(t) on failure rate. Z(t) is a vector of covariates, which is composed of n time-varying covariates.
Each covariate can represent a particular state. The expression is Z(t) = [Z1(t), Z2(t) . . . Zn(t)]. In practice,
the covariate could be an internal variable which can reflect the state of the device, such as the detection
information of device. It can also be an external variable which can affect the operation of the device,
such as the environmental conditions. In general, the link function can be expressed as follows:

ψ(Z(t)) = exp(γ1Z1(t) + γ2Z2(t) + · · ·+ γnZn(t)) (2)

Here, γ = (γ1, γ2 . . . γn) represents the corresponding regression coefficient of each covariate.
The assumptions of GPHM are as follows:

(1) The basic failure rate λ0 (t) subjects to Weibull distribution, and its expression is

λ0(t) =
β

η
(

t
η
)
β−1

. (3)

Here, β is the shape parameter, and η is the scale parameter.
(2) The fault interval is longer than maintenance time, so that the maintenance time can be neglected.
(3) The effect of covariates on the failure rate maintain constant and it cannot be changed with time.
Choosing the best covariates is the key to establish the GPHM. Age, operating environment,

maintenance times, health index, and manufacturer are selected as covariates, as shown in Figure 1 [25].
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Figure 1. Selection of covariates.

Health index (HI) reflects the overall health level of the relay protection equipment, which is
closely related to the equipment failure rate. In order to facilitate quantitative comparison, HI is
divided into five levels (normal, attention, serious, emergency, and fault), and their corresponding
values are listed in Table 1.
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Table 1. Values of Health Index (HI).

Grade Normal Attention Emergency Serious Fault

values of HI 0 0.1 0.3 0.6 1

In [26], research’s results indicated that when the equipment is in the loss period, the failure rate
meets Weibull distribution, and Weibull distribution is a function of time. It means that the failure rate
is related to age. In [27], the scholars pointed out that the failure rate function directly is multiplied by
the age reduction factor, and failure rate increase factor after repairmen. Because the age reduction
factor and failure rate increase factor are related to the maintenance type and maintenance times,
the failure rate λk+1(t) after kth maintenance is defined recursively as:

λk+1(t) = βkλk(t + αkTk) (4)

Here, k is the kth maintenance. Tk represents the interval for the kth maintenance. βk is age reduction
factor, which can simulate the equipment damage caused by each maintenance. αk is failure rate increase
factor, which can describe the degree of improvement in equipment failure rate after maintenance.

According to [28], the failure rate can be affected the operating environment. Therefore, the business
district and the industrial area differ considerably. Different manufacturers may have different familial
defects which may affect the history data. With reference to [27], the values of the operating environment
and manufacturers are given as Tables 2 and 3 shown.

Table 2. Values of operating environment.

Operating Environment Business District Industrial Area

value 1 2

Table 3. Of the manufacturer.

Manufacturer NR Electronic Beijing Sifang Changyuan Shenrui Guodian Nanzi Xuji Dianqi

value 1 2 3 4 5

Therefore, the expression of the failure rate λ( t|Z) which takes the influence of covariates into
consideration can be expressed as

λ( t|Z) = β
η (

t
η )
β−1 exp(γpmZpm(t) + γcmZcm(t) + γageZage(t)

+γenvZenv(t) + γHIZHI(t) + γmauZmau(t))
(5)

Here, covariant Zpm, Zcm, Zage, Zenv, ZHI, and Zmau respectively represent the times of preventive
maintenance and corrective maintenance, age, the operating environment, the HI of equipment and
manufacturer; the corresponding coefficient of the covariates are λpm, λcm, λage, λenv, λHI, and λmau.
Equation (5) illustrates that if you want to get to the expression of failure rate, β/η/γi is needed in order
to estimate. The maximum likelihood function (MLE) and the adaptive homotopy algorithm are used
to solve the nonlinear equations.

