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Abstract: The objective of this paper was to study the transport and deposition of non-spherical
oblate and prolate shaped particles for the flow in a tube with a radial suction velocity field, with an
application to experiments related to composite manufacturing. The transport of the non- spherical
particles is governed by a convective diffusion equation for the probability density function, also called
the Fokker–Planck equation, which is a function of the position and orientation angles. The flow is
governed by the Stokes equation with an additional radial flow field. The concentration of particles is
assumed to be dilute. In the solution of the Fokker–Planck equation, an expansion for small rotational
Peclet numbers and large translational Peclet numbers is considered. The solution can be divided
into an outer region and two boundary layer regions. The outer boundary layer region is governed
by an angle-averaged convective-diffusion equation. The solution in the innermost boundary layer
region is a diffusion equation including the radial variation and the orientation angles. Analytical
deposition rates are calculated as a function of position along the tube axis. The contribution from the
innermost boundary layer called steric- interception deposition is found to be very small. Higher
order curvature and suction effects are found to increase deposition. The results are compared
with results using a Lagrangian tracking method of the same flow configuration. When compared,
the deposition rates are of the same order of magnitude, but the analytical results show a larger
variation for different particle sizes. The results are also compared with numerical results, using the
angle averaged convective-diffusion equation. The agreement between numerical and analytical
results is good.

Keywords: transport; deposition; non-spherical particles; Stokes flow; cross flow; boundary layers;
composite manufacturing

1. Introduction

Transport of particles in cross-flow configurations has many important applications in natural,
biomedical, and industrial systems such as groundwater flows, filtering techniques, flows in the
processing of composite materials, flows in the body, protein separations, and tissue engineering.
Often the cross-flow geometry consists of a fluid flowing in a tube containing particles with porous
walls. The porous walls act as a membrane to separate for instance large particles from the flow. This is
the process of for instance water purification and filtration techniques of particles on the micro- and
nano-particle level. Larger particles are then too large to pass through the pores of the membrane.
Studies of particle transport in this context are however mainly based on spherical particle shape,
but transport processes in general may include biological macromolecules and colloids which have
basically a non-spherical shape. So any improvement in these theories naturally involves also taking
into account the shape of the particles.
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In studies of a dilute concentration of particles, the transport of non-spherical particles in given
fluid flow geometry can be studied mainly by two different techniques for the analysis. One method,
the Lagrangian tracking method is to solve the equations of motion for each individual particle,
including the forces acting on the particle such as the force and torque due to drag, due to Brownian
motion, as well as gravitational and electrostatic effects. To include effects of Brownian motion then a
stochastic force is introduced. A large number N of particles is then released and particle statistics
can be inferred by averaging. The error of this method is O(N−1/2) so a large number of particles
is necessary for convergence. This method has been successfully used to obtain the deposition of
micro- and nanofibers for a fully developed pipe flow, representing the airways of the human lung
(Högberg et al. [1]). The second approach is to directly consider the equation describing the evolution
of the probability density, usually called the Fokker–Planck equation or the Convective-diffusion
equation, which has the advantage of directly providing the statistical averages. This method has
been used to study, (Åkerstedt et al. [2]) the deposition of nanofibers in the same flow geometry as in
reference [1]. The agreement between the methods is quite good.

The Lagrangian tracking method has recently also been used in a study of transport and deposition
of non-spherical micro- and nano-particles related to composites manufacturing (Holmstedt et al. [3]).
During manufacturing micro- and nanoscale particles may be added to the resin to give the final product
additional properties. There are two length scales of this flow, a microscale in which fluid flows within
a region with bundles and a mesoscale flow between the regions of the bundles, see Figure 1. Typical
length scales for the flows are less than 10µm and greater than 100µm, respectively, Lundström et al. [4].
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For the case when the applied pressure gradient is stronger than capillary action, the channels
between the bundles are first filled and the capillary pressure force fills the fluid in the bundles.
In experiments mimicking composites manufacturing it is found that the injection of non-spherical
particles together with a liquid resin are strongly filtered by fabrics preventing a homogeneous
distribution of the particles in the final product, see Fernberg et al. [5] and Nordlund et al. [6].

To gain some understanding of this transport of particles a highly simplified geometry is considered
consisting of fluid filled tube bounded by an annulus-shaped porous media. The effect from the porous
media is then to provide a radial suction flow out from the tube. In the study in reference [3] it is
assumed that all particles deposit when they reach the border between the channel and the annular
fiber bundle. The amount of deposition found therefore denotes which particles are transported to the
bundles and can be seen as the maximum possible deposition.

Although the geometry in focus in this work originally mimicked composite manufacturing,
Holmstedt et al. [3] the simplified geometry, with flow in a tube surrounded by a membrane porous
medium, is perhaps more relevant in connection to cross-flow filtration techniques mentioned above.
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In cross-flow, filtration particles and fluid stream tangential in the axial direction of a tube, while
in the ideal case only the fluid flows into the filter membrane, the porous medium. Here problems
arise due to the creation of so called fouling boundary layers with a high concentration of particles.
These particles deposit on the membrane surface and a cake is formed leading to pore blocking of the
membrane with a decreased filter efficiency. In tissue-engineering bio-rector applications extremely
good filtration properties are necessary due to highly expensive solute particles. Therefore, the design
and understanding of filtering membranes is of large importance. Some relevant works on cross-flow
filtration are the numerical and experimental works by Ma et al. [7] and Huang et al. [8] and also the
theoretical work by Griffiths et al. [9]. These models only treat the transport of spherical particles,
therefore developing a theory that brings the ideas of cross-flow filtration together with the transport
of non-spherical particles should be of some interest.

The purpose of the present work is to develop a theory for the transport of non-spherical nano-sized
particles in cross-flow geometry using the Fokker–Planck approach and with an application to the flow
configuration considered in the work of reference [3]. It extends and corrects some of the results of
that paper. As in that paper [3] in this first work the effect of the porous medium is only to provide a
radial suction out of the tube. This means that the much more complicated case of transport of the
non-spherical particles into the porous medium is not considered here and will be left for further
studies. The present work is a development of the theory of Åkerstedt et al. [2] in which the transport
and deposition of large aspect ratio nanofibers in pipe flow geometry is considered. The theory is
based on the Fokker–Planck equation describing the probability density function N(x, r,θ,φ) for a
dilute suspension, where x is the stream-wise coordinate, r the radial coordinate, while θ and φ are the
Euler angles describing the particle orientation. Solutions are found using an expansion for the small
ratio of semi-major axis to pipe radius. The novelty of the paper is a treatment of oblate as well as
prolate particles together with an expansion to higher order including effects from curvature and the
inclusion of a radial suction velocity field. The theory is then applied to the composite manufacturing
example described above.

The outline of the paper is as follows. In Section 2 a statement of the problem and the objectives
of the paper are presented. In this paper we extend the work by Åkerstedt et al. [2] to include both
prolate and oblate particles, and a suction velocity field. The velocity field together with the radial
suction field are calculated for small Reynolds numbers using the lubrication approximation. The size
of the suction velocity in the lubrication approximation is considered small and of the order of the
pipe radius over the pipe length. To find the appropriate radial velocity, an analysis including the
physics of the surrounding porous medium is necessary. In this first study however the size of the
suction velocity is considered small but otherwise treated as a free parameter. A discussion of the
modifications needed to include a porous medium is given in Section 7.

In Section 3 we specify the fluid flow velocity field and the equation governing the transport of
non-spherical particles, a convective-diffusion equation sometimes called the Fokker–Planck equation.
Here we also specify the main assumptions regarding the size of the dimensionless parameters.

