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Abstract: Including ecologic and environmental aspects in chemical engineering requires new
methods for process design and optimization. In this work, a hydroformylation process of long-chain
olefines is investigated. A thermomorphic multiphase system is employed that is homogeneous
at reaction conditions and biphasic at lower temperatures for catalyst recycling. In an attempt to
replace the toxic polar solvent N,N-dimethylformamide (DMF), ecologically benign alternatives are
selected using a screening approach. Economic process optimization is conducted for DMF and
two candidate solvents. It is found that one of the green candidates performs similarly well as the
standard benchmark solvent DMF, without being toxic. Therefore, the candidate has the potential to
replace it.

Keywords: green solvents; hydroformylation; TMS; BARON; process optimization

1. Introduction

Since the 12 principles of “Green Chemistry” were postulated in 1998 [1], the concept has gained
an evergrowing interest [2]. Nowadays, chemical engineering not only focuses on improving process
efficiency by means of economic factors, but also focuses on ecological aspects. In the short term,
ecologic and economic objectives are often contradictory [3]. However, in the long term, these
objectives could very well coincide due to stricter regulations, e.g., on hazardous chemicals, social
pressure [4], and limited resources. Solvents are a class of chemicals that finds frequent use in the
chemical industry for diluting or dissolving other chemical species. Because they pose a potential
health risk for personnel due to the many ways they may enter the body [5], the search for non-toxic
alternatives for well-established toxic solvents is important.

Solvent properties may directly influence the process economics, for example due to a higher
boiling point, which increases the cost of distillation, or a lower extraction efficiency. Hence,
identifying economically well-performing solvents meeting additional non-economical requirements,
like non-toxicity, is non-trivial. For this reason, computer-aided and optimization-based methods for
solvent selection have been developed. Choosing a new solvent and simultaneously optimizing the
process is called integrated process and solvent design. These design problems are usually formulated
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as complex mixed-integer non-linear programs (MINLPs). Owing to the difficulty in solving MINLPs,
hierarchical approaches emerged and two different strategies are commonly used.

The first strategy relies on computer-aided molecular design (CAMD), where so-called group
contribution methods [6] are used to estimate the properties of a molecule during optimization.
Burger et al. [7] used a hierarchical approach named “HiOpt”, where a reduced process model is
optimized using multi-objective optimization (MOO) to shrink the molecular search space for a
subsequent MINLP optimization of the full process model. There are several other examples where
a MOO was first used to select solvent candidates and followed by process optimization to select
the best among those candidates [8,9]. Karunanithi et al. [10] and Cignitti et al. [11] decomposed the
problem into easy-to-solve sub-problems by a step-wise reduction of the search space in conjunction
with a step-wise increase in problem complexity. Eden et al. [12] optimized a process with the
molecule properties left as additional degrees of freedom and afterward found the best fitting molecule
using CAMD. A three-step approach for the solvent selection was proposed by Kossack et al. [13] for
extractive distillation based on an initial screening, a short-cut model evaluation, and a rigorous process
optimization. Gopinath et al. [14] developed a tailor-made outer approximation algorithm for CAMPD
problems and applied it to the separation of methane and CO2 at high pressures. First et al. [15]
performed a database screening for zeolites used in natural gas separation followed by a rigorous
process optimization and determined the economically most beneficial process. In order to chemically
store the fluctuating energy produced from renewable sources, Jens et al. [16] identified an optimal
storage molecule from six candidates and an optimal solvent for a this process using a combination of
screening, rigorous process models, and experimental data. Overall, several decomposition methods
were developed with the objective to reduce the solvent space and make the solution of the MINLP
tractable. An alternative to solving the MINLP deterministically is to use stochastic algorithms, such
as genetic algorithms [17].

The second strategy relies on data-based screening methods for the selection of an appropriate
solvent. First, unsuitable candidates from selected molecule databases are removed using MOO
approaches. A subsequent process optimization is performed for the remaining candidates to find
the economically best-performing solvent [18–20]. Scheffczyk et al. [21] introduced a method
that evaluates a process using simplified pinch-based short-cut models with a large solvent set.
They used very basic screening criteria, such as the existence of a miscibility gap, to avoid excessive
exclusion of potentially interesting molecules. This, coupled with the simplified process models,
allowed them to evaluate thousands of possible solvents and to identify the best candidates that
minimize energy demand. This framework was applied to find novel solvents for the use in several
extraction-distillation processes [21,22] and adsorption solvents in an integrated CO2 capture and
utilization process producing CO [23]. The latter was expanded by Fleitmann et al. [24] to the initial
adsorption of the CO2 from a natural gas stream. By including this first adsorption step, new and
different optimal solvents were identified. This again emphasizes the importance of considering the
overall process in solvent design.

Another approach to solve the integrated solvent and process design problem is
continuous-molecular targeting. Here, a physically based equation of state (EOS) is used without
specifying a particular solvent molecule. The EOS parameters for the solvent are left as optimization
variables and determined by the solver. In a following step, a Taylor series expansion of the
objective function is used to find real-world molecules with the best matching EOS parameters [25–27].
Lampe et al. [28] increased the applicability of this approach by using GPC-SAFT to design a molecule
with EOS parameters that are nearest to those optimally found instead of depending on a database of
given values.

