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Abstract: Psoriasis is an inflammatory skin disease characterized by the presence of whitish and
scaly plaques, which can cover up to 90% of the body surface. These plaques result from the
hyperproliferation and abnormal differentiation of keratinocytes. Dermopharmaceutical testing of
new therapies is limited by healthy and pathological skin models, which are not closely enough
mimicking their in vivo counterparts. In this study, we exploited percutaneous absorption and Ultra
Performance Liquid Chromatography (UPLC) analyses in order to determine the metabolic capacity
of our psoriatic skin model. Skin substitutes were reconstructed according to the self-assembly
method and tested regarding their percutaneous absorption of a topical formulation of tazarotene,
followed by UPLC analyses. Histological and immunofluorescence analyses confirmed both the
healthy and psoriatic phenotypes. Results from percutaneous absorption showed a significant level
of tazarotene metabolite (tazarotenic acid) when the formulation was applied over 24 h on the skin
substitutes. The presence of tazarotenic acid in the dermis and the epidermis of healthy and psoriatic
skin substitutes confirms the metabolic capacity of both skin models, and thereby their ability to
screen new molecules with antipsoriatic potential. In conclusion, the present data suggest that our
psoriatic skin model could possibly be used in clinic to screen in vitro responses of patient to a panel
of drugs without having them experiencing the drawback of each drug.
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1. Introduction

Psoriasis is a chronic inflammatory disease which affects 2 to 3% of the world population, both
men and women [1]. It is characterized by the presence of whitish and scaly plaques that can be
found on every body part [2]. Those plaques are the result of the abnormal differentiation and
hyperproliferation of keratinocytes, which leads to a thicker epidermis (acanthosis) [3–5]. Psoriasis
is also characterized by the infiltration of immune cells, increased angiogenesis, and the retention
of nuclei by corneocytes (parakeratosis) [6,7]. In this pathology many genes have their expression
modified, including differentiation, proliferation, and inflammation markers. Myeloid-related protein
8 (MRP8), involucrin, filaggrin, keratins, and transcription factor activator protein 1 (AP-1) are all
examples of proteins whose gene expression is altered [8]. It is known that psoriasis is a multifactorial
disease including genetic susceptibility and environmental factors, but the cause of psoriasis still
remains unknown [9,10].
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Since the etiology of psoriasis remains largely unknown, and patients develop various
manifestations of the disease, from light and small to deep and large plaques with different
characteristics, the treatment of this disease remains highly empirical. Indeed, psoriasis has no
known curative treatment; therapy aims to reduce symptoms and improve quality of life. The choice
of treatment for psoriasis depends on many factors, including the extent of the disease, its effect
on a patient’s life, and the patient’s perception of his illness [6]. In a population-based survey of
3426 patients and 781 physicians in North America and Europe, 46% of patients agreed that using
currently available therapies for psoriasis and psoriatic arthritis can be worse than the condition itself,
and 85% felt that there is a need for better therapies [11]. Difficulties in prescribing the best treatment
for psoriasis patients are a major concern since a lot of inter-individual variability is observed and
therefore patients respond very differently to the large panel of available drugs [12].

Among the molecules currently used to treat psoriasis, retinoids present good effectiveness mainly
if they are used in combination with corticosteroids [13]. Tazarotene is an acetylenic retinoid with a low
systemic bioavailability, which is used in cream or gel forms as a topical treatment [14]. Tazarotene is
hydrolyzed into tazarotenic acid by an esterase produced by keratinocytes (Figure 1) [15,16]. Once
tazarotenic acid is metabolized, it specifically binds retinoic acid receptors (RARs) RAR-β and RAR-γ
and then forms homodimers and heterodimers (RAR-RAR). Once the complex is formed, it can
regulate the expression of tumor suppressors, tazarotene-induced genes, or form a complex with
AP-1 to normalize the expression of differentiation and proliferation markers [17–19]. Even if it has
a lower toxicity than most other retinoids, some adverse effects can be observed, such as irritation and
burns [16].
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Figure 1. Tazarotene metabolization into tazarotenic acid.