In Section 4 the Fokker–Planck equation is solved using boundary layer techniques treating the
translational Peclet number as large and the rotational Peclet number as small. To satisfy the boundary
condition of a perfectly absorbing boundary it is necessary to introduce a triple-deck structure of layers
for the probability density. After simplification the middle deck approximation is governed by an
angle averaged equation of the convective-diffusion type. In the lower deck close to the boundary a
diffusion type of equation is derived containing the radial coordinate and the two orientation angles.
In the work by reference [2] a lowest order asymptotic matching is considered which in this paper is
extended to the next order. Similarity solutions including the effect of weak suction and higher order
effects of curvature are derived. In Section 5 analytical expressions for the amount of deposition on the
wall are provided. Here it is shown that the effect of the lower deck boundary layer on deposition
(sterical interception effect) is very small. The effect of suction and the higher order curvature effects
are shown to increase the deposition rate.
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In Section 6 the analytical results are compared with results obtained by utilizing the Lagrangian
tracking method for the calculation of deposition rates in the application to composites manufacturing [3].
Here deposition rates of prolate and oblate particles with the same volume are compared. Although the
order of magnitude of deposition of the Lagrangian tracking method and the analytical expressions
are comparable, there are several details which do not match. In the Lagrangian case the deposition is
almost the same for all particles even for different aspect ratios β, with a slightly larger deposition for
oblate particles. The analytical expressions show agreement with the tracking method with somewhat
larger deposition for oblate particles, while a greater variation for different aspect ratios βis found.
The analytical expressions for deposition are also compared with a numerical study of the angle averaged
convective-diffusion equation using the commercial software Comsol Multiphysics (5.4 Version, Comsol
AB, Stockholm, Sweden, 2019). Here the agreement between the analytical results and the numerical
study is quite good. The paper is concluded in Section 7 with a discussion centered on including the
physics of the surrounding porous medium in the analysis.

2. Statement of the Problem

The main objective of this paper was the development of a transport model of non-spherical
nano- particles, especially prolate and oblate spheroidal particles, in fluid flow in a tube with a radial
suction flow velocity. The suction velocity is assumed to originate from a surrounding porous media.
We consider a small Re-number flow together with a lubrication approximation, meaning that the
radius of the tube is small compared to the length of the tube. The model geometry is chosen from
experiments mimicking composites manufacturing but may also be relevant to cross-flow filtration.
The goal is to study transport and especially deposition of nano-sized particles at the tube wall in the
context of composites manufacturing.

In Section 3 we specify the fluid flow velocity field and the equation governing the transport of
non-spherical particles, a convective-diffusion equation sometimes called the Fokker–Planck equation.
Here we also specify the main assumptions regarding the size of dimensionless parameters. In Section 4
the Fokker–Planck equation is solved using boundary layer techniques treating the translational
Peclet number as large and the rotational Peclet number as small. In Section 5 the deposition of
particles to the tube wall is considered, in which general analytical deposition rates are presented.
In Section 6 the analytical results are compared with results obtained by utilizing the Lagrangian
tracking method, previously used for the calculation of deposition rates in the application to composites
manufacturing [3]. The paper is finalized in Section 7 with a discussion on the possibilities of including
the surrounding porous medium in the analysis.

3. Governing Equations for Particle Transport and Fluid Flow

Transport of particles in the shape of prolate and oblate spheroids in pipe flow are considered.
The orientation of the particles is described in relation to a fixed Cartesian geometry (X, Y, Z). The flow
field with main flow direction in the x-direction is formulated in a cylindrical coordinate system (x, r,α)
as in Figure 2a. The orientation vector n is defined as the direction of the symmetry axis of the particle,
Figure 2b. Euler angles are introduced to describe the components of the orientation vector as

nX = sinθ cosφ
nY = sinθ sinφ

nZ = cosθ
(1)



Processes 2019, 7, 886 5 of 22Processes 2019, 7, x FOR PEER REVIEW 5 of 25 

 

 

Figure 2. (a) Coordinate system (x, r, α). (b) Coordinate system describing the symmetry axis of the 
particle with orientation vector n. 

The particle aspect ratio β, is defined as the ratio between the major and minor radius of the 
particle. We define /b aβ =  for oblate particles and /a bβ =  for prolate particles, see Figure 3. 

 

Figure 3. Oblate and prolate particles. 

The concentration of particles is assumed to be dilute so that the equation of motion for a single 
particle can be applied. The angular equation of motion for an axisymmetric particle in a Stokes flow 
is given by Jeffery [10] as 

= ⋅ + Λ ⋅ − Λ ⋅ ⋅ ( )Tn A n S n n S n n  (2) 

where 

2

2
1
1

β
β

−Λ =
+

 (3) 

Here S  and A  are the symmetric and antisymmetric parts of the gradient of the velocity field 
respectively 

1
( )

2
1

( )
2

T

T

= ∇ + ∇

= ∇ − ∇

S u u

A u u
 (4) 

The velocity field is chosen as a cross flow in pipe flow geometry. We make use of the lubrication 
approximation treating the pipe radius as small compared to its length while also considering a small 
Reynolds number. A weak uniform radial suction velocity of the order of the ratio of the pipe radius 
to the length is assumed. The velocity field then becomes 

a

b

a

b

Figure 2. (a) Coordinate system (x, r, α). (b) Coordinate system describing the symmetry axis of the
particle with orientation vector n.

The particle aspect ratio β, is defined as the ratio between the major and minor radius of the
particle. We define β = b/a for oblate particles and β = a/b for prolate particles, see Figure 3.
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The concentration of particles is assumed to be dilute so that the equation of motion for a single
particle can be applied. The angular equation of motion for an axisymmetric particle in a Stokes flow is
given by Jeffery [10] as

.
n = A · n + ΛS · n−Λ(nT

· S · n)n (2)

where

Λ =
β2
− 1

β2 + 1
(3)

Here S and A are the symmetric and antisymmetric parts of the gradient of the velocity
field respectively

S = 1
2 (∇u +∇uT)

A = 1
2 (∇u−∇uT)

(4)

The velocity field is chosen as a cross flow in pipe flow geometry. We make use of the lubrication
approximation treating the pipe radius as small compared to its length while also considering a small
Reynolds number. A weak uniform radial suction velocity of the order of the ratio of the pipe radius to
the length is assumed. The velocity field then becomes

u = u(r, x)x̂ + v(r, x)r̂ = U0(1− δ
x
R
)(1− (

r
R
)

2
)x̂ + δU0

1
2
(

r
R
−

1
2
(

r
R
)

3
)r̂ (5)

The suction velocity at the boundary is then V0 = δU01/4 so the small dimensionless parameter
δ is a measure of the suction strength. From the theory developed by Nietzsche and Brenner [11],
a Fokker–Planck equation describing the stationary probability density distribution can be derived as

∇ · (uN) +
∂
∂n
· (ωN) −∇ · ((nnDt

‖
+ (I− nn)Dt

⊥) · ∇N) −
∂
∂n
· ((I− nn)Dr ∂N

∂n
) = 0 (6)
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Here Dt
‖

and Dt
⊥

are the translational diffusion coefficients for a particle diffusing parallel and
perpendicular to the particle symmetry axis, respectively, and Dr is the rotational diffusion coefficient.
The angular velocity ω is defined from the relation

.
n = ω × n. In terms of the coordinates of the

probability density N(x, r,α,θ,φ) this equation can be written as

u(r, x) ∂N
∂x + v(r, x) ∂N

∂r −

+(Dt
‖
(sinα cosθ+ cosα sinθ sinφ)2 + Dt

⊥
(1− (sinα cosθ+ cosα sinθ sinφ)2))( ∂

2N
∂r2 + 1

r
∂N
∂r )−

Dr 1
sinθ (

∂
∂θ (sinθ∂N

∂θ ) +
1

sinθ
∂2N
∂φ2 ) −

1
sinθ (

∂
∂φ (N

.
φ sinθ) + ∂

∂θ (N
.
θ sinθ)) = 0

(7)

Since we assume that N varies strongly only in a boundary layer near the wall we neglect the
second order derivative with respect to x and α in the spatial diffusion term. By normalizing the spatial
coordinates with the pipe radius R and introducing dimensionless quantities the following Peclet
numbers can be defined

Pet
‖
= U0R

Dt
‖

Pet
⊥
= U0R

Dt
⊥

Per = U0
RDr
⊥

(8)

In dimensionless units Equation (7) becomes

Per((1− δx)(1− r2) ∂N
∂x + δ

2 (r−
r3

2 )
∂N
∂r ) − (

Per

Pet
‖

K(α,θ,φ)2 + Per

Pet
⊥

(1−K(α,θ,φ)2))( ∂
2N
∂r2 + 1

r
∂N
∂r )+

−
1

sinθ (
∂
∂θ (sinθ∂N

∂θ ) +
1

sinθ
∂2N
∂φ2 ) +

Per

sinθ (
∂
∂φ (N

.
φ sinθ) + ∂

∂θ (N
.
θ sinθ)) = 0

(9)

in which K(α,θ,φ) = sinα cosθ+ cosα sinθ sinφ. The interest is in particles with large aspect ratio
β >> 1. Exact expressions for the diffusion coefficients for prolate and oblate particles are provided in
Appendix A. In the limit of large β the expressions for the diffusion coefficients for prolate particles
become

Dt
‖
=

κT (ln(2β)−1/2)
4πµβb

Dt
⊥
=

κT (ln(2β)+1/2)
8πµβb

Dr
⊥
=

3κT (ln(2β)−1/2)
8πµβ3b3

(10)

For large β the diffusion coefficients for oblate particles become

Dt
‖
= κT

16µb (1−
1

2β2 + . . .)

