
Modern Modeling Paradigms Using Generalized Disjunctive Programming

Authors:

Qi Chen, Ignacio Grossmann

Date Submitted: 2019-12-16

Keywords: generalized disjunctive programming, mathematical programming, MINLP, process modeling, process design

Abstract:

Models involving decision variables in both discrete and continuous domain spaces are prevalent in process design. Generalized
Disjunctive Programming (GDP) has emerged as a modeling framework to explicitly represent the relationship between algebraic
descriptions and the logical structure of a design problem. However, fewer formulation examples exist for GDP compared to the
traditional Mixed-Integer Nonlinear Programming (MINLP) modeling approach. In this paper, we propose the use of GDP as a
modeling tool to organize model variants that arise due to characterization of different sections of an end-to-end process at different
detail levels. We present an illustrative case study to demonstrate GDP usage for the generation of model variants catered to process
synthesis integrated with purchasing and sales decisions in a techno-economic analysis. We also show how this GDP model can be
used as part of a hierarchical decomposition scheme. These examples demonstrate how GDP can serve as a useful model abstraction
layer for simplifying model development and upkeep, in addition to its traditional usage as a platform for advanced solution strategies.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2019.1635
Citation (this specific file, latest version): LAPSE:2019.1635-1
Citation (this specific file, this version): LAPSE:2019.1635-1v1

DOI of Published Version: https://doi.org/10.3390/pr7110839

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)

processes

Article

Modern Modeling Paradigms Using Generalized
Disjunctive Programming †

Qi Chen and Ignacio Grossmann *

Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
qichen@andrew.cmu.edu
* Correspondence: grossmann@cmu.edu; Tel.: +1-412-268-3642
† This paper is dedicated to the memory of Professor Roger Sargent, an intellectual leader in process

systems engineering.

Received: 14 October 2019; Accepted: 6 November 2019; Published: 10 November 2019
����������
�������

Abstract: Models involving decision variables in both discrete and continuous domain spaces are
prevalent in process design. Generalized Disjunctive Programming (GDP) has emerged as a modeling
framework to explicitly represent the relationship between algebraic descriptions and the logical
structure of a design problem. However, fewer formulation examples exist for GDP compared
to the traditional Mixed-Integer Nonlinear Programming (MINLP) modeling approach. In this
paper, we propose the use of GDP as a modeling tool to organize model variants that arise due to
characterization of different sections of an end-to-end process at different detail levels. We present
an illustrative case study to demonstrate GDP usage for the generation of model variants catered
to process synthesis integrated with purchasing and sales decisions in a techno-economic analysis.
We also show how this GDP model can be used as part of a hierarchical decomposition scheme.
These examples demonstrate how GDP can serve as a useful model abstraction layer for simplifying
model development and upkeep, in addition to its traditional usage as a platform for advanced
solution strategies.

Keywords: process design; process modeling; mathematical programming; MINLP; generalized
disjunctive programming

1. Introduction

Mathematical programming is a powerful tool for process design and optimization, allowing the
modeler to consider both continuous and discrete decisions. In process design, discrete degrees of
freedom often determine topological structure (selection/activation/ordering of nodes and edges)
while continuous variables determine system states such as flow rates or qualities. In the general
case, these process design problems can involve nonlinear variable relationships and are addressed as
Mixed-Integer Nonlinear Programming (MINLP) problems.

min z = f (x, y)

s.t. g(x, y) ≤ 0

h(x, y) = 0

x ∈ X ⊆ Rn

y ∈ Y ⊆ Zm

(MINLP)

The general form for these optimization models is given in (MINLP). An objective function f (x, y)
is minimized by selecting values for continuous variables x and integer variables y, subject to satisfying
inequality constraints g(x, y) ≤ 0 and equality constraints h(x, y) = 0. In processes, the continuous

Processes 2019, 7, 839; doi:10.3390/pr7110839 www.mdpi.com/journal/processes

Processes 2019, 7, 839 2 of 23

variables usually represent flows, pressures, and temperatures. The integer variables are commonly 0–1
variables for the selection of units, but can also represent the number of units. The inequalities usually
describe process and equipment limitations while equality constraints describe physical property
relationships. An abundant literature exists for the formulation and solution of MINLP models [1–4].
Particularly in chemical engineering, many models are now formulated using algebraic relationships.
Such equation-oriented modeling is becoming progressively more common [5], with differential
equations used to describe temporal and spatial dynamics. For process design problems, postulation of
alternatives is also an important consideration, with several approaches described in literature [6–15].
However, even with the growth of more complex models, there has been limited emphasis on the link
between algebraic relationships and model logic.