In the present work, the second approach, database screening, is used. A modified version of a
recently developed screening approach [29] is used to select solvent candidates. A subsequent process
optimization is conducted for the ecologically benign candidates as well as for a toxic and commonly
used benchmark solvent.
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The case study considered here is the hydroformylation of n-decene. The two major challenges of
the process are achieving a high space–time yield of the catalyzed reaction and the recovery of the
rhodium based catalyst. To meet these challenges, a thermomorphic multiphase system (TMS) [30]
consisting of the polar solvent N,N-dimethylformamide (DMF) and the non-polar solvent n-dodecane
is employed. In the course of the collaborative research center “InPROMPT”, this process was already
investigated extensively, albeit with a longer olefin chain length [31–33]. Several optimization studies
were conducted [34–36] and the process was successfully operated continuously and optimized
in real-time with a TMS based separation [37,38] and with a surfactant-based separation [39,40].
Some aspects of green chemistry are already fulfilled. Long-chain olefines are a class of raw materials
that may be synthesized from renewable resources using the Fischer–Tropsch process with biogas
or directly derived from unsaturated oleochemicals from renewable resources [41–43]. The reactant
used in this case study, n-decene, is a representative of this group. Furthermore, the process is
operated efficiently to save energy and thus reduce the CO2 footprint. However, one major drawback
is the use of the polar solvent DMF. Despite its wide usage throughout the chemical industry, it is
developmentally toxic [44] and also damaging to the liver [45]. DMF fulfills the criteria of Article 57
of the European chemicals ordinance REACH and is on the list of substances of very high concern
(SVHC) [46]. Therefore, DMF should be replaced by a safer, ecologically benign alternative in order to
obtain a green process.

The article is structured as follows: Section 2 will give an overview of the screening approach and
the process model. Section 3 will present the results of our hierarchical process and solvent design.
Finally, Section 4 will give a summary of the results and a short outlook for further research.

2. Materials and Methods

Our approach to the integrated process and solvent design can be split into two parts. The first
part is the screening of databases to exclude unsuitable solvents from further considerations and
the second part is a process optimization with the remaining solvent candidates and the benchmark
solvent DMF. Both steps and their necessary prerequisites are described in this section.

2.1. Solvent Screening

The screening methodology identifies promising catalyst solvents by searching a database for
desired properties. The approach was published recently as a conference paper [29]. In summary,
the screening starts by taking into account all components within the COSMObase database.
This database provides geometry optimized molecular structures in the COSMO state, which can
be used for thermodynamic property predictions in the liquid state using the continuum solvation
model for realistic solvation (COSMO-RS) [47,48]. The first screening step takes physical properties
into account. Among others, these are structural constraints to guarantee stability during reaction (e.g.,
carbon double bonds are not allowed), a reasonable molecular weight, and an appropriate boiling
point in order to avoid azeotropes in solvent recovery distillation. The second screening step looks
at environmental, health, and safety (EHS) properties. This is important, because [49] identified
the developmentally toxic dimethylformamide (DMF) as the best performing catalyst solvent using
a systematic solvent screening approach. The current work expands upon the former screening
approach by including six EHS criteria in order to identify an environmentally more benign solvent to
replace DMF. The evaluated EHS properties are persistence, bioaccumulation, toxicity, carcinogenicity,
mutagenicity, and developmental toxicity. QSPR models published in VEGA [50] and EPISuite [51]
are used to predict these properties for the candidate solvents. All solvent candidates, which are
considered hazardous with respect to these properties, are rejected, and those remaining are considered
to be environmental friendly. This list of candidates is also augmented by green solvents identified in
the literature [52] in order to validate the screening.

Then, the thermodynamic performance of each of the green solvent candidates is evaluated.
The relative solubility is a measure for the solvent’s ability to extract the catalyst, and potential
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solvents were rejected if their relative solubility is below a certain threshold. Finally, the quality of the
miscibility gap is investigated at separation conditions (T = 25 ◦C) using n-decane as the non-polar
solvent, as done in [49]. The ternary liquid–liquid equilibrium (LLE) for the system composed of
the two solvents and the product n-undecanal were then predicted. Systems with less than one LLE
point were excluded. In order to guarantee desirable TMS phase behavior, the miscibility gap between
the solvents and the reactant 1-decene was calculated at the reaction temperature of 100◦C as a final
screening step. All systems showing a heterogeneous phase domain are removed.

As a result, three potential polar solvents were identified. Two could be purchased commercially
and their LLE behaviors and reaction feasibility were investigated experimentally. Both candidates,
dimethyl succinate (DSUC) and tetrahydro-4H-pyran-4-one (THPO), performed successfully as
reaction solvents and showed the desired phase behavior. The systematic process-wide comparison of
both candidates and the state of the art solvent DMF are now investigated for separation.