Dt
⊥
= 3κT

32µb (1−
32

12β + . . .)

Dr
⊥
= 3κT

32µb3 (1−
3

2β2 + . . .)

(11)

Here κ is Boltzmann’s constant, T the temperature, and µ the dynamic viscosity of the fluid. Here l
is defined as the semi-major axis of the particle which for prolate particles is l = βb and for oblate
particles l = b. To estimate the order of magnitude in Equation (9) we consider the ratio between the
following Peclet numbers which for prolate particles become

Dt
‖

DrR2 = Per

Pet
‖

= 2
3
β2b2

R2 = l2
R2

2
3 = 2

3 ε
2

Dt
⊥

DrR2 = Per

Pet
⊥

= 1
3

ln(2β)+1/2
ln(2β)−1/2

l2
R2 = τ⊥

3 ε2
(12)

The corresponding ratios for oblate particles are

Dt
‖

DrR2 = Per

Pet
‖

= 2
3

b2

R2 (1 +
1
β2 ) =

l2
R2

2
3 (1 +

1
β2 ) =

2
3 ε

2 + O(β−2)

Dt
⊥

DrR2 = Per

Pet
⊥

= b2

R2 (1−
32

12β ) =
l2
R2 (1−

32
12β ) = ε2 + O(β−1)

(13)
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Equation (9) can then be written for prolate particles as

Per((1− δx)(1− r2) ∂N
∂x + δ

2 (r−
r3

2 )
∂N
∂r ) − (

2
3ε

2K(α,θ,φ)2+
τ⊥
3 ε

2(1−K(α,θ,φ)2))( ∂
2N
∂r2 + 1

r
∂N
∂r ) −

1
sinθ (

∂
∂θ (sinθ∂N

∂θ ) +
1

sinθ
∂2N
∂φ2 )

+ Per

sinθ (
∂
∂φ (N

.
φ sinθ) + ∂

∂θ (N
.
θ sinθ)) = 0

(14)

with a similar expression for oblate particles. In the following the discussion is based upon prolate
particles. The theory for oblate particles is similar and the essential details are therefore given in
Appendix A.

4. Asymptotic Solutions to the Fokker–Planck Equation

For the solution of the Fokker–Planck equation we consider the limit of small ε. According to
equation (12) this is equivalent to a small rotational Peclet-number and a large translational Peclet
number. At the inlet of the pipe we assume a uniform probability density N(0, r,α,θ,φ) = No

0,
corresponding to complete random orientation and the position of the particles. Considering Per small
and Pet

‖
, large, a natural approximation is to neglect the translational diffusion term in Equation (14),

which is of the order O(ε2). As boundary condition we assume that the pipe wall is a perfect sink of
the particles so that the boundary condition for the probability density for prolate particles with large
β and half-length l becomes

N(x, r = 1− ε|n̂ · r̂|,α,θ,φ) = N(x, r = 1− ε
∣∣∣K(α,θ,φ

∣∣∣,α,θ,φ) = 0 (15)

Expanding (15) for small ε

N(x, r = 1,θ,φ) −
∂N
∂r

∣∣∣∣∣
r=1
· ε

∣∣∣cosθ sinα+ sinθ sinφ cosα
∣∣∣ = 0 (16)

To satisfy this boundary condition it is necessary to keep the translational diffusion term in a
boundary layer close to the wall. An outer solution No, valid in the main part of the pipe, can however
be given by solutions of the equation

Per((1− δx)(1− r2) ∂No

∂x + δ
2 (r−

r3

2 )
∂No

∂r ) − 1
sinθ (

∂
∂θ (sinθ∂No

∂θ ) + 1
sinθ

∂2No

∂φ2 )

+ Per

sinθ (
∂
∂φ (No

.
φ sinθ) + ∂

∂θ (No
.
θ sinθ)) + O(ε2) = 0

(17)

Since Per is considered small we expand the solution in powers of this parameter as

No = No
0 + No

1Per + O((Per)2) + O(ε2) (18)

Assuming uniform conditions at entry we have random orientation of the angles and position
so that No(x = 0, r,θ,φ) = No

0 = constant. The angular velocities
.
φ and

.
θ in the convective term in

Equation (17) can be obtained from Equation (2). In the outer region we neglect the influence of suction.
For the case of infinite β the angular velocities for prolate particles become

.
φ = 2r sin2 φ cosα+ 2r cotθ sinφ sinα
.
θ = −2r cosφ cos2 θ sinα− 2r sin 2θ sin 2φ cosα

(19)

If α = 0 the equations corresponds to the case of a simple velocity shear in the y-direction,
and α = π/2 the case with simple shear in the z-direction, both corresponding to Jeffery orbits.
The general motion is then a linear combination of the two. Inserting this expression into Equation (17)
without the effect from suction we get
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Per(1− r2) ∂No

∂x = 1
sinθ (

∂
∂θ (sinθ∂No

∂θ ) + 1
sinθ

∂2No

∂φ2 )

−3Per No
0(2r sin2 θ sin 2φ cosα+ 2r sin 2θ cosφ sinα) + O(ε2)

(20)

If uniform conditions are assumed at entry, there is a thin layer in which the solution varies quickly
for Per small. We therefore introduce a multiple length scale analysis in which we define Xo = x/Per

as the quick scale and x an ordinary length scale so that Equation (20) transforms into

(1− r2)(Per ∂No

∂x + ∂No

∂Xo ) =
1

sinθ (
∂
∂θ (sinθ∂No

∂θ ) + 1
sinθ

∂2No

∂φ2 )

−3Per No
0(2r sin2 θ sin 2φ cosα+ 2r sin 2θ cosφ sinα)

(21)

The solution is then assumed to be of the form

No = No
0 + PerNo

1(x, Xo, r,α,θ,φ) + . . . (22)

so to order O(Per) Equation (21) becomes

(1− r2)
∂No

1
∂Xo = 1

sinθ (
∂
∂θ (sinθ

∂No
1

∂θ ) + 1
sinθ

∂2No
1

∂φ2 )+

−3No
0(2r sin2 θ sin 2φ cosα+ 2r sin 2θ cosφ sinα)

(23)

The solution to this equation can be expressed in terms of spherical harmonics [12] in the form

No
1(x, Xo, r,θ,φ) =

∞∑
n=0

An(x, Xo, r)Pn(cosθ)+

+
∞∑

n=1

n∑
m=1

(Am
n (x, Xo, r) cos mφ+ Bm

n (x, Xo, r) sin mφ)Pm
n (cosθ)

(24)

This type of solution is valid as long as the particles are freely rotating, with no interception at the
wall of the pipe. Inserting the solution into Equation (23) and using the orthogonal properties of the
spherical harmonics leads to a set of first order differential equations

(1− r2) ∂An
∂Xo + n(n + 1)An = 0

(1− r2)
∂Am

n
∂Xo + n(n + 1)Am

n = −2No
0 rδn,2δm,1 sinα

(1− r2)
∂Bm

n
∂Xo + n(n + 1)Bm

n = −No
0 rδn,2δm,2 cosα

(25)

with the corresponding solutions

An(x, Xo, r) = an(x, r) e
−

n(n+1)Xo

(1−r2)