Generalized Disjunctive Programming (GDP) represents one effort to systematize the relationship
between algebraic relations and logical clauses [2,16,17], in pursuit of a framework to simplify both
model formulation and solution of the eventual mathematical programming problem. GDP can be
seen as the extension of theoretical work in disjunctive programming from the operations research
community [18,19] to formulations involving nonlinear algebraic relationships. GDP gives the modeler
a mathematical framework to express high-level logical statements without needing to immediately
translate them into algebraic form. The general form for GDP optimization models is given in (GDP).

min obj = f (x, z)

s.t. g(x, z) ≤ 0

∨
i∈Dk

[
Yik

rik(x, z) ≤ 0

]
∀k ∈ K

∨
i∈Dk

Yik ∀k ∈ K

Ω(Y) = True

x ∈ X ⊆ Rn

Yik ∈ {True, False} ∀i ∈ Dk, ∀k ∈ K

z ∈ Z ⊆ Zm

(GDP)

As with the MINLP formulation, an objective function f (x, z) is minimized. Continuous decisions
variables are still represented by x, but Boolean variables Y now describe selection among discrete
alternatives. Remaining integer variables are denoted by z. This is preferable, as the conditional
constraints rik(x, z) ≤ 0 corresponding to selection of alternative Yik can be grouped together and
separated from the globally valid constraints g(x, z) ≤ 0 that must hold true for any selection of
alternatives. Note that equality constraints are implicitly captured in (GDP) through the use of
two inequality constraints. We term these groupings of a Boolean indicator variable with relevant
conditional constraints a “disjunct”, as they each constitute one term of a disjunction ∨ (logical “OR”
relationship). Next, we state that for each disjunction k ∈ K, exactly one of the disjuncts i ∈ Dk will be
selected, a generalization of the logical XOR ∨. Finally, GDP also allows the explicit specification of
logical propositions Ω(Y) = True to describe logical relationships between selection of the discrete
alternatives. These logical propositions are key to the modeling strategies addressed later in this work.

GDP offers two major advantages over the traditional MINLP modeling approach. First,
it facilitates more intuitive modeling of process decision-making by allowing explicit specification
of logical relationships [20]. The grouping of related constraints in disjuncts also helps to keep GDP
models more organized. Second, by exploiting explicit logical structure provided by GDP models [21],
advanced solution algorithms can reap benefits in convergence speed and robustness [22–24]. In this
work, we focus on the modeling implications of GDP use.

While long-time practitioners of MINLP modeling approaches may sometimes find logical
propositions too verbose, we contend that explicit logic is more readable and better preserves

Processes 2019, 7, 839 3 of 23

a modeler’s original intent. Take for example the logical statement in Equation (1), which may
correspond to the following process specification: if we purchase the cheap feed (Y1 = True), then we
will need to install a pretreater (Y2 = True) or install an additional separation unit (Y3 = True). That is,
Y1 implies Y2 or Y3.

Y1 =⇒ (Y2 ∨Y3) (1)

This resolves to the equivalent algebraic constraint in Equation (2), using binary variables y [20,25].

− y1 + y2 + y3 ≥ 0 (2)

Both descriptions are valid, but the logical statement is self-documenting and is much clearer
to a new modeler. Expert MINLP modelers are accustomed to automatically preprocessing their
formulation to encode relevant problem logic in the algebraic constraints. With GDP, this mental
overhead and the associated potential for human error is eliminated. As a result, GDP models promise
to be easier to develop and maintain.

Compounding this effect is the fact that mathematical programming is frequently an analysis
tool in a larger process design procedure [26]. Business needs and customer expectations are not
always initially stated in a form amenable to formulation as an algebraic objective or constraint [27].
A process design problem therefore involves several iterations of reassessing assumptions and
adjusting constraints to match new business needs or revised customer expectations. This means that
neither the data nor the structure for a model formulation can be regarded as static throughout the
design workflow. As a result, the optimization model may be rewritten or revised several times in the
course of tackling a single process design problem [28]. Considerations such as environmental/social
impacts, safety, and operability may also be added to the model as constraints or secondary objectives.
Moreover, multiple versions of the same model are often necessary to trade-off process detail versus
model tractability for different process sections, increasing the number of model formulations that must
be developed and maintained. By separating model logical structure from the underlying algebraic
descriptions, GDP reduces the work necessary to revise a model. In doing so, it aims to advance
the state-of-the-art in process design [26,29–32]. Later, we also show how GDP can help manage
model variants.