2.2. Process Model

The flowsheet of the considered process is shown in Figure 1 and can be roughly split into three
parts: The reactor, the decanter cascade, and the black-box representing additional process parts. These
parts will be presented in the following. The chemical species involved in the considered process can
be found in Table 1.

Table 1. Chemical species. Species highlighted in grey are explicitly modeled in the reactor only and

lumped otherwise. Only one of the solvents highlighted in green is present at any given time.

Index Name Purpose Produced by

C10en n-decene reactant
iC10en iso-decene side product isomerisation of n-decene (reversible)
C11al n-undecanal desired product hydroformylation of n-decene (irreversible)
iC11al iso-undecanal side product hydroformylation of iso-decene (irreversible)
C12an n-dodecane non-polar solvent
DMF dimethylformamide polar solvent
DSUC dimethyl succinate polar solvent
THPO tetrahydropyranone polar solvent
C10an n-decane side product hydrogenation of n-/iso-decene (irreversible)
RHO rhodium catalyst
BIP biphephos ligand
H2 hydrogen reactant
CO carbon monoxide reactant
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Figure 1. Process flowsheet.

2.2.1. Reactor

The reactor model is taken from [32,33]. The model describes a hydroformylation reaction in a
continuous stirred tank reactor. CO and H2 are provided to the homogeneous liquid reaction phase
from a second, gaseous phase in the reactor. Other reactants and additives are provided in liquid
form. Deviating from the aforementioned publications, we only consider the stationary case, and the
equilibrium between the liquid and the gas phase is described by an artificial neural network (ANN)
trained on the PC-SAFT equation of state [34]. The activation function of the ANN, a hyperbolic
tangent, is replaced by a piecewise linear approximation [34]. Furthermore, the chemical species are
different. The chain length of the olefin compared to the previous work is reduced by 2 and the new
solvents are introduced. A list of all species involved in the reaction can be found in Table 1. However,
the original reaction kinetics were used because the deviations due to the different chain lengths are
small and the influence of the polar solvent on the reaction is negligible [49].

The mass balance is defined as

Fout
reac,i = Fin

reac,i + VreacccatMcat ∑
j∈RCT

νi,jrj, (1)

Fin
reac,i = Zi + F¬C11al

product,i(1−v) + Frecycle,i, (2)

where ccat is the active catalyst concentration inside the reactor, Mcat is the molar mass of the catalyst,
ν and r are the stoichiometric coefficients and reaction rates, respectively, for the eight reactions, RCT,
taking place. The general form of the reaction rates r of all eight reactions in the reactor is given by

rj = k j ·
(

∏
i

(
c

νj,i
i

))
·
(

1 + ∑
i

(
Ki,1 · cKi,2

i

))−1

. (3)

The reaction rate constants k are calculated using Arrhenius law and the parameters K are taken
from the literature and can be found in [33]. To calculate the concentration of the active catalyst ccat the
following equation is used

ccat =
ccat,tot

1 + Kcat,1 · cKcat,2
CO

, (4)
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where ccat,tot is the total catalyst concentration.
The reactor inlet Fin

reac is composed of three elements. The first of these is the feed stream, Z,
which contains the make-up streams for the catalyst, the solvents, and the reactants. The second is the
recycle stream, Frecycle, coming from the decanter cascade, which recycles the polar solvent (thereby
the catalyst), unused reactants, and some of the products. The final stream is the recycle coming from
the black box, F¬C11al

product, minus the purged stream.

2.2.2. Downstream Processing

The reactor outlet, Fout
reac, is fed into the downstream section consisting of four decanters and a

distillation column.
The distillation column is required to recover the extraction solvent. It is assumed to be operated

at a pressure of 60 mbar, with a linear pressure drop of 30 mbar along the column. The requirement
of the column is that it recovers all of the circulated extraction solvent F(psol) at the top. Instead
of a rigorous distillation column model, a separately calculated surrogate function is employed for
each investigated polar solvent psol. The procedure to obtain the surrogate function can be split into
two parts.

First, the relative volatilities α are calculated. An ensemble of 810 distillation columns with
a different number of stages, reflux, and reboil ratios were simulated. Each distillation column is
assumed to have constant molar flows, a constant molar overflow, and a total condenser. Furthermore,
each is assumed to behave ideally, thus the gas phase is described by Dalton’s law Pvap = χ · P and
the liquid phase is described by Raoult’s law Pvap = Υ · P∗vap, where χ and Υ are the liquid and vapor
mole fractions, respectively. For the calculation of the vapor pressures the vapor pressure correlation

log10

(
P∗vap

)
= a0 + a1 · T−1 + a2 · log10(T) + a3 · T + a4 · T2 (5)

is used, with T in K and P∗vap in mmHg. The parameters ai can be found in Table A1. Using these
810 simulations, mean temperatures for the top of the column, T̄D, and the bottom of the column,
T̄B, can be calculated. These mean temperatures are used to calculate the relative volatilities using
Equation (5) and

αi =

√√√√ P̄∗vap,B,i

P̄∗vap,B,HK
·

P̄∗vap,D,i

P̄∗vap,D,HK
, (6)

where HK denotes the highest boiling component, i.e., C11al. The obtained values for α can be found
in Table A3.