Nowadays, restrictions on and security concerns about the use of humans and animals in
cosmetic and pharmaceutical research necessitate the development of other models such as in vitro
skin substitutes. The substitutes reconstructed in our laboratory according to the self-assembly method
are free of exogenous materials. Moreover, they can be easily adapted for the reconstruction of skin
substitutes having many of the features of a psoriatic skin phenotype. However, there is almost no
information on the skin substitute metabolism. More detailed knowledge of this metabolism could
help researchers to ensure that psoriatic skin substitutes represent a good model for molecule screening
and open the door to more personalized medicine.

In this study, the objective was to characterize the psoriatic skin substitutes’ metabolism of
tazarotene. Three types of samples, normal human skin (NHS), healthy substitutes (HS), and psoriatic
substitutes (PS), were tested to compare their permeability and structures. The percutaneous absorption
method was used to determine the metabolic capacity and UPLC was used to quantify the amount of
tazarotene and its metabolite (tazarotenic acid) found in each layer of the samples.

2. Materials and Methods

2.1. Patients

This study was conducted in agreement with the Helsinki Declaration and performed under the
guidelines of the research ethics committee of the “Centre hospitalier universitaire de Québec” (ethic
code: DR-002-1121 protocol renewal approved on 30 January 2019). All patients were given adequate
information to provide written consent. The subjects were Caucasian males and females aged between
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22 and 64 years old from our cell bank (cell populations: 22, 38, and 46 years old (healthy) and 47, 49,
and 64 years old (psoriatic)). Biopsies used as controls were obtained from breast lift surgeries. Subjects
were Caucasian females aged between 31 and 41 (healthy skin biopsies: 31, 38, 39, and 41 years old).

2.2. Cell Culture Media

Fibroblasts were cultured in the Dulbecco-Vogt modification of Eagle’s medium (DMEM)
supplemented with 10% fetal calf serum (Invitrogen, Burlington, ON, Canada), 100 UI/ml penicillin
(Sigma Chemicals, St-Louis, MO, USA), and 25 µg/mL gentamicin (Schering, Pointe-Claire, QC,
Canada). Keratinocytes were cultured in a combination of DMEM with Ham’s F12 (3:1) supplemented
with 5% Fetal Clone II serum (Hyclone, Scarborough, ON, Canada), 5 µg/mL insulin (Sigma), 0.4 µg/mL
hydrocortisone (Cedarlane, Hornby, ON, Canada), 10−10 M cholera toxin (ICN Biochemical, Montréal,
QC, Canada), 10 ng/mL human epidermal growth factor (EGF) (Austral Biological, San Ramon, CA,
USA), 100 UI/mL penicillin (Sigma), and 25 µg/mL gentamicin (Schering).

2.3. Cell Culture

Keratinocytes were extracted from skin biopsies using the isolation method with thermolysin
and trypsin [20]. Keratinocytes (passage one) were seeded at 8 × 103 cells/cm2 on a feeder layer of
irradiated 3T3 mouse fibroblasts. Fibroblasts were extracted from skin biopsies using the isolation
method with thermolysin and collagenase [21]. They were seeded at 4 × 103 cells/cm2 and used at
passage six for skin substitute production. All cultures were incubated at 37 ◦C in an 8% CO2 air
atmosphere and changed three times a week with the media previously described in the cell culture
media section. Cells were frozen in liquid nitrogen until needed.

2.4. Production of Tissue-Engineered Substitutes

Skin substitutes were reconstructed according to the self-assembly method. Briefly, fibroblasts were
cultured in the presence of ascorbic acid at a concentration of 50 µg/mL (Sigma) to form manipulatable
sheets. After 28 days, dermal sheets were carefully detached from the flasks with curved forceps and
superimposed. After a week, the keratinocytes (passage two) were seeded on the dermal equivalent to
form a new epidermal layer. After seven days of cell proliferation, the substitutes were raised to the
air-liquid interface and cultured for 21 days. All culture media were changed three times a week.