GDP can be viewed in a broader context as a logic-based model abstraction layer, facilitating
intuitive expression of the discrete decision spaces. These abstractions are a necessary response to
complexity [33], to make mathematical programming capabilities accessible to a broader range of
process modelers. The ubiquity of commercial chemical process simulators is attributable to their
ability to abstract large-scale mathematical computations from chemical engineering decision-making.
They provide a drag-and-drop interface to assemble a process structure and a drop-down menu to
pick among standard physical property packages. Similar efforts to provide high-level modeling
capabilities underpinned by mathematical programming—such as Egret [34] for power systems design,
ICAS [35] for process and product design, MIPSYN [36] for process synthesis, and IDAES [37] for
advanced energy systems design—can benefit from the logical abstraction provided by GDP. Note
that modeling in GDP does not preclude the use of MINLP solution methods. Instead, it can offer a
systematic yet flexible approach to generate the appropriate MINLP formulation via reformulation.
For instance, Castro and Grossmann [38] derive several traditional scheduling formulations using
standardized reformulations of GDP models.

The two most popular ways to reformulate a GDP model as an MINLP model are the
Big-M (BM) [16] and Hull Reformulation (HR) [39] methods. BM and HR trade-off problem size
(number of variables and constraints) and the tightness (quality) of the continuous relaxation.
Other reformulations are also possible [40–43] with different tradeoffs in problem size, relaxation
tightness, and computational cost to generate the reformulation. In general, multiple valid MINLP
formulations exist to describe the same problem logic, and there exists no general way to determine a
priori the most tractable formulation [17]. Direct formulation as an MINLP requires the modeler to

Processes 2019, 7, 839 4 of 23

commit to a single formulation approach, while GDP allows multiple algebraic formulations to be
systematically generated from a single logical description, so that the most advantageous variant may
be utilized.

Despite theoretical progress, lack of computational tools to support GDP modeling has hindered
its adoption in both academic and industrial settings. The GAMS algebraic modeling language [44]
provides support for GDP models through its Extended Mathematical Programming syntax, with
the ability to generate the BM and HR reformulations. Prior to version 23.7, GAMS also supported
solution of GDP models using the LOGMIP 1.0 solver [45]. However, as a closed-source commercial
platform, academic interest has been limited. More recently, Pyomo.GDP [46] has emerged as an
open-source ecosystem for GDP modeling and development, built on top of the Pyomo algebraic
modeling language [47] in Python. As an open-source platform, it has been able to incorporate recent
innovations in reformulation strategies [48] and logic-based solution algorithms [22]. Powerful options
now exist for formulating and solving GDP models. However, compared to the MINLP literature,
relatively few formulation examples exist for GDP. This paper aims to address that gap.

In this paper, we focus on GDP as a modeling tool to manage model variants. We demonstrate its
use for two modeling use cases: (1) end-to-end analysis with focus on various portions of the overall
process, and (2) a single solution scheme involving use of models at different detail levels. In Section 2,
we describe these use cases and their modeling challenges in detail. In Section 3, we discuss application
of these techniques on an illustrative example and the resulting implications. We present concluding
remarks in Section 4.

2. Problem Statement

We examine two scenarios in which GDP is useful as a model management platform.

• Case 1: Generate model variants that focus on various portions of an end-to-end process;
• Case 2: Use higher-level (approximate) models to do preliminary analysis, and drill down into

increasing model detail for promising options as part of the solution scheme.

In the first case, complex value chains often result in a process being subdivided among major
process sections, assigned to different modeling teams. Each of these modeling teams may develop
specialized, detailed models that describe decision points and specifications relevant to their portion of
the overall process. However, as sequential optimizations of process sections may yield a suboptimal
overall result, coordination is necessary. Each section therefore needs to model the secondary impact
of their decisions on the rest of the process. Ideally, the detailed models for each section could simply
be linked together to produce a single optimization formulation. However, this formulation is often
intractably large. Therefore, a less-detailed surrogate is often employed to model nonfocal portions of
the process.

Consider an illustrative chemical production process consisting of three sections: procurement,
production, and sales, displayed in Figure 1. We examine this process in more detail in Section 3.
Multiple discrete options are available as decision variables for each section, denoted by the Boolean
variables Yi, Yj, and Yk for each section, respectively. For procurement, these discrete decisions
may describe selection among several available supply contracts from various vendors. For sales,
there might exist several sales opportunities corresponding to different customers. In production,
selection among various production modes and capital purchases are often key decisions. For our
illustrative process, Y12 = True describes the selection of the second procurement contract, for example.

In typical industrial practice, models at varying detail levels are often developed separately
from each other, with interoperability suffering as a result. By making use of GDP, the choice of
modeling detail can be integrated within a single framework, allowing related models to be developed
in proximity to each other. Note that care should still be taken to define appropriate interconnections
between the process sections so that relevant phenomena can be described (e.g., time dependence).