The optimal costs for the distillation are calculated using the constant α. Global optimizations
using BARON [53], with a Fenske–Underwood–Gilliland (FUG) shortcut model [54], were conducted
with 1000 varied feeds for each solvent. For these global optimizations the constraints are as follows:

• DMF: 99% purity of DMF in the distillate
• DSUC: 99% purity of DSUC + C10en in the distillate
• THPO: 99% purity of THPO in the distillate

The varied purity requirements for the different polar solvent candidates are necessary because of
their different separation properties. These properties will be explained later.

The total annualized costs (TAC) in $/a for the distillation column are calculated with a lumped
cost function [55]

Jcol = κ1 ·Vcol + κ2 · (lcol + κ3)
κ4 · (Vcol · κ5)

κ6 + κ7 · (lcol + κ8)
κ9 · (Vcol · κ10)

κ11 , (7)

using the parameters from Table A2, where Vcol is the vapor flow rate and lcol is the length of
the column.
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The values of Jcol are used for a polynomial regression of the costs with respect to the circulated
extraction solvent stream F(psol) and the recovery rate rec = F(psol)/Fin

col,psol ,

TACcol = λpsol,1 + λpsol,2 · F(psol) + λpsol,3 · rec + λpsol,4 ·
(

F(psol)
)2

+ λpsol,5 · rec2, (8)

with parameters λ given in Table A2. Equation (8) is used as a surrogate for the distillation column.
The number of decanters is chosen because it was cost optimal in a previous study [56]. Following

the results of [56] once again, the decanters are operated at a fixed temperature of 298.15 K. The decrease
in temperature compared to the reaction conditions leads to a liquid–liquid phase split. The mass
balances are defined as follows,

Fin
dec,n =





V2 + Fout,D
col , for n = 1,

Ln−1 + Vn+1, for 1 < n < nmax,
Fout

reac, for n = nmax,
(9)

where the decanters are numbered from right to left, i.e., [nmax, . . . , 1]. The upper outlet of the decanters
V is the less polar, product-rich phase with composition y and the lower outlet of the decanters L is
the more polar, catalyst-rich phase with composition x.

The boiling points of the three solvents vary, with DMF being the easiest to separate and DSUC
being the hardest to separate (see the relative volatilities α in Table A3). Therefore, the separation
properties of the three solvents regarding distillation vary. With DMF and THPO, it is possible to
solely recover the solvent in the distillate stream. With DSUC, C10en becomes the component with the
highest relative volatility. Therefore, we assume that all of the C10en contained in the column feed will
leave through the distillate.

Because the components contained in the distillate flow differ depending on the separation
properties of the solvents, the value of Fout,D

col,i needs to be calculated as

Fout,D
col,i = β

(psol)
i Fin

col,i, (10)

because the column itself is replaced by the aforementioned surrogate function in Equation (8). Here,
β(psol) is introduced as a vector of split factors for (psol, C12an, C10en, C11al, cat) to capture the
different separation behaviors of the mixture with the respective solvent:

β(DMF) = (ςpsol , 0, 0, 0, 0), (11)

β(DSUC) = (ςpsol , 0, 1, 0, 0), (12)

β(THPO) = (ςpsol , 0, 0, 0, 0). (13)

Here, ςpsol is used to make sure that only the circulated extraction solvent stream F(psol) leaves
the distillation column through the distillate.

Note that the fourth and the third decanter are only connected through the less polar flow of
the fourth decanter. By doing this, the extraction solvent stream of the cascade bypasses the fourth
decanter, allowing for an additional degree of freedom. The molar flow entering the column, Fin

col,
is composed of the more polar phase of the third decanter, Fin

col,2 = L3, and a fraction of the more polar
phase of the fourth decanter, Fin

col,1 = L4,

Fin
col = L4(1− ς) + L3. (14)

That fraction is determined by the split factor ς ∈ [0, 1]. A large split factor leads to a smaller flow
into the column. However, the composition of the mixture at the bottom of the column, and hence
the temperature, also depends on the split factor. The literature suggests that the aldehyde will
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react with itself to the unwanted side product aldol at temperatures above 403.15 K [57]. Therefore,
the temperature at the bottom of the column is restricted to 388.15 K, the same temperature as inside
the reactor, which should be safe. The split factor ς can be used by the optimizer to achieve this
temperature.