Am
n (x, Xo, r) = am

n (x, r) e
−

n(n+1)Xo

(1−r2) −No
0

1
3 rδn,2δm,1 sinα

Bm
n (x, Xo, r) = bm

n (x, r)e
−

n(n+1)Xo

(1−r2) −No
0

1
3 rδn,2δm,2 cosα

(26)

The arbitrary functions a2n(x, r), am
2n(x, r) and bm

2n(x, r) can with the present order be replaced by
the functions a2n(0, r), am

2n(0, r) and bm
2n(0, r) with an error of higher order O(PerXo) within the initial

layer. The entry condition gives No
1(x = 0, Xo = 0, r,θ,φ) = 0, so the complete solution is found to be

No = No
0 − PerNo

0 r (1− e
−

6Xo

(1−r2) )(
1
3

P1
2(cosθ) cosφ sinα+

1
6

P2
2(cosθ) sin 2φ cosα) + O((Per)2) (27)

Here the second term shows the rapid initial transient from the uniform conditions at entry.
After this initial transient the solution settles into a state in which the lowest order distribution No

varies according to



Processes 2019, 7, 886 9 of 22

No = No
0 − 1/2PerNo

0 r (sin2 θ sin 2φ cosα+ sin 2θ cosφ sinα) + O((Per)2) (28)

So that the preferential orientation depends on the position of the particle. For a particle at
α = 0 the preferential orientation is given by θ = π/2,φ = π/4, 3π/4, 5π/4, 7π/4 and for a particle at
α = π/2 the preferential orientation is with θ = π/4, 3π/4,φ = 0, 2π.

Since the solution Equation (26) cannot satisfy the absorbing boundary condition at the wall,
the neglected translational diffusion term here becomes important and a rescaling by introducing a
boundary layer coordinate R = (1− r) (Pet

‖
)
ν is therefore considered.

In the scaling of Equation (9) we wish to keep the convective term to be of the same order as
the translational diffusion term. The convective term is of importance when we want to find the
evolution of the flow in the stream-wise direction. Considering a balance of the order of magnitude
of the translational convective and diffusion terms, then gives ν = 1/3, corresponding to boundary
layer thickness of order O((Pet

‖
)
−1/3

). To fulfil the entry conditions we need as for the outer solution

to introduce a quick length scale, in this boundary layer becomes Xi = x · (Pet
‖
)

1/3/Per = x/∆,
corresponding to an even quicker initial transient when compared with the outer solution. Here it is
convenient to use ∆ as the small parameter. The following equation for Ni is then obtained

(1− δx)(2 R− (Pet
‖
)
−1/3R

2
)(∆ ∂Ni

∂x + ∂Ni

∂Xi ) − ∆ δ
4 (Pet

‖
)

2/3 ∂Ni

∂R
=

∆(K2 +
Pet
‖

Pet
⊥

(1−K2)) ( ∂
2Ni

∂R
2 − (Pet

‖
)
−1/3 ∂Ni

∂R
) + 1

sinθ (
∂
∂θ (sinθ∂Ni

∂θ ) +
1

sinθ
∂2Ni

∂φ2 )

−Per 1
sinθ (

∂
∂φ (Ni

.
φ sinθ) + ∂

∂θ (Ni
.
θ sinθ))

(29)

The boundary condition Equation (15) can now be written as

Ni(x, r = 1,θ,φ) −
√

3/2 ∆1/2 ∂Ni

∂R

∣∣∣∣∣∣
R=0
·

∣∣∣cosθ sinα+ sinθ sinφ cosα
∣∣∣ = 0 (30)

To fulfil this boundary condition with a term of order O(∆1/2) we assume an expansion for the
boundary layer solution of the form

Ni = Ni
0(x, R) + ∆1/2Ni

1/2(x, Xi, R,θ,φ) + ∆ Ni
1(x, Xi, R,θ,φ) + Per ni

1(x, Xi, R,θ,φ) + . . . (31)

The O(Per) correction ni
1 can be obtained in the same manner as the corresponding term in the

outer solution with the result

ni
1 =

1
3

Ni
0(x, R) (1− e(

−6Xi

2R
)
)P1

2(cosθ) sinφ (32)

Inserting the expansion Equation (31) into Equation (29) and selecting the O(1) terms we have

2 R(1− δx)
∂Ni

0

∂Xi =
1

sinθ
(
∂
∂θ

(sinθ
∂Ni

0

∂θ
) +

1
sinθ

∂2Ni
0

∂φ2 ) (33)

Assuming a solution of the form

Ni
0(x, X, R,θ,φ) =

∞∑
n=0

Cn(x, X, R)Pn(cosθ)+
∞∑

n=1

n∑
m=1

(Dm
n (x, X, R) cos mφ+ Em

2n(x, X, R) sin mφ)Pm
n (cosθ)

(34)

and proceeding as above by inserting this expression into Equation (29) and using the orthogonal
properties of the spherical harmonics gives a sequence of differential equations. From the isotropic entry
conditions it follows that all coefficients Cn, Dm

n and Em
n are zero, except C0 = F0(x, R). We therefore
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have a solution Ni
0(x, R) = F0(x, R) which is determined later from a solvability condition of the

problem at order O(∆3/2). The present analysis shows that since Ni
0 does not have any angular

dependence the solution does not fulfil the absorbing boundary condition at the wall. Next considering
the problem to order O(∆1/2), the same analysis again shows that Ni

1/2 = Ni
1/2(x, R). The conclusion

is therefore that a further rescaling of the problem with an inner boundary layer of smaller size than
the present is necessary. Before we discuss this rescaling, however we proceed with the problem to
O(∆). For this order we have the equation

2 R (1− δx)(
∂Ni

0
∂x +

∂Ni
1

∂Xi ) −
δ
4 (Pet

‖
)

2/3 ∂Ni
0

∂R
= (K(α,θ,φ)2 +

Pet
‖

Pet
⊥

(1−K(α,θ,φ)2) )
∂2Ni

0

∂R
2 +

+ 1
sinθ (

∂
∂θ (sinθ

∂Ni
1

∂θ ) + 1
sinθ

∂2Ni
1

∂φ2 )
(35)

in which the suction term is considered at present to be of order δPe2/3
‖

= O(1). Using a similar
treatment as before a solution of the form below is assumed

Ni
1(x, Xi, r,θ,φ) =

∞∑
n=0

αn(x, Xi, R)Pn(cosθ)+
∞∑

n=1

n∑
m=1

(βm
n (x, Xi, R) cos mφ+ γm

n (x, Xi, R) sin mφ)Pm
n (cosθ)

(36)

Inserting this solution into Equation (35) the same procedure as above yields equations for all the
non- zero coefficients in (36)

2R(1− δx)
∂α0

∂Xi = −2R(1− δx)
∂Ni

0

∂x
+ (

1
3
+

2
3

Pet
‖

Pet
⊥

)
∂2Ni

0

∂R
2 +

δ
4
(Pet
‖
)

2/3 ∂Ni
0

∂R
(37)

(1− δx) 2R
∂α2

∂Xi + 6α2 = (1−
Pet
‖

Pet
⊥

)(sin2 α−
1
3
)
∂2Ni

0

∂R
2 (38)

(1− δx) 2R
∂β2

2

∂Xi + 6β2
2 = −

1
6
(1−

Pet
‖

Pet
⊥

) cos2 α
∂2Ni

0

∂R
2 (39)

(1− δx) 2R
∂γ1

2

∂Xi + 6γ1
2 =

2
3
(1−

Pet
‖

Pet
⊥

) sinα cosα
∂2Ni

0

∂R
2 (40)

All other coefficients are zero due to the conditions at entry i.e., Ni
1(x = 0, Xi = 0, R,θ,φ) = 0.