3. Adaptive Homotopy Algorithm

3.1. The Basicprinciple of Homotopy Algorithm

Considering the following nonlinear Equation (6):
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
f1(x1, x2, x3, x4 . . . . . . , xn) = 0
f2(x1, x2, x3, x4 . . . . . . , xn) = 0

...
fn(x1, x2, x3, x4 . . . . . . , xn) = 0

(6)

Here, x = (x1, x2, x3, x4 . . . xn) ∈ Rn can be obtained. fi(x1, x2, x3, x4 . . . xn) is a real function defined
on a regional D, i = (1, 2, 3 . . . n). Its vector notation is:

→

F(x) =


f1(x)
f2(x)

...
fn(x)


→
x =


x1

x2
...

xn

 ∈ Rn →0 =


0
0
...
0

 (7)

Then, Equation (7) can be converted to:

→

F(x) =
→

0 (8)

In Equation (8), parameter t is introduced to construct a set of homotopy mapping H(x, t) which
subjects to: {

H(x, 0) = G(x0) = 0
H(x, 1) = F(x) + (t− 1)G(x)

(9)

From Equation (9), the equations can be obtained, which are t = 0, H(x, 0) = G(x0) and t = 1, H(x,
1) = F(x). Then, the solution of equation F(x) = 0 is transformed into the solution of equation x = x
(t) which subjects to equation H(x, 1) = 0. Equation (9) indicates that due to different G(x), there are
different homotopy equations.

A Fixed Point Homotopy Algorithm
If G(x) = x − x0, then a fixed point homotopy algorithm is formed as:

H(x, t) = F(x) + (t− 1)(x− x0) (10)

Newton Homotopy Algorithm
If G(x) = F(x) − F(x0), then a Newton homotopy algorithm is formed as:

H(x, t) = tF(x) + (1− t)(F(x) − F(x0)) (11)

The derivative of parameter t in H(x, t) = 0 is:

∂H
∂x

dx
dt

+
∂H
∂t

= 0 (12)

If the inverse matrix ( ∂H
∂x )
−1

exists, then:

dx
dt

= −(
∂H
∂x

)
−1

.
∂H
∂t

(13)

Adaptive Homotopy Equation

However, when inverse matrix (∂H/∂x)−1 doesn’t exist, the homotopy algorithm will lose its
significance. Because the diagonal factor G(x) = diag[egi(x)] in the exponential homotopy method is
multiplied by F to construct a new homotopy algorithm, it is only feasible in theory, and the calculation
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is complicated and not suitable for the large-scale nonlinear equation. However, in reference to the idea
of exponential homotopy algorithm, the equation for adaptive homotopy algorithm can be obtained as:

H(x, t) = F(x) − (1− t)[F(x0) − a(1 + t)(x− x0)] (14)

(
∂H
∂x

)
−1

= [F′(x) + a(1− t2)I]
−1

(15)

Because a (1 − t2) I is a nonsingular matrix and when (∂H/∂x)−1 is singular, through adjusting
the parameter a, it can account for the diagonal dominance, as long as a is large enough. In the actual
calculation, the initial value of parameter a is set as 0. When the Jacobi matrix F′(x) becomes singular
after some calculation steps, a automatic increase ∆a. Thus, the solution of the Equation (7) can be
obtained by finding the solution of the homotopy Equation (9).

3.2. Numerical Calculation of the Adaptive Homotopy Algorithm

Equation (13) presents that the calculation of nonlinear equations can be converted into the
calculation of IVP (initial value problem), which can be expressed as: dx

dt = −( ∂H
∂x )
−1

.∂H
∂t = [F′(x) + a(1− t2)I]−1.∂H

∂t
x0 = x(0)

(16)

In order to solve the Equation (16), the Euler method is used to estimate, and the Runge Kutta
method is used to correct.

Euler method

We begin to track the path from the starting point (t0, x0) of the homotopy path, and the Euler
method is adopted to estimate the next approximate point (t1, x̃1), so that the expression is:

x̃1 = x0 +
dx
dt

∆t = x0 − (
∂H
∂x0

)
−1 ∂H
∂t0

∆t (17)

With the iterative equation as:
x̃n = xn−1 − (

∂H
∂xn−1

)
−1 ∂H

∂tn−1
∆t

tn−1 = t1 + (n− 1) × h
h = 1

N

(18)

Here, h is the step size, and n is the number of iterations.

The Fouth Runge Kutta method

Through using the Runge Kutta method, the local truncation error of the fourth Runge Kutta
method is about o (h5) [13], and its calculation speed is fast. Therefore, the fouth Runge Kutta method
is adopted to calculate the initial parameters.