The catalyst inside the decanter cascade is described by the catalyst mass balance

Fout
reac,cat = Lcat

nmax + Lcat
nmax−1

+ Vcat
1 , (15)

where Lcat is the catalyst in the more polar phase and Vcat is the catalyst in the less polar phase. The
partitioning of the catalyst between the two phases is calculated with

log10 Pyx,n = log10

(
Vcat

n Ln

VnLcat
n

)
, (16)

where log10 Pyx,n is the logarithmic partition coefficient for stage n.
The activity coefficients γ for the LLE are described by a modified UNIFAC (Dortmund) [58]

implementation. The corresponding LLE conditions,

xiγ
(I)
i − yiγ

(I I)
i = 0, (17)

are solved with a residuum less than 1 × 10−9. For each of the LLE points, the partition coefficients Pyx

for the catalyst/ligand is calculated with COSMOtherm [47], because the size of the catalyst/ligand
complex prohibits the use of group contribution methods such as UNIFAC [59]. To determine the
composition of the two liquid phases and the catalyst distribution, a surrogate model f̂ is employed,

[xi,n, yi,n, log10 Pyx,n] = f̂ (t1,n, t2,n), (18)

where (t1,n, t2,n) ∈ [0, 1]2 is a parameterization of the binodal curve. To generate the input/output
data for fitting the surrogate model, a parameter continuation [60] in the orthogonal direction of the tie
lines of the LLE is used.

The surrogate has a two-dimensional input space and a nine-dimensional output space. It consists
of a second-degree polynomial and an ANN with a single hidden layer fit to the residuals of the
polynomial. The ANN is generated with the “train” command of MATLABs deep learning toolbox.
A more thorough description of the algorithm used to generate the surrogate is not the scope of
this article and can be found in another publication of the authors in the present special issue of
Processes [61].

A previous optimization study yielded that the catalyst recovery plays an important role for
the overall process cost [56]. Therefore, the accuracy of the employed surrogate with regard to the
partition coefficient Pyx is of high importance. The maximum errors of the three surrogate models for

log10 Pyx = f
Pyx
psol(t1, t2) at the sample points are:

δpsol = max
(

f
Pyx
psol(t1, t2)− f̂

Pyx
psol(t1, t2)

)
,

δpsol = min
(

f
Pyx
psol(t1, t2)− f̂

Pyx
psol(t1, t2)

)
,

δDMF = 0.001087, δDMF = −0.000684,
δDSUC = 0.000524, δDSUC = −0.001201,
δTHPO = 0.002302, δTHPO = −0.001656.

(19)

2.2.3. Black Box

The process considered in this work is the first step in an attempt to optimize the hydroformylation
simultaneously with a reductive amination (RA) step. In the RA the product of the hydroformylation
(C11al) and diethylamine are used to generate the corresponding amine, which is a valuable product
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used as a building block for agrochemical and pharmaceutical chemicals as well as surfactants,
coatings, and lubricants. Although we currently do not have a rigorous process model for the reductive
amination, the underlying conditions influencing the hydroformylation are known from the design
specifications for the reductive amination process. Therefore, it is modeled as a black box with some
simplifying assumptions. We assume that the aldehyde is separated from the other species in the cause
of the RA and that the other species are recycled to the hydroformylation process. The catalyst present
in the product stream is assumed to be lost during this separation process.

2.2.4. Overall Process

In order to connect the process parts described above efficiently, some further considerations had
to be taken into account.

Eleven species are necessary to describe the reactions and interactions inside the reactor, see
Table 1. Not every species important for the reaction plays a role in the extraction cascade. The
isomerized C10en and C11al can be seen to behave identically to their respective non-isomerized
counterparts during the extraction. Therefore, the isomerized and non-isomerized species are treated
as if they were a single species in the extraction, thereby reducing the number of species by two.
Furthermore, C10an and C12an can both be used as a non-polar solvent for the extraction, and are
therefore combined into one non-polar solvent stream assumed to behave like C12an since the amount
of C12an is clearly higher. Furthermore, it is also assumed that only the liquid phase of the reactor goes
into the extraction cascade. With these assumptions, the number of species in the extraction cascade
can be reduced to five. The reactor outlet Fout

reac then consists of the following species,

Fout
reac =




psol
C12an
C10en
C11al

cat




, (20)

where psol ∈ [DMF, DSUC, THPO] is one of the investigated solvents and cat is the
catalyst/ligand complex.

To keep the whole model consistent, the ratios of the combined species in the extraction cascade
are assumed to be identical for the reactor outlet and the recycle streams, i.e., n-/iso-ratios and
C10an/C12an ratio.

2.3. Process Optimization

The process optimizations in this work are mixed integer nonlinear programs (MINLPs) of the
following form:

min
x̃

J(x̃),

s. t. h(x̃) = 0,
g(x̃) ≤ 0,
x̃ ∈ G, G ⊆ Rn,
x̃i ∈ Z, Z ⊆ Z, for all i ∈ I,

(21)

where J(x̃) is the objective function, h(x̃) are the equality constraints, such as mass balances, and g(x̃)
are the inequality constraints, such as purity requirements. The variables x̃ include the degrees of
freedom, of these variables x̃i with i ∈ I have to fulfill integrality restrictions.