The solution given by Equation (37) grows linearly in Xi as a secular term, therefore the right hand
side of Equation (37) must be zero and so an equation determining Ni

0(x, R) of the following form
is obtained

2R(1− δx)
∂Ni

0

∂x
−
δ
4
(Pet
‖
)

2/3 ∂Ni
0

∂R
= (

1
3
+

2
3

Pet
‖

Pet
⊥

)
∂2Ni

0

∂R
2 (41)

This equation can be considered as a solvability condition and can also be obtained by multiplying
Equation (35) by sinθ and integrating over the angles. From Equations (38)–(40) we find the complete
solution for Ni

1 of the form

Ni
1(x, Xi, R,α,θ,φ) = (1−

Pet
‖

Pet
⊥

)(1− e−
3Xi

R )
∂2Ni

0

∂R
2 ( 1

6 (sin2 α− 1/3)P2(cosθ)+

−
1

36 cos2 αP2
2(cosθ) cos 2φ− 1

9 sinα cosαP1
2(cosθ) sinφ)

(42)
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Proceeding to O(∆3/2) and using a solvability condition some new higher order terms due
to curvature of order of magnitude ∆ · (Pet

‖
)
−1/3

= Per(Pet
‖
)
−2/3 appear, which are different from

∆3/2 = (Per)3/2(Pet
‖
)
−1/2 so that

∆3/2(2R(1− δx)
∂Ni

1/2
∂x −

δ
4 (Pet

‖
)

2/3 ∂Ni
1/2

∂R
− ( 1

3 + 2
3

Pet
‖

Pet
⊥

)
∂2Ni

1/2

∂R
2 ) =

∆(Pet
‖
)
−1/3

(R
2
(1− δx)

∂Ni
0

∂x − (
1
3 + 2

3
Pet
‖

Pet
⊥

)
∂Ni

0

∂R
)

(43)

If Per >> (Pet
‖
)
−1/3 the terms on the right-hand side can be neglected and the equation of this

order becomes identical with Equation (41)

2R(1− δx)
∂Ni

1/2

∂x
−
δ
4
(Pet
‖
)

2/3 ∂Ni
1/2

∂R
= (

1
3
+

2
3

Pet
‖

Pet
⊥

)
∂2Ni

1/2

∂R
2 (44)

However to make the theory more general, adopting the principle of least degeneracy, these extra
terms due to curvature are incorporated by choosing Per = Per (Pet

‖
)
−1/3 with Per = O(1). Of course,

this only works if Per and Pet
‖

−1/3 are of comparable magnitude. Equation (43) then becomes

(Per)
1/2

(2R(1− δx)
∂Ni

1/2
∂x −

δ
4 (Pet

‖
)

2/3 ∂Ni
1/2

∂R
) − ( 1

3 + 2
3

Pet
‖

Pet
⊥

)
∂2Ni

1/2

∂R
2 ) = (R

2 ∂Ni
0

∂x − (
1
3 + 2

3
Pet
‖

Pet
⊥

)
∂Ni

0

∂R
) (45)

If this scaling is correct the perturbation scheme only includes one single small parameter (Pet
‖
)
−1/3.

As mentioned it is obvious that the solutions Ni
0(x, R) and Ni

1/2(x, R) cannot satisfy the boundary
condition at the wall. Therefore, a further rescaling is necessary with a second boundary layer inside
the outer boundary layer. To determine the thickness of this inner boundary layer a coordinate
ρ =

√
2/3R/∆ν is introduced in Equation (35). A balance of the order of magnitude of the terms in this

equation with the rescaling gives ν = 1/2. With this scaling the dominant terms are the translational
and the rotational diffusion terms, which situation is quite natural for this region of smallest length
scale. The thickness of this boundary layer is then of order O((Per/Pet

‖
)1/2) = O(ε) corresponding to

the ratio between the length of a prolate particle and the pipe radius. Equation (35) then reduces to

(K(α,θ,φ)2 +
Pet
‖

Pet
⊥

(1−K(α,θ,φ)2)) (
∂2NI

∂ρ2 ) +
1

sinθ
(
∂
∂θ

(sinθ
∂NI

∂θ
) +

1
sinθ

∂2Ni

∂φ2 ) = 0 (46)

Equation (46) cannot be solved analytically so a numerical treatment is necessary. It is then
convenient to introduce the variables t = cosθ and u = sinφ so that Equation (46) yields

(K2(α, t, u) +
Pet
‖

Pet
⊥

(1−K2(α, t, u))
∂2NI

∂ρ2 +
∂
∂t
((1− t2)

∂NI

∂t
) +

∂
∂u

(
1− u2

1− t2
∂NI

∂u
) +

u
1− t2

∂NI

∂u
= 0 (47)

Note that in this diffusion equation the only parameters are the angle α and the aspect ratio β.
The boundary condition for the inner solution at the wall is according to the boundary condition
Equation (15) then

NI(ρ = |n̂ · r̂| =
∣∣∣K(α, t, u

∣∣∣) = 0 (48)

It is also required that for large ρ the solution provided by Equation (47) should fulfil an asymptotic
matching condition with the outer solution given by Equation (41). Equation (47) was solved numerically
using the Mathematics module in the commercial software Comsol Multiphysics (5.4 Version, Comsol
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AB, Stockholm, Sweden, 2019). The computational domain becomes quite complicated which is seen
in Figure 4 where the boundary surface for the value of α = π/4 is presented.

Processes 2019, 7, x FOR PEER REVIEW 13 of 25 

 

2 2
2 2

2 2

1 1
( ( , , ) (1 ( , , ) )) ( ) ( (sin ) ) 0

sin sin

t I I i

t

Pe N N N
K K

Pe
α θ φ α θ φ θ

ρ θ θ θ θ φ⊥

∂ ∂ ∂ ∂
+ − + + =

∂ ∂ ∂ ∂
  (46) 

Equation (46) cannot be solved analytically so a numerical treatment is necessary. It is then 
convenient to introduce the variables cost θ=  and sinu φ=  so that Equation (46) yields 

2 2
2 2 2

2 2 2

1
( ( , , ) (1 ( , , )) ((1 ) ) ( )

1 1

t I I I I

t

Pe N N u N u N
K t u K t u t

Pe t t u t u t u
α α

ρ⊥

∂ ∂ ∂ ∂ − ∂ ∂
+ − + − + +

∂ ∂ ∂ ∂ − ∂ − ∂
 (47) 

Note that in this diffusion equation the only parameters are the angle α  and the aspect ratio 
β . The boundary condition for the inner solution at the wall is according to the boundary condition 
Equation (15) then 

 垐( ( , , ) 0IN n r K t uρ α= ⋅ = =  (48) 

It is also required that for large ρ  the solution provided by Equation (47) should fulfil an 
asymptotic matching condition with the outer solution given by Equation (41). Equation (47) was 
solved numerically using the Mathematics module in the commercial software Comsol Multiphysics 
(5.4 Version, Comsol AB, Stockholm, Sweden, 2019). The computational domain becomes quite 
complicated which is seen in Figure 4 where the boundary surface for the value of 4α π=  is 
presented. 

 

Figure 4. The boundary domain for Equation (47) in hyperspace 垐 ( / 4, , )n r K t uρ π= ⋅ = . 

To find the appropriate asymptotic matching we consider the solution of Equation (41). We now 
consider the case of small suction so that 2 / 3 1/ 2

0( ) ( )4 t iPe ON Rδ = Δ∂ ∂


. Equation (41) then provides a 
similarity solution of the form 

3
3/ ( )

0 1 2 1 2

0

(1 3, ( / ( )) )
( , ) (1 )

(1 3)

R g x
i R g x

N x R C e d C C Cτ τ− Γ
= + = ⋅ − +

Γ  (49) 

where the boundary layer thickness ( )g x  evolves according to 

1/33
( ) (( 3 ) ))

2

t

t

Pe
g x x

Pe⊥

= +   (50) 

To match the solutions from Equation (49) with solutions of Equation (47) we use the matching 
principles of van Dyke [13]. This procedure can be done as follows. First, we write the outer boundary 
layer solution in the inner boundary layer variable ρ . This gives 

Figure 4. The boundary domain for Equation (47) in hyperspace ρ = |n̂ · r̂| =
∣∣∣K(π/4, t, u)

∣∣∣.
To find the appropriate asymptotic matching we consider the solution of Equation (41). We now

consider the case of small suction so that δ/4(Pet
‖
)