Assuming dx
dt = −J(x)−1F(x0) = y(xn, tn), according to Equation (18), the point (t1, x1) can

be obtained. Then, the point (t1, x1) is set as the starting point. For obtaining the next round of
prediction-correction, the equations are used as follows: xn = x̃n − (

∂H
∂x )
−1

H(tn, x̃n)

tn = t0 + h× n
(19)
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

x̃n+1 = xn + h( k1+2k2+2k3+k4
6 )

k1 = y(xn, tn)

k2 = y(xn +
1
2 h, tn +

1
2 hk1)

k3 = y(xn +
1
2 h, tn +

1
2 hk1)

k3 = y(xn + h, tn + hk3)

(20)

And the prediction-correction process is stopped until t = 1. After several iterations, xn+1 may
not be the exact solution x*, according to mathematical convergence theory. If |xn+1 − xn| < ε (ε is the
set of coefficients of accuracy), it is considered that the exact solution is found, otherwise the above
steps are repeated to perform the predictive-correction process. In order to elucidate the adaptive
homotopy algorithm further, Figure 2 shows a flow diagram of this algorithm, which was implemented
in MATLAB.Processes 2019, 7, x FOR PEER REVIEW 8 of 17 
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Figure 2. Calculation flow chart of adaptive homotopy algorithm.

Step 1: Set the maximum number of iterations nmax, the initial value x0 and a = 0;
Step 2: According to Equation (9), calculate F(x0) and F′(x0);
Step 3: Judge the reversibility of F′(x0), if YES, then turn to step 4, if not, then turn to step 9;
Step 4: Based on Equation (18), estimate the next point x1;
Step 5: According to Equation (20), modify x1 and choose the modified x1 as the initial value for the
next round. Meanwhile calculate F(x1) and F′(x1), n set as n + 1;
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Step 6: Assume that nth step has been carried out and obtain the solution xn. judge whether the
inequality |xn − xn−1| < ε is true or not. If YES, output the exact solution x* = xn, otherwise turn step 7;
Step 7: Calculate F(xn) and F′(xn), and judge whether F′(xn) is reversible or not. If YES, based on
Equation (18), estimate the next point xn+1, and n automatically add 1, namely, n = n + 1. If not, turn
step 9;
Step 8: Judge whether the inequality n > nmax is true or not. If YES, the equation without solution.
If not, then turn step 6;
Step 9: Adjust the value of a, and define a = a + ∆a. n automatically add 1, namely, n = n + 1, and turn
to step 3.

4. Parameter Estimation

4.1. Weibull Distribution Parameters Estimation

There are two reasons which may lead to the relay protection equipment withdrawal from the
power system. One is its failure, and the other one is the maintenance. The former possesses fault data
and belongs to the corrective maintenance (CM). The latter possesses the truncated data and belongs
to the preventive maintenance (PM). If the relay protection equipment is still running at the end of
the observation, the data can also be censored. Considering the censored data, based on maximum
likelihood, the parameters’ estimation can be described as follows:

The failure time at 0 < ti < . . . < tn (T) is observed in the time interval (0 T]. MLE is used to
calculate the parameters of GPHM. It is supposed that (ti, zi, δi) and (i = 1, 2, . . . , n) are the records of
failure and maintenance, respectively; n is the total number of events, including all the CM times and
all the PM times, so that n can be expressed as n = Ncm(t) + Npm(t). ti is the failure time of PM and
CM; zi is the state information of the equipment at ti, δi is corresponding censoring indicator variables,
and the equation δi = 0 represents no failure at ti. The equation δi = 1 represents failure at ti.

The corresponding likelihood function is given as:

L(β, η) =
l∏

i=1

f (ti)
δi R(ti)

1−δi (21)

Defining f (t) = R(t)λ(t), then

R(t) = exp[−
∫ t

0
λ0(t) exp(γZ(t))] (22)

Therefore, Equation (21) can be converted into

L(β, η) =
l∏

i=1
f (ti)

δiR(ti)
1−δi

=
r∏

i=1
λ(ti)

l∏
i=1

R(ti)

=
r∏

i=1

β
η (

ti
η )
β−1

exp(
6∑

j=1
γ jZ j(ti))∗

l∏
i=1

exp(−
∫ T

0
β
η (

ti
η )
β−1

) exp(
6∑

j=1
γ jZ j(ti)))