2.5. Histological Analyses

Three skin substitute biopsies of each cell population were fixed in HistoChoice® solution and
embedded in paraffin wax. Five-micrometer-thick sections were cut and stained with Masson’s
trichrome. From the histological analyses, the living epidermal thickness was measured using ImageJ
software. Five measurements in three different sections of each biopsy were made.

2.6. Immunofluorescence Analyses

After 21 days of culture at the air–liquid interface, biopsies were taken and the samples were
embedded in Tissue-Tek O.C.T. compound (Somagen Diagnostics Inc., Edmonton, AB, Canada) to be
stored at −80 ◦C until needed. Indirect immunofluorescence analyses were performed on acetone-fixed
cryosections (5-µm thick). Frozen sections of normal human skin were used as positive controls.
The following primary antibodies were used: rabbit anti-keratin 14 (IgG1) (dilution 1:1600, Cedarlane),
mouse anti-involucrin (IgG1) (dilution 1:800; Sigma), and mouse monoclonal (IgG1) anti-human
filaggrin (dilution 1:800; BTI, Stoughton, MA, USA). Then, tissues were incubated with Alexa 594 goat
anti-mouse IgG (H + L) (dilution 1:400; Molecular Probes, Eugene, OR, USA) or Alexa 488 donkey
anti-rabbit IgG (H + L) (dilution 1:1000, Molecular Probes). The nuclei were labeled with Hoechst
reagent 33258 (dilution 1:100; Sigma) and added to the secondary antibody solution. Twenty fields of
each combination were counted (magnification 40).
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2.7. Percutaneous Absorption

Percutaneous absorption was measured using the standard Franz diffusion cell apparatus as
described by Franz [22,23]. Briefly, samples (NHS, HS, or PS) were clamped tightly between the two
glass chambers of the diffusion cell (0.636 cm2). The receptor compartment was filled with medium
(Phosphate Buffer Saline [PBS] and ethanol [80/20; v/v]) and maintained at 37 ◦C with a heat block.
Ten mg of Tazorac® cream 0.1% (Allergen Inc., Markham, ON, Canada), corresponding to 10 µg of
tazarotene, were deposited on each skin. Receptor medium samples were taken at intervals (2, 4, 8,
and 24 h) with a 5 mL syringe lengthened by a catheter, and were conserved at room temperature until
needed. When the kinetic assay was finished, the skin surface was washed with a solution of methanol
(100%), which was collected for analysis. Then, the epidermis and the dermis were separated and
were put in a solution of methanol (100%). The samples were analyzed by ultra performance liquid
chromatography (Acquity UPLC H-Class System, Waters, Mississauga, ON, Canada) with a BEH C18
column (Waters, Mississauga, ON, Canada) using the fluorescence detector. The mobile phase was
methanol (100%) and NaH2PO4 at pH 2.5 with H4PO4 at a flow rate of 0.5 mL/min; the molecules were
detected at 359 nm and 505 nm. A calibration curve was used to quantify the amount of tazarotene
and tazarotenic acid that diffused through the skin.

2.8. Statistical Analyses

Data were expressed as mean± standard deviation (SD). Statistical analyses of the living epidermis
thickness were performed using an unpaired Student t-test. Percutaneous absorption results were
analyzed using two-way ANOVAs followed by Tukey’s post-hoc tests. Results were considered
significant when the p-value was less than 0.05. Statistical analyses were performed with GraphPad
Prism software version 8.1 (GraphPad Software Inc. San Diego, CA, USA).

3. Results

3.1. Morphology of the Psoriatic Skin Substitutes Produced by Tissue Engineering

Macroscopic analyses showed that HS (Figure 2a) had a regular aspect on the majority of the
sample surface, with a smooth and uniform aspect, suggesting a normal epidermal differentiation and
a normal distribution all over the surface. At the opposite, their psoriatic counterparts (Figure 2b)
showed a more irregular and scaly aspect, suggesting an abnormal epidermal differentiation and
proliferation. The distribution was very scattered as seen with psoriatic plaques in vivo.