Processes 2019, 7, 839 5 of 23

Procurement
i = 1

Y11

Yhigh
11 Ymed

11 Ylow
11Y Y

Y12

Yhigh
12 Ymed

12 Ylow
12Y Y

Y13

Yhigh
13 Ymed

13 Ylow
13Y Y

. . .

Production
i = 2

Y21

Yhigh
21 Ymed

21 Ylow
21Y Y

Y22

Yhigh
22 Ymed

22 Ylow
22Y Y

. . .

Sales
i = 3

Y31

Yhigh
31 Ymed

31 Ylow
31Y Y

Y32

Yhigh
32 Ymed

32 Ylow
32Y Y

. . .

∨

∨

∨

∨

∨

∨

∨

j = 1

j = 2

j = 3D
is

cr
et

e
op

ti
on

s
w

it
hi

n
ea

ch
se

ct
io

n

Figure 1. Example process illustrating the embedding of multiple detail levels within discrete options
for each process section.

In the second case, a modeler may wish to use approximate models in a preliminary analysis
to identify promising candidates among numerous alternatives, then drill down into progressively
more detailed representations for remaining alternatives. For chemical processes, making assumptions
that restrict temperatures, transport phenomena, or thermodynamic complexity can greatly simplify a
model representation. However, variations in degrees of freedom and relevant physical phenomena
should be subsequently revisited. In specialized simulation software, provisions for changing the
thermodynamic assumptions of a chemical process are commonplace. However, the ability to do so is
less common in equation-oriented optimization frameworks. Instead, a new model must frequently be
developed at the desired complexity level. With GDP, the imposition or relaxation of these assumptions
may be made by setting the value of Boolean variables. For a broader perspective, by imposing the
implication that selection of unit u requires its modeling at a low detail level, Yu =⇒ Ylow

u , we can
restrict consideration to the approximate models. Conversely, for a deeper perspective, we can consider
only more rigorously modeled alternatives by imposing the use of high detail models Yu =⇒ Yhigh

u .
Note that at high fidelity, some alternatives may themselves involve selection among a discrete decision
space. For example, selection of a distillation column in a chemical process may involve deciding on
the number of trays. This discrete decision could itself be treated at various levels of modeling fidelity.
Fortunately, with GDP, this decision can simply be nested within the higher-level selection as a nested
disjunction [49].

3. Case Study

To demonstrate the principles of GDP as a tool for model management, we propose an illustrative
end-to-end methanol synthesis process example adapted from literature [22]. As previously stated, the
process consists of three sections: procurement, production, and sales (see Figure 2). Procurement must
source the syngas from one of two different vendors, each of which offers a different purity-dependent
cost schedule per unit feed. Production must select the optimal equipment configuration and
operating conditions (temperatures, pressures, flows, and compositions) to convert syngas to methanol.
This includes the discrete decision between single and two-stage compression for both the feed and
recycle streams, as well as the choice between a higher-conversion, higher-cost reactor and a cheaper
variant. Sales then contracts with one of two different customers, who are willing to pay a unit

Processes 2019, 7, 839 6 of 23

price that depends on the product purity. Each of these sections may be modeled at a high, medium,
and low level of detail. The production section superstructure appears in Figure 3, with unit 9 as
the cheap reactor alternative with low conversion and unit 10 denoting the expensive reactor with
high conversion. Amendments to the literature methanol process synthesis model are presented in
Appendix C.

Procurement

?
?

?

Production

? ?

?

Sales

?
?

?

Figure 2. Simplified process diagram for the illustrative example. Three sections exist: procurement,
production, and sales. In each section, decisions must be made in both discrete and continuous
variable domains.

1

2

1

2

3

4 5 6

3
4

5 7 8

6

9

10
7 8

11 12 13

9

10

15

14

17

16

11
12 13

18 19 20

14 Product
22

23

15 Purge

171819

16

21

24 2526

27

28
3031

29

32

33

Procurement

Figure 3. Methanol process flowsheet superstructure, adapted from [22], showing stream numbers
in blue.

Below, we present a generic formulation for an end-to-end techno-economic analysis model and
demonstrate how it may be adapted to our methanol synthesis example. In the following subsections,
we lay out the relevant sets, parameters, decision variables, and functions before presenting the
formulation. We then discuss manipulations of the formulation for both use cases from Section 2.