The degrees of freedom are the feed flows Z of the reactant, the catalyst, and the solvents,
the hold-up time in the reactor, characterized by the reactor volume, Vreac ∈ [2.1853, 4000]m3,
the reactor temperature, Tr ∈ [368.15, 388.15]K, and pressure, Pr ∈ [10, 20] bar, the amount of
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extraction solvent used in the extraction cascade, F(psol) ∈ [7, 90]mol/s, the split factor ς ∈ [0, 1],
and the purge v ∈ [0.0001, 0.01]. Note, that the model would yield an NLP without the piecewise
linear approximation of the activation function of the ANN describing the gas solubility in the
reactor. This model reformulation yields an MINLP but is beneficial for reducing the computational
burden [34].

Besides the mass balances, there is the overall process requirement of a product yield of 2 mol/s
C11al, which roughly translates into 6500 metric tons of product per year.

The objective function is defined as

J = TACdec + TACcol + TACcat + TACreac, (22)

TACdec = θ1 ∑
n

∑
i

(
ηi Fin

dec,n,i

)θ2
, (23)

TACcol = λpsol,1 + λpsol,2 · F(psol) + λpsol,3 · rec + λpsol,4 ·
(

F(psol)
)2

+ λpsol,5 · rec2, (24)

TACcat = θ3 Vcat
1 , (25)

TACreac = θ4 mcat + θ5 Vθ6
reac + θ7

(
∑

i
θ8,i Zi − 2 θ8,C10en

)
, (26)

where Equation (23) describes the costs for the decanters [35], Equation (24) describes the costs for the
extraction solvent column, Equation (25) describes the costs for the catalyst make-up, and Equation (26)
describes the costs for the reactor [35], including the reactant stream and make-up streams for the
solvents. The parameters θ, η, and λ can be found in Table A2.

The process optimizations are implemented as MINLPs and solved using the GAMS 26.1.0
framework with the multi-start heuristic of the deterministic global optimization software BARON
18.11.12., Cplex 12.8.0 is used as an LP/MIP subsolver, and CONOPT 4.09 is utilized as an NLP
subsolver. The calculations are carried out on a Linux PC with 3.40 GHz Intel Core i7-6700 CPU and
16 GB memory.

3. Results

3.1. Process Optimization for each Candidate Solvent

This section will present the process optimization results for each of the solvent candidates.
The results were obtained by an optimization using BARONs multi-start heuristic with
140,000 starting points.

Some important molar flow rates can be found in Figure 2. For each of the three solvent candidates,
a simplified version of the flowsheet is depicted. The highlighted boxes containing the molar flow
rates point to the respective points in the flowsheet where these values are obtained. Additionally, the
degrees of freedom missing from Figure 2 can be found in Table 2.
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Figure 2. Molar flows in mol/s at important process locations for each investigated solvent.
The order is, from left to right, N,N-dimethylformamide (DMF), dimethyl succinate (DSUC), and
tetrahydro-4H-pyran-4-one (THPO). In the reactor (upper half of the diagram) the species are (nC10en,
iC10en, nC11al, iC11al, C10an, psol, C12an, RHO+BIP). In the extraction cascade (lower half of the
diagram) the species are (psol, C12an, C10en, C11al, RHO+BIP).

Table 2. Optimization results.

Reactor Recycle Extraction Cascade Overall Process
Polar Solvent Volume Pressure Temperature Purge Split Factor Costs

psol Vreac (m3) Pr (bar) Tr (K) v (-) ς (-) TAC ($/a)

DMF 273.3775 20 388.15 0.0013 0 1,934,522 (100 %)
DSUC 3458.1775 20 388.15 0.0018 0 6,154,228 (+218 %)
THPO 203.8447 20 388.15 0.0015 0 1,748,021 (−9.64 %)

3.1.1. Dimethylformamide (DMF)

The first of the three solvent candidates is the benchmark, DMF. It is well known to be ideally
suitable for TMS in conjunction with an alkane. The catalyst recovery of 99.99992% in the extraction
cascade is very good, therefore the catalyst concentration in the reactor can be high. A high catalyst
concentration leads to faster reaction rates and thus the residence time can be low. The main parameter
for the residence time is the reactor volume, Vreac, which can be relatively small and with that the
investment costs for the reactor are reduced. For the same reason, the reactor pressure, Pr, and
temperature, Tr, are set to their maximum values to achieve fast reaction rates.
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The extraction solvent stream in the extraction cascade can be relatively small because DMF has
good selectivity for the catalyst. The split factor, ς, is set to zero, meaning that all of the stream that
could be bypassed directly into the recycle, Fin

col,1, is let into the column. The first reason is that Fin
col,2,DMF

is close to the value of the circulated extraction solvent stream F(DMF). Therefore, there would be only
a little of the polar solvent left at the bottom of the distillation column, leading to a temperature that
would be too high, and the distillation would be quite expensive because of the high recovery rate.
The second reason is that Fin

col,1 is composed of 92.91% DMF and the combined flow is composed of
92.97% DMF, which is quite close to the purity requirement at the top of the column. Therefore, the
recovery rate of the polar solvent at the top of the column becomes smaller and the column becomes
cheaper, though its diameter has to be a little larger because of the increased input stream.