2/3
∂Ni

0/∂R = O(∆1/2). Equation (41) then provides
a similarity solution of the form

Ni
0(x, R) = C1

R/g(x)∫
0

e−τ
3
dτ + C2 = C1 · (1−

Γ(1/3, (R/g(x))
3
)

Γ(1/3)
) + C2 (49)

where the boundary layer thickness g(x) evolves according to

g(x) = ((
3
2
+ 3

Pet
‖

Pet
⊥

)x))1/3 (50)

To match the solutions from Equation (49) with solutions of Equation (47) we use the matching
principles of van Dyke [13]. This procedure can be done as follows. First, we write the outer boundary
layer solution in the inner boundary layer variable ρ. This gives

Ni
0(x, (

3
2
)

1/2
∆1/2ρ) = No

0(
1−C2
∞∫
0

e−τ3dτ

∆1/2( 3
2 )

1/2
ρ/g(x)∫

0

e−τ
3
dτ + C2) (51)

Expanding for small ∆ we find the inner limit

(Ni
0)

I
= No

0(
1−C2
∞∫
0

e−τ3dτ
(

3
2
)

1/2
∆1/2ρ/g(x) + C2 + O(∆2)) = No

0(
1−C2
∞∫
0

e−τ3dτ
R/g(x) + C2 + O(∆2)) (52)

The inner solution for large values of ρ is found from solving Equation (47) numerically.
Since Expression (52) gives a linear variation in ρ the asymptotic dependence of NI is chosen as
linear in ρ for large ρ. Introducing the normalization N̂I = NI/k(x, ∆) where k(x, ∆) is to be determined
from the matching condition, the matching condition can then be written as

∂N̂I/∂ρ→ 1 asρ→∞ (53)
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The result of the numerical solution of N̂I as a function of ρ is presented in Figures 5 and 6,
for different values of (α, t, u).
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For large ρ the behavior of N̂I is given by N̂I
→ ρ− b , where b is a numerically evaluated constant

that does not depend upon the angle variables (α,θ,φ). Expressing NI in terms of the outer variables
then gives the matching condition

(NI)
i
= k(x, ∆)(ρ− b) = k(x, ∆)

√
2/3R∆−1/2

− b · k(x, ∆) = (Ni)
I
= No

0(
1−C2
∞∫
0

e−τ3dτ
R/g(x) + C2 (54)

From this condition it follows that

k(x, ∆) = No
0

√
3/2

∞∫
0

e−τ3dτg(x)
∆1/2 and C2 = 0 (55)

Then there is a mismatch term since

(NI)
i
=

No
0

∞∫
0

e−τ3dτ
R/g(x) − bNo

0

√
3/2

∞∫
0

e−τ3dτg(x)
∆1/2 , (Ni)

I
=

No
0

∞∫
0

e−τ3dτ
R/g(x) (56)

But this term is of order O(∆1/2) and therefore should be considered as the matching value
between the solution Ni

1/2 and the solution NI. So the boundary condition for the solution of Equation
(44) is therefore given by
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Ni
1/2(x, 0) = − b (

3
2
)

1/2 No
0

∞∫
0

e−τ3dτ g(x)
(57)

Due to the linearity, Equation (45) can be solved by finding the homogenous solution with
the in-homogenous boundary condition (57) and the in-homogenous Equation (45) together with a
homogenous boundary condition N1/2(x, 0) = 0. The first part of this solution, solving Equation (44)
with in-homogenous boundary condition is presented in the Appendix B.

To find the total flux of particles to the wall we consider Equation (6) keeping only the diffusion
terms and writing in a dimensionless form as

−∇ · ((nn + (I− nn)
Pet
‖

Pet
⊥

) · ∇N) −
∂
∂n
· ((I− nn) ·

∂N
∂n

) = 0 (58)

Using the variables of the inner boundary layer and the appropriate scaling this equation is
identical to Equation (46). Equation (58) can be written as a total divergence in configuration space and
integrating Expression (58) over the complete volume in configuration space of all the variables of the
inner boundary layer it can be written as a surface integral with unit normal N pointing out of this
volume. If the surfaces of integration are the real boundary S0 and the boundary corresponding to the
outer edge of the inner boundary layer S∞ we have

−

∮
S∞+S0

N·{(nn + (I− nn)
Pet
‖

Pet
⊥

) · ∇NI + (I− nn) ·
∂NI

∂n
}dS = 0 (59)

The total flux to the wall is given by

Q = −

∫
S0

N · {(nn + (I− nn)
Pet
‖

Pet
⊥

) · ∇NI + (I− nn) ·
∂NI

∂n
}dS (60)

Due to Equation (59) this value of Q is the same as the value at the outer edge of the inner
boundary layer

Q =

∫
S∞

N · {(nn + (I− nn)
Pet
‖

Pet
⊥

) · ∇NI + (I− nn) ·
∂NI

∂n
}dS (61)

But since the angular part of NI in this region is of order O(∆) this part can be neglected up to
O(∆1/2). The total flux to the wall is therefore approximately given by

Q =

∫
S∞

N · {(nn + (I− nn)
Pet
‖

Pet
⊥

) · ∇NI
}dS (62)

This is a considerable simplification when compared with the general expression of deposition
given by Equation (61). In Expression (62) NI can be replaced according to the matching with the value
Ni

0(x, 0) + ∆1/2Ni
1/2(x, 0).

Next consider the in-homogenous part of Equation (45) with homogenous boundary condition
i.e., corrections of order O(∆1/2). To do this, Equation (45) is rewritten as

2R(1− δx) ∂Ni

∂x −
δ
4 (Pet

‖
)

2/3 ∂Ni

∂R
− ( 1

3 + 2
3

Pet
‖

Pet
⊥

) ∂
2Ni

∂R2 = ∆1/2

(Per)1/2
((1− δx)R2 ∂Ni

∂x − (
1
3 + 2

3
Pet
‖

Pet
⊥

) ∂Ni

∂R ) (63)

An approximate similarity solution can then be obtained by first introducing the new coordinates
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ζ = R
g(x)

g(x) = ( 9
2δ (

1
3 + 2

3
Pet
‖

Pet
⊥

)
∣∣∣ln(1− δx)

∣∣∣)1/3 (64)

Here, for convenience, the suction effect on the mean axial velocity is included in the expression
for g(x). Taking the limit δ→ 0 Equation (50) is recovered. Equation (63) is then written as

−3ζ2 ∂Ni

∂ζ + 3ζg∂Ni

∂g −
∂2Ni

∂ζ2 = − 3
2ζ

3g∂Ni

∂ζ (
∆

(Per)
)

1/2
+ 3

2ζ
2g2 ∂Ni

∂g ( ∆
(Per)

)
1/2

−g∂Ni

∂ζ (
∆

(Per)
)

1/2
+

δPet
‖

4
g

( 1
3+

2
3

Pet
‖

Pet
⊥

)

∂Ni

∂ζ (
∆

(Per)
)

1/2 (65)

where the suction term is now treated as small of the order O(∆1/2) and therefore it is written as
δ(Pet

‖
)

2/3
→ δPet

‖
(∆/Per)1/2 . An approximate solution can then be obtained as an expansion

Ni = f0(ζ) + g∆1/2 f1(ζ) + g2∆ f2(ζ) + . . . (66)

Inserting Equation (66) into Equation (65) the lowest order equation is

f0′′ + 3ζ2 f0′ = 0 (67)

with the boundary conditions f0(0) = 0 and f0(∞) = 1, the solution is the same solution as in
Equation (49)

f0(ζ) = 1−
Γ(1/3, ζ3)

Γ(1/3, 0)
= 1−

Γ(1/3, ζ3)

Γ(1/3)
(68)

For the next order the equation to solve is

f1′′ + 3ζ2 f1′ − 3ζ f1 = (Per)
−1/2

(
3
2
ζ3 + 1−

δ/4Pet
‖

( 1
3 + 2

3
Pet
‖

Pet
⊥

)

) f0′ (69)

with a solution fulfilling boundary conditions f1(0) = 0 and f1(∞) = 0 given by

f1(ζ) = −
9Γ(2/3)