3.1. Sets

The chemical process involves a set of components C, which include the relevant raw materials,
reaction intermediates, inerts, and products. For the methanol process, we have feed components H2

and CO, inert CH4, and product CH3OH. The process is subdivided into three major process sections
I: procurement, production, and sales. Of all possible process section alternatives J, a subset Ji ⊆ J is
available for selection for each section i ∈ I. In the production section of the methanol process, two of
these alternatives are single-stage feed compression, and two-stage feed compression. The process
also involves a set of streams K that describe flows of material between process sections. Finally, for
each process alternative, a set of modeling detail levels l ∈ L are available. We consider in our example
three detail levels: “low”, “medium”, and “high.”

c ∈ C Set of components (feeds, intermediates, inerts, and products)
i ∈ I Set of end-to-end process sections
j ∈ J Set of process section alternatives

Ji Set of alternatives available for process section i
k ∈ K Set of streams
l ∈ L Set of detail levels

Processes 2019, 7, 839 7 of 23

3.2. Variables

The decision variables include characterization of each process stream k ∈ K: total molar flowrate
Fk and component molar flowrate fkc for each component c ∈ C, as well as the stream temperature Tk
and pressure Pk. A profit or cost (negative) contribution from each section i ∈ I is given by zi. This,
in turn, may be influenced by the contribution ζij from selection of alternative j ∈ Ji for section i ∈ I.
Other continuous state variables x may also be relevant for internal calculations within the alternatives.
In the methanol case study, these variables include conversion rates in the reactors and shaft work
required in the compressors. Finally, the Boolean variables Y govern selection among the process
alternatives and modeling detail levels. Yij determines whether alternative j ∈ Ji is active for section
i ∈ I. Yl

i determines whether process section i ∈ I is modeled at detail level l ∈ Li. Finally, for each
process alternative j ∈ Ji in section i ∈ I, Boolean Yl

ij determines the modeling detail level l ∈ Lij.

fck molar flow of component c on stream k
Fk total molar flow of stream k
Tk temperature of stream k
Pk pressure of stream k
zi profit or cost contribution from section i
ζij profit or cost contribution from alternative j in section i
x other continuous state variables

Yij Boolean selection of process alternative j for section i
Yl

i Boolean selection of detail level l for modeling process section i
Yl

ij Boolean selection of detail level l for modeling process alternative j in section i

3.3. Functions

The problem-specific variable relationships for the end-to-end process are represented by several
functions. The globally relevant constraints g(f , F, T, P, x) describe variable relationships that must
be satisfied regardless of discrete selections of the process alternatives or modeling detail levels.
These include the linking constraints that equate stream flow properties between different process
sections. That is, the exit stream from the procurement section should be equivalent to the inlet stream
to the production section. The constraints rij(f , F, T, P, x) describe the relationships that are enforced
regardless of the selected detail level when alternative j ∈ Ji is selected for section i ∈ I. For each
section i ∈ I, the constraints hl

i(f , F, T, P, x) describe variable interactions at each detail level l ∈ Li
that are relevant regardless of the selected process alternatives. These constraints include potential
equality relationships that link different process alternatives in a section with each other. For each of
these alternatives j ∈ Ji, the constraints sl

ij(f , F, T, P, x) describe the variable relationships at detail
level l ∈ Lij. Here are included the kinetic calculations for the reactor conversion, or the shaft work
calculation for the compressors. The cost functions are computed using φl

i (f , F, T, P, x, ζ) at the section
level, and ψl

ij(f , F, T, P, x) for each process alternative. One common interpretation of φl
i (f , F, T, P, x, ζ)

is given in Equation (3), where the section cost is simply equal to the sum of the contributions ζij from
each alternative j ∈ Ji, but more complex relationships are possible.

g(f , F, T, P, x) globally relevant constraints

rij(f , F, T, P, x)
constraints relevant to selection of alternative j ∈ Ji for process section i ∈ I for
any detail level

hl
i(f , F, T, P, x) constraints describing process section i ∈ I at detail level l ∈ Li

sl
ij(f , F, T, P, x)

constraints describing alternative j ∈ Ji for process section i ∈ I at detail level
l ∈ Lij

φl
i (f , F, T, P, x, ζ) calculation of profit or cost contribution for section i ∈ I

ψl
ij(f , F, T, P, x)

calculation of profit or cost contribution for selecting alternative j ∈ Ji in section
i ∈ I

Ω(Y) Logical propositions between Boolean selections

Processes 2019, 7, 839 8 of 23

zi = φl
i (f , F, T, P, x, ζ) = ∑

j∈Ji

ζij (3)

3.4. Formulation

The overall generic problem formulation is given in Problem (P1). The objective is to maximize
the profit, denoted by Z, equal to the summation of profit (or negative cost) contributions from each
section i ∈ I. In the methanol process, we consider revenue from the methanol sales, purchase costs
from the syngas feed, utility costs for the heaters and coolers, electricity costs for the compressors,
fuel credit for the purge stream, and annualized capital costs for equipment purchases.