A small fraction of the recycled product stream, v, needs to be purged. The purge is the only sink
for the side product C10an. Therefore, the purge is necessary, although it is quite expensive because
of the purged reactant and solvents. The purged solvents need to be reintroduced through the feed
stream, together with the amount of catalyst lost in the product stream and the necessary reactant.

The total annualized costs are 1,934,522 $/a.
We assume that the real value for the partition coefficient Pyx,DMF lies within the interval [ f̂ (t1, t2)+

δDMF, f̂ (t1, t2) + δDMF]. To account for the surrogate model errors listed in Equation (19), an additional
optimization with Pyx = f̂ (t1, t2)+ δ is conducted for each solvent candidate. By adding the maximum
error at the sampling points of the surrogate, the catalyst distribution changes and more catalyst will
be lost. The worst case annualized costs with regard to the approximation quality of the surrogate are
1,939,897 $/a.

3.1.2. Dimethyl Succinate (DSUC)

The catalyst recovery of 99.9972% in the extraction cascade achieved with DSUC is smaller than
in the previous benchmark case. Therefore, the catalyst concentration has to be smaller in the reactor
and consequently, the residence time has to be larger. The reactor volume has to be 12.6 times the size
of the benchmark case, and the investment costs for the reactor are also higher. The reactor pressure,
Pr, and temperature, Tr, are set to their maximum values to achieve fast reaction rates.

The extraction solvent stream has to be 1.75 times that of the benchmark case since DSUC is not
as selective with regard to the catalyst as DMF is. Therefore, the distillation column and the decanters
have to be larger, increasing the investment costs. Furthermore, the operating costs for the distillation
column are increased because more solvent needs to be vaporized. In contrast to the benchmark
case, Fin

col,1 only contains 80.54% DSUC. However, if both streams, Fin
col,1 and Fin

col,2, are summed up the
percentage of DSUC remains constant and the overall flux is larger, which reduces the costs due to
the reduced recovery rate. Note, that the distillate is now composed of the extraction solvent and the
C10en entering the column.

Again, a small fraction of the recycled product stream needs to be purged to remove C10an.
In this test case, the overall molar flow rates are higher than in the previous benchmark case. DSUC
drags more of the product, C11al, into the recycle. Therefore, to achieve the required amount of C11al
in the product flow, the inlet flow of C11al into the extraction cascade needs to be doubled compared
to the benchmark case. Furthermore, more solvent is necessary due to the fixed ratio of solvents to the
other species in the reactor. Additionally, as there is more of the reactant in the reactor, more of the
side products are generated. Consequently, the purge needs to be larger.

The total annualized costs are 6,154,228 $/a, 3.18 times the costs of the benchmark case.
The worst case annualized costs with regard to the approximation quality of the surrogate are

6,177,063 $/a.

3.1.3. Tetrahydropyranone (THPO)

The catalyst recovery in the extraction cascade is 99.99993% and thus even better than in the
benchmark case. For that reason, the catalyst concentration in the reactor can be higher and therefore
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the reactor volume can be smaller. Again, the reactor pressure, Pr, and temperature, Tr, are set to their
maximum values to achieve fast reaction rates.

The extraction solvent stream is a bit smaller than that of the benchmark case. Because the
composition of Fin

col,1 is also similar to that of the benchmark case, the same choice of the split factor is
used by the optimizer and the entire stream is fed to the column to make the distillation cheaper.

The purge that removes the side-product C10an is a little larger than in the benchmark case.
Interestingly, the total annualized costs for the process with THPO as polar solvent are

1,748,021 $/a, 0.9036 times the costs of the benchmark. This is mainly due to the increased catalyst
recovery. The catalyst make-up is the most expensive part of the whole process.

The worst case annualized costs with regard to the approximation quality of the surrogate are
1,758,083 $/a.

4. Conclusions

In this work, an approach for an integrated process and solvent design was presented. In our
approach, unsuitable solvent candidates from known databases are eliminated during a screening
procedure and a rigorous process optimization is conducted for the remaining solvent candidates.

DSUC and THPO have been identified by the screening procedure as ecologically benign solvent
candidates for a hydroformylation process employing a TMS. They have been compared with the well
known and developmental toxic benchmark solvent DMF.

The optimization results show that the selectivity of the solvent with respect to the catalyst and
the product is of high importance. DSUC has a low selectivity for the catalyst and thus its use leads to
an increased catalyst loss. This catalyst loss is compensated by the optimizer with a lower catalyst
concentration in the reactor and thus a higher residence time. Furthermore, DSUC dissolves much of
the product, leading to a high product recycle and consequently to higher overall fluxes and larger
facilities. This renders DSUC unsuitable because of the greatly increased costs.

On the other hand, THPO has shown that it can recover the catalyst even better than DMF under
the assumed operating conditions. Though it is slightly harder to separate from the other species by
distillation than DMF, the use of THPO reduces the total annualized costs by 9.64%. This leads to the
conclusion that the ability of the polar solvent to recover the catalyst while leaving the product in the
less polar phase is of utmost importance.