Masson’s trichrome staining was performed to validate the skin phenotype. HS showed all the
normal skin layers with a well-defined stratum corneum (Figure 2c). Psoriatic substitutes showed
a thicker and less organized epidermis than the control (Figure 2d). The stratum corneum was
disorganized or even absent on most of them. Measures of the living epidermis thickness (Figure 2e)
confirmed that PS have a thicker epidermis than HS.

The pathological phenotype of psoriatic substitutes (Figure 3g–i), in contrast to NHS (Figure 3a–c)
and HS (Figure 3d–f), was confirmed by immunofluorescence staining of proteins altered in the
psoriasis differentiation process. Involucrin expression was mainly localized in the upper layers of
NHS and HS while it was found throughout the epidermis of PS (Figure 3a,d,g). In HS, filaggrin was
expressed in the granular layer with greater intensity compared to the PS (Figure 3e,h). The same
intensity was observed between NHS and HS (Figure 3b,e). The expression of keratin 14 appeared
predominantly in the basal layer of both NHS and HS and was overexpressed in the PS (Figure 3c,f,i).
All these results are in accordance with in vivo expression, showing a more disturbed epidermal
differentiation in PS than in HS, which is characteristic of the pathology [24–26].



Processes 2019, 7, 871 5 of 10

Processes 2019, 7, x FOR PEER REVIEW 5 of 11 

 

 
Figure 2. Macroscopic aspect of healthy substitutes (HS) (a) and psoriatic substitutes (PS) (b) as well 
as histological analyses of Masson’s trichrome staining of HS (c) and PS (d) and the living epidermis 
thickness measurements (e) of these skin substitutes. Scale bar: a,b = 1 cm; c,d = 200 μm. Fibroblasts 
and keratinocytes from four different healthy donors and four different psoriatic donors were used 
(n = three substitutes per donor). SC: Stratum corneum; E: Epidermis; and D: Dermis. Unpaired 
Student t-test, *p<0.05; **p<0.01. 

The pathological phenotype of psoriatic substitutes (Figure 3g–i), in contrast to NHS (Figure 3a–
c) and HS (Figure 3d–f), was confirmed by immunofluorescence staining of proteins altered in the 
psoriasis differentiation process. Involucrin expression was mainly localized in the upper layers of 
NHS and HS while it was found throughout the epidermis of PS (Figure 3a,d,g). In HS, filaggrin was 
expressed in the granular layer with greater intensity compared to the PS (Figure 3e,h). The same 
intensity was observed between NHS and HS (Figure 3b,e). The expression of keratin 14 appeared 
predominantly in the basal layer of both NHS and HS and was overexpressed in the PS (Figure 
3c,f,i). All these results are in accordance with in vivo expression, showing a more disturbed 
epidermal differentiation in PS than in HS, which is characteristic of the pathology [24–26]. 

Figure 2. Macroscopic aspect of healthy substitutes (HS) (a) and psoriatic substitutes (PS) (b) as well
as histological analyses of Masson’s trichrome staining of HS (c) and PS (d) and the living epidermis
thickness measurements (e) of these skin substitutes. Scale bar: a,b = 1 cm; c,d = 200 µm. Fibroblasts
and keratinocytes from four different healthy donors and four different psoriatic donors were used
(n = three substitutes per donor). SC: Stratum corneum; E: Epidermis; and D: Dermis. Unpaired
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keratinocytes were used to produce the skin substitutes (d–i). Dermo-epidermal junction is identified
by the dotted line. The nuclei were stained with Hoechst. (Scale bar = 200 µm).
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3.2. Percutaneous Absorption of Tazarotene

An average of 8.46 mg of Tazorac® 0.1% (8.46 µg of tazarotene) was deposited on the surface
of each sample and the receptor medium was collected at 2 h, 4 h, 8 h, and 24 h. It appeared that
more than 90% of the tazarotene was found in the wash samples of NHS and less than 1% was
metabolized (Figure 4a, b). In HS and PS, tazarotene was found in washes (HS = 25–47% and PS =

22–47%), epidermis (HS = 9–29% and PS = 6–27%), and dermis (HS = 4–9% and PS = 1–11%), showing
a considerable amount of tazarotene absorbed by the skin (Figure 4c,d). The tazarotenic acid was found
in epidermis (PS = 0.0015-0.0058 µg) and dermis (PS = 0.0063-0.0476 µg) (Figure 4e,f). Almost 1% of
the dose was metabolized as tazarotenic acid in both conditions. Results of percutaneous absorption
showed that no molecules reached the receptor compartment in these experimental conditions for all
skin samples.