max Z = ∑
i∈I

zi (P1.1)

s.t. g(f , F, T, P, x) ≤ 0 (P1.2)

∨
j∈Ji

[
Yij

rij(f , F, T, P, x) ≤ 0

]
∀i ∈ I (P1.3)

∨
l∈Li


Yl

i

hl
i(f , F, T, P, x) ≤ 0

zi = φl
i (f , F, T, P, x, ζ)

 ∀i ∈ I (P1.4)

Yij =⇒
∨

l∈Lij


Yl

ij

sl
ij(f , F, T, P, x) ≤ 0

ζij = ψl
ij(f , F, T, P, x)

 ∀i ∈ I, ∀j ∈ Ji (P1.5)

∨
l∈Li

Yl
i ∀i ∈ I (P1.6)

Yij =⇒
∨

l∈Lij

Yl
ij ∀i ∈ I, ∀j ∈ Ji (P1.7)

Yl
ij =⇒ Yij ∀i ∈ I, ∀j ∈ Ji, ∀l ∈ Lij (P1.8)

Ω(Y) = True (P1.9)

zi ∈ R ∀i ∈ I (P1.10)

zij ∈ R ∀i ∈ I, ∀j ∈ Ji (P1.11)

f ∈ R|C||K| (P1.12)

F ∈ R|K| (P1.13)

T ∈ R|K| (P1.14)

P ∈ R|K| (P1.15)

x ∈ X ⊆ RnX (P1.16)

Y ∈ {True, False}p (P1.17)

(P1.2) describes global constraints that are enforced independent of any alternative or detail
selection. Disjunction (P1.3) governs the selection among the process alternatives j ∈ Ji for each section
i ∈ I. Disjunction (P1.4) gives the detail level l ∈ Li at which the major process sections i ∈ I are
modeled. Implication (P1.5) states that the selection of an alternative j ∈ Ji implies the choice of a
detail level l ∈ Lij. For each section, the exclusive-OR relationship (P1.6) states that exactly one detail
level l ∈ Li is used to model alternative-independent interactions. Similarly, for a selection of process

Processes 2019, 7, 839 9 of 23

alternative j ∈ Ji, Implication (P1.7) governs selection of exactly one detail level l ∈ Lij for modeling
each alternative. Implication (P1.8) enforces that selection of a modeling detail level for an alternative
implies that the alternative is selected. Other logical propositions are expressed using Ω(Y). Finally,
the continuous variable definitions are given in lines (P1.10)–(P1.17).

Note that this illustrative example is meant to give a sense of the complexity that is possible
to represent in a process design problem using GDP modeling techniques. GDP modeling easily
supports augmentation of the model to consider, for example, methane reforming as another process
section. Other process relationships and logical expressions are also possible to include, as the
problem demands.

3.5. Discussion

The GDP model in Section 3.4 captures both the choice among discrete process alternatives as
well as the level of modeling detail used to describe each alternative. The observant reader may note
that the MINLP resulting from the reformulation of this GDP is more complex than simply modeling
the entire process in high detail. While true, the power of GDP lies in the ability to systematically
activate or deactivate entire blocks of related constraints. The intention of formulation (P1) is not to
solve the monolithic GDP model, but rather to systematically generate models that trade off fidelity
and tractability for different analyses from a single source of truth by imposing the relevant logical
implications. As a result, Problem (P1) could be regarded as a parametric optimization in which the
modeler prespecifies the values of Yl

i to satisfy Equation (P1.6) for each section i ∈ I and provides
logical implications to tie selection of an alternative Yij to selection of the desired detail level Yl

ij for
each alternative j ∈ Ji.

Once these decisions are made, model simplifications driven by logical inference are applied to
generate a process model at the desired level of detail for each of its constituent sections. For example,
the production team may want to adopt a simplified view of the procurement and sales sections while
preserving a high-fidelity view of production section alternatives. To accomplish this, the logical
statements in Equation (4) may be appended to the model.

Yi =⇒ Ylow
i , i ∈ {procurement, sales}

Yi =⇒ Yhigh
i , i ∈ {production}

Yij =⇒ Ylow
ij , i ∈ {procurement, sales}, ∀j ∈ Ji

Yij =⇒ Yhigh
ij , i ∈ {production}, ∀j ∈ Ji

(4)

Due to the exclusive-OR-type relationship between different levels of modeling detail established
by logical statements (P1.6) and (P1.7), this forces the implied level of detail to be selected for its
corresponding alternative or section. Applying standard principles of logical inference [21], we arrive at
the model shown in Problem (P2), with the sets Ilow = {procurement, sales} and Ihigh = {production}.