(Per)1/22π
√

3 · 10
(ζ2e−ζ

3
+
ζ
3
(6− 5

δ/4Pet
‖

( 1
3 + 2

3
Pet
‖

Pet
⊥

)

) · Γ(1/3, ζ3)) (70)

5. Analytic Formulas for Deposition

The total deposition is calculated using the dimensional form of Equation (62). Explicitly this gives

Q = −
x∫

0

π∫
0

2π∫
0

2π∫
0

sinθ((1−K(α,θ,φ)2)Dt
⊥
+ K(α,θ,φ)2Dt

‖
) ∂
∂r (N

i
0 + ∆1/2Ni

1/2)
∣∣∣∣
r=R

R dx dθ dφ dα (71)

Deposition is defined as the total particle flux given by Equation (71) divided by the particle influx
of the pipe which is No

0 U02π2R2. After some calculations adding all the effects together there are three
contributions to the total deposition

P0 =
64/3

Γ(1/3)
(Pet
‖
)
−2/3

(1/3 + 2/3Pet
‖
/Pet

⊥)
2/3(x2/3

−
δ

15
x5/3) (72)
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P1 =
12 · b · 22/3

· 9 ·
√

2 · Γ(2/3)5

16 ·π3 (Pet
‖
)
−1
(1/3 + 2/3Pet

‖
/Pet

⊥)
1/3x1/3 (73)

P2 = (Pet
‖
)
−1
(1/3 + 2/3Pet

‖
/Pet

⊥) (−12/5 +
δ/2Pet

‖

(1/3 + 2/3Pet
‖
/Pet

⊥
)
)x (74)

The lowest order result P0 has been derived earlier in reference [2], P1 and P2 are novelties in
which P1 is the correction due to the inner boundary layer called steric interception deposition and P2

is the correction due to curvature effects and suction. In Equation (73) it is noted that for very small x
the effect of the inner boundary layer grows the strongest, but for larger x the effect of this term is very
small. The contribution from P2 is however significant for large x This term also includes the effect
from suction which naturally increases the deposition rate. Note that the contribution from the suction
term can be simplified to δ/2x. One should however note that the terms in Equation (74) are a result
of the expansion in small g(x)∆1/2

∼ x1/3∆1/2
∼ x1/3(Pet

‖
)
−1/3 an expansion which breaks down for

sufficiently large x.
Before we apply the theory to some specific examples the restrictions of the validity of the theory

are summarized. First, it is required that Per << 1 and that Pet
‖
, Pet
⊥
>> 1. It is also required that

Per >> (Pet
‖
)
−1/3 or Per = Per (Pet

‖
)
−1/3 with Per = O(1).

6. Applications and Numerical Results of Deposition

It is interesting to compare the analytical results with the results obtained by utilizing a completely
different method for the calculation of deposition [3]. These results come from a study of transport and
deposition of non-spherical micro- and nano-particles related to composites manufacturing. In the
liquid molding processes such as Resin Transfer molding and Vacuum Infusion a liquid resin is forced
to penetrate a fiber reinforcement that has been loaded into a closed cavity. The fiber reinforcements
are formed by fibers clustered in bundles and a mesoscale flow between the bundles. This results in
two scales of the flow, a microscale within the bundles and a mesoscale flow between the bundles.
Typical length scales for the flows are less than 10 µm and greater than 100 µm, respectively. For the
case when the applied pressure gradient is stronger than the capillary action, the channels between
the bundles are first filled and the capillary pressure force fills the fluid in the bundles. To gain some
insight into this problem a simplified geometry is considered consisting of resin filled tube bounded by
an annulus-shaped porous media. The effect from the porous media is then to provide a radial suction
flow out from the tube. During manufacturing micro- and nanoscale particles may be added to the
resin to give the final product additional properties. Therefore, a study of the transport and deposition
of the particles in this particular flow field was conducted in reference [3]. The particle motion was
treated by Lagrangian tracking of a large number of particles in the given velocity field calculated from
the Stokes equations together with the assumption of a small pipe radius to its length. The forces acting
on a particle are the drag force together with the force from the Brownian motion, the latter treated by
introducing a stochastic force. If launching a large number N of particles, particle deposition studies
can be inferred, statistics can be inferred, and the error of the method is then O(N−1/2). This method
has been used to obtain the deposition of micro- and nanofibers for a fully developed pipe flow [1]. In
a later study in reference [2] the same problem was treated with the method used in the present paper
using the deposition formula (72) above with rather good agreement.

In the numerical set-up for the Lagrangian tracking method a tube with radius R = 0.1 mm and
length L = 0.4 m was chosen. The resin fluid velocity was set to U0 = 0.2 mm/s with a uniform radial
suction velocity at the boundary V0 = 2.5 × 10−9 m/s. The viscosity of the fluid was 0.1 Pas and the
density 1000 kg/m3. The mean free path of the medium was 0.2 nm. The particles studied were prolate
and oblate spheroids with a different aspect ratio. For comparison between oblates and prolates the
particles were assumed to have the same volume as an equivalent sphere with diameter d. For a prolate
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particle the largest semi-axis length is then aP = d/2β2/3 and the corresponding largest semi-axis for an
oblate particle is bO = d/2β1/3, defining the aspect ratio β to be always greater than unity. The particle
sizes studied were d = 10 nm, 100 nm, and 1000 nm.

The results of the Lagrangian tracking method are summarized in Figure 7 where deposition
along the axis of the tube is plotted. In general, it is found that for particles with the same volume
the deposition of oblate particles is somewhat greater than for prolate particles. Only two cases are
considered by reference [3], one without and one with suction. The deposition rates with no suction
are unrealistically very low and are therefore not reproduced here. The results with suction velocity
are given in Figure 7. A remarkable result is that the deposition rates are almost the same for different
equivalent diameters and different aspect ratios.
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Figure 7. Deposition rates from Holmstedt et al. [3]. V0 = 2.5 × 10−9 m/s. Reproduced with permission
from Holmstedt, Åkerstedt, Lundström, Journal of Reinforced Plastics and Composites, published by
SAGE Publishing, 2018.

Comparing these results with results from the present theory using the analytical expressions
(72)–(74), the deposition rates for the case d = 10 nm, combined with different aspect ratios β = 10, 50, 75,
and 100 and suction velocities V0 = 0 m/s, 2.5 × 10−9 m/s, and 5.0 × 10−9 m/s. are shown in Figure 8a–d.
The deposition rates as a function of the distance along the tube vary in the same manner as in the work
by reference [3]. Common to both methods is that the deposition rates for oblates are somewhat larger
when compared with prolate particles, which is reasonable because the diffusion coefficient is slightly
larger for oblate particles when considering the same particle volume. The result in reference [3] in
Figure 7 is for the case with a suction velocity equal to V0 = 2.5 × 10−9 m/s (δ = 5 × 10−5). Even though
the order of magnitude of the deposition rates in the two studies are comparable the deposition rates in
Figure 7 are almost the same, largely independent of size and aspect ratio of the particles. Considering
the large variation in the diffusion coefficients when varying the size and aspect ratio this result must
be considered as somewhat doubtful.
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Next, consider the validity of the present theory. One must check whether the condition Per << 1
is fulfilled. For particles with equivalent diameter d = 10 nm this condition is easy to fulfil for oblates
with large values of aspect ratio β even above 200 while for prolates for β = 200 the value of Per is
larger than 0.3. For larger particles d = 20 nm and β = 100 the value of Per for oblates is 0.05 while
for prolates this value is 0.9 which then violates the condition Per << 1. For the assumed scaling
Per = Per (Pet

‖
)
−1/3 used in Equation (45), the values for Per in the examples vary between 0.1 and 5 so

this assumption then seems to be justified.
Another limitation of the theory may be the expansion leading to the analytic expressions (72)–(74)

which is based upon g(x)∆1/2
∼ x1/3∆1/2

∼ x1/3(Pet
‖
)
−1/3 being small. Whether this condition is

fulfilled or not must be checked by a numerical solution of Equation (63). However if we put
∆1/2 = (Pet

‖
)
−1/3 (the explicit numerical value of Per cancels out in the end) in Equation (63), it can be

considered as an expanded approximation to the exact convective-diffusion equation for a sphere with
diffusion coefficient D = Dt

‖
(1/3 + 2/3 Pet

‖
/Pet

⊥
) expanded in terms of (Pet

‖
)
−1/3. But expanding in

(Pet
‖
)
−1/3 or Pe−1/3 = (U0R/D)−1/3 is immaterial in the end so therefore instead of solving the expanded

approximate convective-diffusion equation the numerical solution of the exact convective-diffusion for
a sphere is considered i.e., the equation

(u · ∇)N =
1

Pe
∇

2N (75)

This equation is considered together with the Navier–Stokes equation. For this purpose,
the commercial software Comsol Multiphysics (5.4 Version, Comsol AB, Stockholm, Sweden, 2019) is
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utilized in which the CFD (computational fluid dynamic) Module is used together with the Transport
of Diluted Species model in the Chemical Engineering Module.