Processes 2019, 7, x FOR PEER REVIEW 7 of 11 

 

 
Figure 4. Amount (%) of tazarotene and tazarotenic acid found in the receptor medium (DMEM 
without phenol red), epidermis, dermis, and wash after 24 h of percutaneous absorption. The 
metabolic capacity of normal human skin (a and b) was evaluated using skin samples of three donors 
while the metabolic capacity of healthy (HS, c and d) and psoriatic (PS, e and f) substitutes were 
evaluated on substitutes produced using cells of four donors. Donors are identified in legends by 
their sex (F: Female, M: Male) and age (n = six per donors). Two-way ANOVA followed by Tukey’s 
post-hoc test. *p<0.05. 

4. Discussion 

The need for innovative and effective tools to evaluate new dermopharmaceutical formulations 
is essential. The purpose of this project was to characterize the metabolic capacity of our unique in 
vitro screening platform in order to make it a suitable tool for dermopharmacological testing. Our 
expertise in skin tissue engineering allowed us to reconstruct a psoriatic skin model that can 
efficiently mimic the main aspects of the psoriasis phenotype. This study showed that this psoriatic 
skin model can also metabolize tazarotene. Our approach based on the development of a 
tissue-engineered skin made of patients’ own cells obtained from a small skin biopsy of a psoriatic 
plaque could be a promising tool for more personalized medicine. 

Macroscopic, histological, and immunofluorescence analyses (Figures 2 and 3) displayed a 
pathological skin phenotype. Histological analyses showed an increase in the living epidermis 
thickness in the psoriatic substitutes (Figure 2c–e), confirming acanthosis [27]. Moreover, early 
differentiation markers, such as involucrin and keratin 14, are overexpressed in pathologies 
presenting abnormal proliferation and differentiation processes, while late differentiation markers, 
such as filaggrin, are underexpressed [28,29]. Expression of these proteins is indeed deregulated 

Figure 4. Amount (%) of tazarotene and tazarotenic acid found in the receptor medium (DMEM
without phenol red), epidermis, dermis, and wash after 24 h of percutaneous absorption. The metabolic
capacity of normal human skin (a,b) was evaluated using skin samples of three donors while the
metabolic capacity of healthy (HS, c,d) and psoriatic (PS, e,f) substitutes were evaluated on substitutes
produced using cells of four donors. Donors are identified in legends by their sex (F: Female, M: Male)
and age (n = six per donors). Two-way ANOVA followed by Tukey’s post-hoc test. * p < 0.05.

4. Discussion

The need for innovative and effective tools to evaluate new dermopharmaceutical formulations is
essential. The purpose of this project was to characterize the metabolic capacity of our unique in vitro
screening platform in order to make it a suitable tool for dermopharmacological testing. Our expertise
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in skin tissue engineering allowed us to reconstruct a psoriatic skin model that can efficiently mimic
the main aspects of the psoriasis phenotype. This study showed that this psoriatic skin model can also
metabolize tazarotene. Our approach based on the development of a tissue-engineered skin made of
patients’ own cells obtained from a small skin biopsy of a psoriatic plaque could be a promising tool
for more personalized medicine.