(23)
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Here, l represents the total number of the relay protection equipment and r represents the number
of faulty relay protection equipment. Then, the corresponding log likelihood function is:

ln L = r ln β
η +

r∑
i=1

[(β− 1) ln( ti
η ) +

6∑
j=1

γ jZ j(ti)]

−

n∑
i=1

(( ti
η )
β
. exp

6∑
j=1

γ jZ j(ti))
(24)

Taking the partial derivatives of β and η separately:

∂ ln L
∂β

=
r
β

r∑
i=1

ln(
ti
η
) −

n∑
i=1

(
ti
η
)
β
. ln(

ti
η
). exp(

6∑
j=1

γ jZ j(ti)) (25)

∂ ln L
∂η

= −
βr
η

+
n∑

i=1

+
β

η
(

ti
η
)
β

exp
6∑

j=1

γ jZ j(ti) (26)

The maximum likelihood functions are:

∂ ln L
∂β

= 0 (27)

∂ ln L
∂η

= 0 (28)

Taking the second derivative operations, then:

∂2 ln L
∂β2 = −

r
β2 −

n∑
i=1

(
ti
η
)
β
[ln(

ti
η
)]2 exp(

6∑
j=1

γ jZ j(ti)) (29)

∂2 ln L
∂η2 = −

rβ
η2 −

n∑
i=1

(
ti
η
)
β
.
β2 + β

η2 exp(
6∑

j=1

γ jZ j(ti)) (30)

∂2 ln L
∂β∂η

= −
r
η
+

n∑
i=1

1
η
(

ti
η
)
β
[1 + β lnti] exp(

6∑
j=1

γ jZ j(ti)) (31)

∂2 ln L
∂η∂β

= −
r
η
+

n∑
i=1

1
η
(

ti
η
)
β
[1 + β lnti] exp(

6∑
j=1

γ jZ j(ti)) (32)

Then, a second order derivative matrix can be obtained, namely Jacobi matrix:

J =

 ∂2 ln L
∂β2

∂2 ln L
∂β∂η

∂2 ln L
∂η∂β

∂2 ln L
∂η2

 (33)

4.2. The Solution of Nonlinear Equations Based on Adaptive Homotopy Algorithm

According to the adaptive homotopy algorithm mentioned, the iteration equation is:(
β
η

)
k+1

=

(
β
η

)
k
− (Jk + ak(1− t2)I)

−1
 ∂ ln L

∂β
∂ ln L
∂η

 (34)
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Here, β0 and η0 are the initial values of corresponding parameters when k = 0. After the initial
values are selected, two parameters can be calculated according to the Equation (34).

4.3. Calculation of the Initial Value

Selecting two data points, namely, (td, λd) and (tg, λg) in the Weibull distribution, the initial values
can be solved by the following equation.

β0
η0
(

td
η0
)
β−1

= λd
β0
η0
(

tg
η0
)
β−1

= λg

(35)

According to the above analysis, MLE can be used to estimate the parameter of GPHM. And the
adaptive homotopy algorithm can be used to solve the nonlinear equation in the parameter estimation
process. Then, the fault rate model is established.

5. Case Analysis

Case 1: The machine account and defect information of the relay protection equipment are
collected, which are running in the similar environment or have the same type, and its failure rate is
shown in Table 4. According the above failure rate, the failure rate curve can be drawn as Figure 3
shown. Based on the adaptive homotopy algorithm and the Newton homotopy algorithm, the failure
rate parameters are computed iteratively. Then, failure rate parameters of the Weibull distribution can
be obtained and shown in Tables 5 and 6, so that their fitting curve can also be seen in Figure 3.

Table 4. Statistics of failure rate of relay protection.

Running Time/Year Failure Rate/(Times/Device. Year) Running Time/Year Failure Rate (Times/Device. Year)

1 0.0251 7 0.0272
1.5 0.0202 7.5 0.0342
2.5 0.0226 8 0.0311
3 0.025 8.5 0.0496

3.5 0.0177 9 0.0364
4 0.0268 9.5 0.0774

4.5 0.0232 10 0.133
5 0.0261 10.5 0.189

5.5 0.0283 11 0.232
6 0.0253 12 0.374

6.5 0.0296 13 0.593

Table 5. Estimation of parameters based on adaptive homotopy algorithm.