max Z = ∑
i∈I

zi (P2.1)

s.t. g(f , F, T, P, x) ≤ 0 (P2.2)

∨
j∈Ji

[
Yij

rij(f , F, T, P, x) ≤ 0

]
∀i ∈ I (P2.3)

Ylow
i = True

hlow
i (f , F, T, P, x) ≤ 0

zi = φlow
i (f , F, T, P, x, ζ)

 ∀i ∈ Ilow (P2.4)

Processes 2019, 7, 839 10 of 23

Yl
i = False ∀i ∈ Ilow, ∀l ∈ Li \ {low} (P2.5)

Yhigh
i = True

hhigh
i (f , F, T, P, x) ≤ 0

zi = φ
high
i (f , F, T, P, x, ζ)

 ∀i ∈ Ihigh (P2.6)

Yl
i = False ∀i ∈ Ihigh, ∀l ∈ Li \ {high} (P2.7)

Yij =⇒


Ylow

ij

slow
ij (f , F, T, P, x) ≤ 0

ζij = ψlow
ij (f , F, T, P, x)

 ∀i ∈ Ilow, ∀j ∈ Ji (P2.8)

Yl
ij = False ∀i ∈ Ilow, ∀j ∈ Ji, ∀l ∈ Li \ {low} (P2.9)

Yij =⇒


Yhigh

ij

shigh
ij (f , F, T, P, x) ≤ 0

ζij = ψ
high
ij (f , F, T, P, x)

 ∀i ∈ Ihigh, ∀j ∈ Ji (P2.10)

Yl
ij = False ∀i ∈ Ihigh, ∀j ∈ Ji, ∀l ∈ Li \ {high} (P2.11)

Yl
ij =⇒ Yij ∀i ∈ I, ∀j ∈ Ji, ∀l ∈ Lij (P2.12)

Ω(Y) = True (P2.13)

zi ∈ R ∀i ∈ I (P2.14)

zij ∈ R ∀i ∈ I, ∀j ∈ Ji (P2.15)

f ∈ R|C||K| (P2.16)

F ∈ R|K| (P2.17)

T ∈ R|K| (P2.18)

P ∈ R|K| (P2.19)

x ∈ X ⊆ RnX (P2.20)

Y ∈ {True, False}p (P2.21)

Problem (P2) now describes the decision space of the overall process with a focus on the
production section. Changing the logical implications in Equation (4), we can easily shift focus
in model fidelity to other sections of the process. By imposing different logical relationships on the
general GDP model and applying easily automated principles of logical inference, we are able to derive
multiple model variants from a single source of truth. Different levels of detail can also be evaluated
as a post-solve solution quality check. The modeler can hold constant the production section decisions
and increase modeling detail in the other sections to examine impacts of their decision-making on other
sections. While this type of analysis may be possible under other engineered frameworks, GDP offers
the formalism of an end-to-end perspective that is tied together by mathematical theory.

3.6. Solution Strategies

After generating a variant such as Problem (P2), a solution approach may be selected to obtain
the optimal decision values. As previously introduced, the BM and HR reformulations to MINLP
are the most popular approaches [2], trading off formulation size versus tightness of the continuous
relaxation. The BM formulation for Problem (P2) may be found in Appendix A. For BM, equality
constraints in the disjuncts are replaced by their corresponding two inequalities to facilitate relaxation
of the constraint. BM results in a smaller problem size, as it does not require the introduction of
new variables. However, the use of the Big-M parameter M results in a looser continuous relaxation.

Processes 2019, 7, 839 11 of 23

Note that the relaxation may be improved by selecting unique values of M for each constraint [48].
For a tighter continuous relaxation, the HR formulation found in Appendix B may be used. HR
requires additional disaggregated variables to be defined for each disjunct, so the problem size may
be significantly larger than BM. However, the tighter HR formulation may require fewer iterations to
converge. Once the reformulation to MINLP is made, the model can be sent to the user’s solver of
choice. Direct logic-based decomposition approaches [22,39] are also possible for solving GDP models,
with implementations available in Pyomo.GDP via the GDPopt solver [46].

We solve the methanol synthesis model described in Problem (P2) and obtain a solution with
annual profit of $1.8 million using two-stage feed compression, the cheap reactor, and single-stage
recycle compression, see Figure 4. We can now fix the production section discrete decisions and
evaluate the solution at varying detail levels for the procurement and sales sections. The results are
given in Table 1.

1

2

0
3

4 5 6

3

5 7 8 9

10
7 8

11 12 13
9

10
14

16

11
12 13

18 19 20

14 Product
22

23

15 Purge

171819

16

21

24 2526

2729

33

Procurement

Figure 4. Solution flowsheet for Problem (P2), using two-stage feed compression, the cheap reactor,
and single-stage recycle compression. At low procurement modeling detail, no feed selection decisions
are made.