Macroscopic, histological, and immunofluorescence analyses (Figures 2 and 3) displayed
a pathological skin phenotype. Histological analyses showed an increase in the living epidermis
thickness in the psoriatic substitutes (Figure 2c–e), confirming acanthosis [27]. Moreover, early
differentiation markers, such as involucrin and keratin 14, are overexpressed in pathologies presenting
abnormal proliferation and differentiation processes, while late differentiation markers, such as
filaggrin, are underexpressed [28,29]. Expression of these proteins is indeed deregulated compared to
NHS and HS controls (Figure 3). Psoriatic skin substitutes reconstructed according to the self-assembly
method presented these same features as seen in in vivo psoriasis, confirming their hyperproliferative
and accelerated differentiation characteristics (Figure 3) [27,30]. Acanthosis, parakeratosis, and
hyperproliferation are major psoriasis hallmarks. From these morphological features, a recent
review by Niehues et al. listed the best-validated models as well as the expression of genes and
key proteins [31]. Our psoriatic skin substitutes appear as the only one responding to these three
morphological characteristics among the models listed. Moreover, many of the models listed use
normal cells instead of pathological cells, highlighting further the effectiveness of our model. More
recently, we validated our model by gene expression analysis of the skin substitutes, which revealed
similar transcriptomic alterations to those found in psoriatic native skin [32].

The Franz diffusion cell system is recognized as an excellent tool for performing in vitro studies
on transdermal drug diffusion [33–35]. The metabolic activity of the reconstructed skin substitutes,
investigated by the detection of tazarotene biotransformation into tazarotenic acid, showed that
tazarotene can diffuse through the stratum corneum. In fact, a significant amount of the molecule
was found in the epidermis and the dermis of both healthy and psoriatic skin substitutes after 24 h.
The levels of tazarotene found in the skin substitutes seemed higher than levels in normal human
skin. It is well known that NHS have a better skin barrier than skin substitutes [36]. Presence of
tazarotenic acid in the epidermis and the dermis of healthy and psoriatic skin substitutes confirms the
metabolic capacity of both skin models (Figure 4). To our knowledge, this study is the first to report
such metabolic activity in tissue-engineered reconstructed skin models. These results are in accordance
with results obtained in vivo where levels similar to 1% of the tazarotene dose was also metabolized
into tazarotenic acid [37–39]. More tazarotene was found in the epidermis, while tazarotenic acid
was found predominantly in the dermis. Localization in the skin of the esterase responsible for the
tazarotene hydrolysis is controversial. Few studies suggest that esterases are only found in the living
epidermis [40], while other studies also found them in the stratum corneum [41,42]. Most research
on xenobiotic metabolization by esterases in human skin did not identify the esterase nature [43].
It is however known that serine-type esterases would be involved in blood and liver [44]. Therefore,
conversion of hydrophobic prodrug tazarotene into its more hydrophilic metabolite could allow the
tazarotenic acid to diffuse through the epidermis and then reach the dermis. In the present study,
no tazarotene was detected in the receptor compartment of any skin samples after a 24-hour experiment
under the experimental conditions (Figure 4).

Taken all together, these results have shown that skin substitutes reconstructed according to the
self-assembly method could have the capacity to metabolize a psoriasis treatment and would be an
efficient model to screen new antipsoriatic candidates. Studying the passage of substances through the
skin using a non-invasive method on tissues allows a better understanding of the antipsoriatic activity
of tested molecules. Furthermore, knowing the absorption rates and amounts of active ingredients and
metabolites that diffuse through the skin can contribute to the increased knowledge of formulations in
order to improve them. Moreover, this study showed promising avenues to overcome inter-individual
variability in response to different treatments, which is one of the main challenges when finding
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a suitable treatment for patients. In the present study, levels of tazarotenic acid were significantly
different between patients, showing different capacities to metabolize the drug in vitro. Therefore, our
skin model could be used in clinic to screen in vitro responses of patient to a panel of drugs without
having them experiencing the drawbacks of each drug.

In conclusion, this new in vitro model is a simple, rapid, easy-to-handle, and a cost-effective way
to study in vitro absorption and metabolization of radiolabeled or non-radiolabeled molecules. These
results indicate that our skin model can substitute for NHS in the selection of new drugs on the basis
of their metabolism, efficacy, and/or safety.
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