Stage of Fault Distribution
Random Failure Period Loss Failure Period

β η β η

parameter values 1.2903 29.1759 7.818 12.526
relative error 0.0971 0.1711

iteration number 5

Table 6. Estimation of parameters based on Newton homotopy algorithm.

Stage of Fault Distribution
Random Failure Period Loss Failure Period

β η β η

parameter values 1.177 31.936 7.248 12.435
relative error 0.1532 0.2518

iteration number 11
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Figure 3. Curve fitting of failure rate.

Through analyzing the data of Tables 5 and 6 and the curves in Figure 3, the iterations number of
the adaptive homotopy algorithm is significantly smaller the iterations number of other algorithms.
When the equipment is in the random failure period, the relative error of the adaptive homotopy
algorithm is 0.0971, and the Newton homotopy algorithm is 0.1532. When the equipment is in the
loss failure period, the relative error of the adaptive homotopy method is 0.1711 and the Newton
homotopy algorithm is 0.2518, whose error is large. This is caused by the fact that when the equipment
is running, all parts of the equipment occur material fatigue, aging or rust and other undesirable
conditions. In order to ensure the normal operation of the equipment, the appropriate maintenance
should be done, namely, PM, or CM. However, these two types of maintenance inevitably affect the
equipment failure rate. Therefore, the model considering the run-time regardless of the current state
will be not correct. The result has big difference with the actual operation.

Case 2: Similar to case 1, the operation data of relay protection equipment is shown in Table 7.
Based on Table 7, the failure rate curve of relay protection equipment can be obtained in Figure 4.

Table 7. Operation data of relay protection.

Running Time/Year Failure Rate
(Times/Device. Year) Running Time/Year Failure Rate

(Times/Device. Year)

1.5 0.0224 7.0 0.0268
2 0.0202 7.5 0.0342

2.5 0.0226 8.0 0.0327
3 0.024 8.5 0.0453

3.5 0.0175 9.0 0.0411
4 0.0252 9.5 0.0726

4.5 0.0267 10.0 0.0693
5 0.0223 10.5 0.116

5.5 0.0283 11 0.132
6 0.0253 11.5 0.187

6.5 0.0296 12 0.213
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Figure 4. The failure rate curve of equipment.

Based on the data from Table 7, the convergence characteristics of different algorithms can be
obtained. From Table 8, it can be found that the Newton homotopy algorithm is non-converging.
However, the adaptive homotopy algorithm can guarantee the singularity of the equation by controlling
the parameter a. According to Equation (15), an affects singularity of nonlinear equations, so that the
optimal parameter a is selected which can make the iteration number need less. According to Table 8,
although there will be differences between the initial values/parameter values/iterations number,
the difference of the final parameter estimates’ results are in the allowed error range. Therefore, it can
be proved that the homotopy algorithm is independent of the setting of the initial value, and the
different initial values are the different optimal values of a. For example, when the initial value is
(1, 1), the iteration number is 10, and then the optimal value of a is 3. While the initial value is
(11, 1), the iteration number is 35, and then the optimal value of a is −1. Figure 5 shows the curves
corresponding to different initial values. From Figure 5, the trend of the curve can fully verify the
above analysis results.

Case 3: It is necessary to do the corresponding maintenance for equipment after the device is
put into operation for some time. According to Equation (15), it can be found that the choice of
maintenance can affect the failure rate. Table 9 gives the operating data of the equipment maintenance.
In order to solve the parameters of GPHM, the life data of relay protection equipment is analyzed,
firstly. Then, the regression coefficient vector γ is estimated by Statistical Analysis Software (SPSS).
On the basis of γ, the adaptive homotopy algorithm is used to estimate the other parameters.

Table 8. Comparisons of two algorithms.

Initial Value Newton Homotopy Algorithm Adaptive Homotopy Algorithm

convergence (β, η) convergence iteration number a (β, η)
(1, 1) non-converging - convergence 10 3 6.201, 13.790

(11, 1) non-converging - convergence 35 −1 6.201, 12.971
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Table 9. Operation data of relay protection equipment.