A comparison between the analytical result and numerical results is presented in Figure 9a–d.
The physical conditions are the same as in Figure 8a–d. It is seen that there is good agreement for

all aspect ratios for the case of no suction. In the case of suction there is a slight disagreement especially
for large δ and x. This is expected since the suction term δx is considered small, a condition which for
larger x is violated. A theory valid for larger δ can be obtained by rescaling δ as δ = δ(Pet

‖
)
−1/2 and

decreasing the boundary layer thickness so that R̃ = R(Pet
‖
)

1/6. In this limit Equation (44) becomes of
lowest order somewhat simpler in the form

−
δ
4
∂Ni

∂R̃
= (

1
3
+

2
3

Pet
‖

Pet
⊥

)
∂2Ni

∂R̃2
. (76)

Using Equation (76) as a starting point the deposition rate in the limit of large Peclet-number
simply becomes δx. This is the type of convective-diffusion boundary layer equation that is often
referred to in theories of cross-flow filtration.
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Figure 9. Comparison between analytical (solid) and numerical (circle) deposition rates. (a). β = 10,
δ = 0, δ = 10 × 10−5. (b). β = 50, δ = 0, δ = 10 × 10−5. (c). β = 75, δ = 0, δ = 10 × 10−5. (c). β = 75, δ = 0,
δ = 10 × 10−5. (d). β = 100, δ = 0, δ = 10 × 10−5.

7. Discussion

The model considered in this paper can only be seen as a first step towards a description of the
transport of non-spherical particles in a cross-flow type in pipe geometry with a surrounding annular
porous medium. Therefore, let us discuss some essential steps needed for further development of the
theory. First the suction velocity is assumed to be uniform along the x-axis, whether this is a correct
assumption can only be understood if the physics of the surrounding porous medium is taken into
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account. A theoretical model for this kind of flow was presented by Griffiths et al. [9] leading to a
Stokes flow in the pipe similar to the flow given by Equation (5) in the present paper. The flow is
however modified by a thin surrounding porous medium described by Darcy’s law. Using their model
the velocity in the pipe can be written in dimensionless form as

u = − 1
4

dp
dX (1− r2 + 2

A )

v = ε
16

d2p
dX2 (−r3 + 2r + 4

A )
(77)

where X = εx and A = α εL/
√

k contains properties of the porous medium, k being the permeability,
α a parameter connected to a slip boundary condition between the pipe flow and porous medium
boundary, ε = R/L the pipe aspect ratio. Choosing the pressure variation as d2p/dX2 = 4δ/ε i.e.,
a constant leads to the case of a uniform suction velocity considered in the present paper. In the work
in reference [9] it is assumed that the pressure at the outer edge r = R2 is atmospheric. An equation for
the pressure variation along the pipe can then be obtained as

d2p/dX2 =
16φα2

ε2 ln(R2)A(A + 4)
p =

p
λ2 (78)

leading to a pressure distribution of hyperbolic type. To obtain a more optimal solute distribution
in connection to tissue engineering Griffiths et al. [6] introduced the concept of space dependent
permeability. In the application of composites manufacturing, the boundary condition in the annular
porous medium is chosen as ∂p/∂r = 0 at the outer edge of the porous medium and a condition of the
pressure at the end x = L of the annular porous medium, modified by capillary action. The pressure at
the end of the annular porous part is then smaller than in the inner pure fluid part. This also leads to
a hyperbolic variation of the pressure along the stream-wise direction, see Frishfelds et al. [14] and
Holmstedt [15]. This is the modification needed to find the appropriate pressure distribution and in turn
a more correct radial suction velocity. The treatment of the transport of particles into the porous medium
is probably most easily performed using a macroscopic description. As a starting point the simplified
angular averaged convective-diffusion Equation (41) should be appropriate. The velocity field is then
taken as the solutions of the Darcy equations. A modification of the diffusion coefficient for the porous
medium is then necessary using the appropriate tortuosity. Finally, the occurrence of deposition in the
porous medium should also be modeled, including a reaction term, see Boccardio et al. [16].
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Appendix A

The expressions used for the diffusion coefficient of prolate particles are given by

Dt
‖
= κT

(
2β2
−1

√
β2−1

ln(β+
√
β2−1)−β)

8πµb(β2−1)

Dt
⊥
= κT

(
2β2
−3

√
β2−1

ln(β+
√
β2−1)+β)

16πµb(β2−1)

Dr
⊥
=

3κT( 2β2
−1

√
β2−1

ln(β+
√
β2−1)−β)

16πµb3(β4−1)

(A1)
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The corresponding expressions for oblate particles are given by

Dt
‖
= κT (β(β2

−2)arctan(
√
β2−1)+β

√
β2−1))

8πµb(β2−1)3/2

Dt
⊥
= κT (β(3β2

−2)arctan(
√
β2−1)−β

√
β2−1)

16πµb(β2−1)3/2

Dr
⊥
=

3κTβ(2−β2)arctan(
√
β2−1)−β

√
β2−1)

16πµb3( 1
β2 −β

2)
√
β2−1

(A2)

The perfectly absorbing boundary condition for prolate particles, Equation (15), is for oblate
particles modified to

N(x, r = 1− ε
∣∣∣∣∣∂n̂
∂θ
· r̂

∣∣∣∣∣,α,θ,φ) = 0 (A3)

Appendix B

Here we provide results for the in-homogenous boundary condition applied to the homogenous
part of Equation (44) given by the solution of the problem

2R
∂Ni

1/2
∂x = ( 1

3 + 2
3

Pet
‖

Pet
⊥

)
∂2Ni

1/2

∂R
2

Ni
1/2(x, R→∞) = 0

Ni
1/2(x = 0, R) = 0

Ni
1/2(x, 0) = k

X
1/3

(A4)

where

X = 1
2 (

1
3 + 2

3
Pet
‖

Pet
⊥

)x

k = − b ( 3
2 )

1/2 No
0·(9/2)2/3Γ(2/3)
π·31/2·21/3

(A5)

The problem is solved using Laplace transformation in the x coordinate. The solution can then be
written as

Ni
1/2(X, R) =

k Γ(2/3)
Ai(0)

1
2πi

γ+i∞∫
γ−i∞

p−2/3Ai(p1/3R)epXdp (A6)

For integration a branch cut is chosen along the negative Re(p) axis and the integration contour is
deformed starting at p = ∞ e−iπ following the branch cut around the origin and ending at p = ∞ eiπ .
The Airy function is written in terms of modified Bessel functions and the resulting integrals can be
performed using reference [17]. The solution of the problem is then given by.

N1/2(x, R) = −bNo
0

9
√

6
8π2 Γ(2/3)3R

−1
e−R

3
/18X(

Γ(1/3)
Γ(2/3)

M0,−1/6(R
3
/9X) −

Γ(2/3)
Γ(4/3)

M0,1/6(R
3
/9X)) (A7)

Where M0,1/6(x) is the Whittaker M-function [17]. Of interest for calculation of deposition is the
derivative of (A7) in the limit R→ 0

∂N1/2

∂R

∣∣∣∣∣∣
R=0

= b No
0

94/3
√

2 Γ(2/3)
16π′3

22/3(
1
3
+

2
3

Pet
‖

Pet
⊥

)

−2/3

x−2/3 (A8)
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