Though the small savings lie within the economic uncertainties of the objective function, we have
shown that a process with a well-established toxic solvent can be replaced by a process with an
ecologically benign solvent with similar costs. A quantitative evaluation also depends on model
accuracy, in particular the accuracy of the partition coefficient of the catalyst in the different solvent
systems. In any case, experimental validation is necessary and will be part of future work.

Our present work was limited to already known solvent candidates from databases. To overcome
this limitation, further research will be concerned with computer-aided molecular design approaches
in conjunction with process optimization.
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Nomenclature

Vector-valued:
ai vapor pressure parameters
α relative volatilities
T̄ mean temperature
χ liquid mole fraction
γ vector of activity coefficients
κ cost function parameters
λ column cost parameters
ν stoichiometric coefficients
Υ vapor mole fraction
c concentration
F molar flow rate
g inequality constraints
h equality constraints
K reaction rate parameters
k reaction rate constants
L molar flow rate, phase I
Pvap vapor pressure
r reaction rates
V molar flow rate, phase II
x liquid composition, phase I
y liquid composition, phase II
Z molar feed flow rate

Real-valued:
v purge fraction
ς split fraction
i, n count variable
J(x) objective function
lcol column length
P pressure
psol polar solvent
T temperature
TAC total annualized cost
Vcol vapor flow rate, column
Vreac reactor volume

Abbreviations:
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ANN Artificial Neural Network
CAMD Computer-Aided Molecular Design
COSMO-RS Continuum Solvation Model for Realistic Solvents
DMF Dimethylformamide
DSUC Dimethylsuccinate
EHS Environment, health, and safety
EOS Equation Of State
FUG Fenske–Underwood–Gilliland
InPROMPT Integrated chemical processes in liquid multiphase system
LLE Liquid–Liquid Equilibrium
MINLP Mixed-Integer Non-Linear Program
MOO Multi-Objective Optimization
PC-SAFT Perturbed-Chain Statistical Associating Fluid Theory
RA Reductive Amination
SVHC Substance of Very High Concern
THPO Tetrahydropyranone
TMS Thermomorphic Multiphase System
UNIFAC Universal Quasichemical Functional Group Activity Coefficients

Appendix A

This appendix includes thermodynamic and physical species data, as well as cost
function parameters.

Table A1. Vapor pressure parameters (10a0+a1T−1+a2 log10(T)+a3T+a4T2
) [mmHg]. Vapor pressure

correlations for DSUC and THPO are fitted with the method presented in [62], the other values
are taken from [63].

a0 a1 a2 a3 a4

DMF −47.9857 −2.385× 103 28.8 −5.8596× 10−2 3.1386× 10−5

DSUC 117.8014 −6.3944× 103 −42.5731 3.0869× 10−2 −9.2995× 10−6

THPO 74.2227 −4.2846× 103 −25.9627 1.8373× 10−2 −5.4143× 10−6

C10en 2.2678 −3.12× 103 5.43 −2.01× 10−2 1.12× 10−5

C12an −8.5899 −3.5241× 103 10.806 −2.8161× 10−2 1.4267× 10−5

C11al −31.8129 −3.14× 103 20.4 −3.73× 10−2 1.75× 10−5
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Table A2. Cost function parameters for each investigated solvent.

Parameter DMF DSUC THPO

κ1 17, 764 15,071 17,783
κ2 2463.6 2988.6 2202.3
κ3 7.2 7.2 7.2
κ4 0.81 0.81 0.81
κ5 1 1 1
κ6 0.525 0.525 0.525
κ7 155.4357 202.9541 133.1394
κ8 −0.8 −0.8 −0.8
κ9 0.97 0.97 0.97
κ10 1 1 1
κ11 0.725 0.725 0.725

λ1 64,191 168,833 51,628
λ2 20,638 19,656 20,695
λ3 −56,984 −182,134 −53,368
λ4 −9.6219 −4.2671 −12.5046
λ5 98,841 439,840 71,678

ηC10en 0.210 41× 10−3 0.210 41× 10−3 0.210 41× 10−3

ηpsol 0.079 15× 10−3 0.123 95× 10−3 0.084 91× 10−3

ηC12an 0.233 642× 10−3 0.233 642× 10−3 0.233 642× 10−3

ηC11al 0.195 184× 10−3 0.195 184× 10−3 0.195 184× 10−3

θ1 504,155 504,155 504,155
θ2 0.586667 0.586667 0.586667
θ3 2.9661× 1012 2.9661× 1012 2.9661× 1012

θ4 85,150 85,150 85,150
θ5 17,248.42 17,248.42 17,248.42
θ6 0.62 0.62 0.62
θ7 2.8512× 107 2.8512× 107 2.8512× 107

θ8,C10en 0.661 0.661 0.661
θ8,psol 0.0731 0.0731 0.0731
θ8,C12an 0.0714 0.0714 0.0714

Table A3. Relative volatilities.

αDMF αDMS αT HPO

DMF 31.9942 [-] [-]
DMS [-] 4.0208 [-]
THPO [-] [-] 22.4438
C12an 3.1307 2.7766 3.0696
C10en 16.8669 11.7308 15.8739
C11al 1 1 1
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