Running Time/Day Failure
Rate/(Times/Device. Day) Running Time/Day Failure

Rate/(Times/Device. Day)

215 0.0130 1300 0.0186
310 0.0141 1557 0.0212
471 0.0182 1754 0.0215
680 0.024 1891 0.0200
763 0.0221 2058 0.0211
841 0.0202 2177 0.0200
1008 0.0168 2482 0.066168
1193 0.019

Model I: selecting the times of maintenance as a covariate; Models II/III: on the basis of model I,
the condition monitoring data of the corrective or preventive maintenance moment are fitted, such
as age, the operating environment, the HI of equipment, and the manufacturer; Model IV: on the
basis of Models II/III, the condition monitoring data of the whole period (such as age, the operating
environment, the HI of equipment, and the manufacturer) are fitted, not just the state of corrective or
preventive maintenance moment.

From Table 10, by comparing the estimated log likelihood, the fourth methods are optimal and
its log likelihood is −53.930. Obviously, based on the monitoring data of the entire running time,
GPHM has better fitting characteristics. According to parameter estimation results, it can be found
that the failure maintenances frequency, γcm, is negative in the above three approaches, so that CM can
effectively reduce the failure rate. The preventive maintenances frequency, γpm, is positive, so that PM
can’t effectively reduce the failure rate. This conclusion can provide a theoretical basis for maintenance
personnel to choose the appropriate maintenance mode, and improve maintenance efficiency in case
of the blind maintenance. The results also show that when the environment and the internal state of
the covariates deviate from the rated or normal state, the failure rate will be higher. The quantitative
analysis is consistent with the experience. Based on GPHM model, the curve of equipment failure
rate can be obtained as Figure 5 shown. From Figure 6, we can find that the curve based on GPHM is
closed to the actual value, while the Weibull model is away from the actual value, especially in the
loss period. That is because in the loss period the equipment has to implement the maintenance. It is
inevitable to affect the fault rate.
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Table 10. Parameter estimation of models with different factor combinations.

Model Estimated Log Likelihood
Parameter Estimation

β η γpm γcm γage γenv γHI γmau

I −55.409 1.424 29.58 0.013 −0.001 0 0 0 0
II −57.940 1.25 33.49 0 −0.001 −0.001 0.911 −0.079 −0.288
III −54.404 1.434 25.673 0.0137 0 0.0004 0.728 0.053 0.482
IV −53.930 1.424 29.581 0.0138 −0.001 0.0003 0.773 −0.047 0.516Processes 2019, 7, x FOR PEER REVIEW 15 of 17 
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Figure 6. Curve fitting based on the generalized proportional hazard model (GPHM).

6. Conclusions

In order to fully analyze the impact of the whole process of the monitoring state on the failure
rate, this paper presents GPHM-Weibull, whose covariates include the times of PM and CM, age,
the operating environment, HI, and manufacturer. The baseline function obeys Weibull distribution,
and the adaptive homotopy algorithm is adopted to estimate the parameters of Weibull distribution.
The regression coefficient vector γ is estimated by SPSS. Finally, three cases have been presented to
demonstrate the following conclusions.

(1) The curve drawn by the GPHM is very close to the actual value. However, due to GPHM
taking the whole running state of the equipment into consideration, the curve drawn by the Weibull
model is away from the actual value, especially in the loss period.

(2) The adaptive homotopy algorithm ensures the singularity of the equation by adjusting the
parameter a, and the result of the parameter estimation is less affected by the initial value.

Author Contributions: F.Z. and J.L. conceived and designed the study; J.H. performed the simulation; Y.L.
provided the simulation case; F.Z. and J.L. wrote the paper; J.H. and Y.L. reviewed and edited the manuscript.
All authors read and approved the manuscript.

Funding: This research was funded by the Natural Science Foundation of Fujian Province, China through grant
number 2019J01249.
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Nomenclature

λ0 basic failure rate
Z(t) failure rate
β/η shape/scale parameter
αk failure rate increase factor
Zpm/Zcm times of preventive/corrective maintenance
Zage/Zenv times of age/operating environment
ZHI/Zmau times of equipment HI/manufacturer
δi censoring indicator variables
r faulty relay protection equipment number
λpm/λcm/λage

coefficient of covariates
λenv/λHI/λmau

Tk kth maintenance interval
k kth maintenance
βk age reduction factor
h step size
n iterations number
γ corresponding regression coefficient
l relay protection equipment total number
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