Table 1. Profit (1000 USD) at the fixed production section design of two-stage feed compression, the
cheap reactor, and single-stage recycle compression compared to the profit achievable when the design
is allowed to vary.

Procurement Detail Sales Detail Fixed Design Best Design Difference

low low 1793 1793
low med 1564 1614 single-stage feed compression
low high 2617 2667 single-stage feed compression
med low 1793 1793
med med 1564 1614 single-stage feed compression
med high 2617 2667 single-stage feed compression
high low 1709 1832 single-stage feed compression
high med 1746 1850 single-stage feed compression
high high 3133 3183 single-stage feed compression

Notice that the solution profit tends to increase at higher modeling details for the feed and sales.
This is due to the additional flexibility in adjusting coordinating purity levels across procurement,
production, and sales. In the high-detail solutions, a higher purity syngas is purchased to enable
production of a higher purity methanol product. The supplier and customer contracts are also selected
to facilitate the purity decision. The procurement contract is selected with a higher base cost, but lower
incremental cost for improved purity. Conversely, the customer contract is chosen where a higher
purity is more valued. Thus, despite an increase in feed cost of $4.3 million vs. $3.4 million in the
low-detail solution, the product revenue rises to $10.6 million rather than $7.7 million.

The Problem (P2) solution is also compared in Table 1 to the profit possible when the production
section configuration is allowed to change at higher procurement and sales modeling detail levels.
Here, we see that at higher levels of modeling detail, the single stage feed compressor becomes more
advantageous, but only by the $50 thousand margin that accounts for the difference in annualized

Processes 2019, 7, 839 12 of 23

capital cost. In general, this analysis may not be possible, as the formulation for solving all decision
degrees of freedom at a high level of modeling detail may be intractable. However, even at a medium
level of sales modeling detail, it is possible to notice that the choice of single-stage feed compression
may be relevant in the optimal production configuration.

As an illustration of the flexibility of GDP modeling, another solution approach that can be
utilized is to emulate traditional process design strategies. GDP model (P1) is compatible with a
design analysis akin to the hierarchical decomposition approach described by Douglas [50], by solving
sequentially at different detail levels. First, the overall process (P1) is solved with a low detail level in
iteration iter = 0, enforcing the implications in Equation (5).

Y0
i =⇒ Y0,low

i , ∀i ∈ I

Y0
ij =⇒ Y0,low

ij , ∀i ∈ I, ∀j ∈ Ji
(5)

The solution to this overview problem gives high-level decisions among the process alternatives and
defines the following sets for the iteration iter = 1. Let J1

i = {j ∈ Ji : Y0
ij = True} denote the selected

alternatives from the overview problem from iteration iter = 0. In the next iteration, we enforce for
(P1) the implications in Equation (6) such that these alternatives are evaluated at a progressively higher
detail level.

Y1
i =⇒ Y1,med

i , ∀i ∈ I

Y1
ij =⇒ Y1,med

ij , ∀i ∈ I, ∀j ∈ J1
i

Y1
ij =⇒ Y0,low

ij , ∀i ∈ I, ∀j ∈ Ji \ J1
i

(6)

The algorithm would terminate at iteration iter = N when all selected alternatives are evaluated
at a high detail level: Yhigh

ij = True, ∀i ∈ I, ∀j ∈ Ji. Note that solutions at lower detail levels can
be used to initialize the higher fidelity models for each alternative, aiding in algorithm robustness.
The amount of backtracking done by the algorithm to evaluate other alternatives can be tuned by
applying a penalty factor to alternatives modeled at lower detail levels.

We apply this algorithm to the methanol synthesis. In the base iteration (iter = 0), all alternatives
are modeled at a low detail level. The solution gives a configuration of the cheap reactor with two-stage
feed compression and single-stage recycle compression at a profit of $1.1 million. The structure for
this solution is identical to that shown in Figure 4. We increase the modeling detail level for these
selections and solve iteration 1.

Solving the low-detail overview problem, we obtain a configuration using the cheap reactor,
two-stage feed compression, and single-stage recycle compression, yielding a profit of $1.1 million.
We then increase the level of modeling detail for the selected alternatives. Solving again, we obtain a
profit of $0.4 million with the expensive feed alternative, the cheap reactor, two-stage feed compression,
single-stage recycle compression, and the high-purity sales option. At this intermediate level of
modeling detail, the solution profit decreases because physical constraints are more tightly enforced,
but not as many optimization degrees of freedom are made available to the solver yet. For some
analyses, it may be advantageous for intermediate detail levels to produce a monotonically tightening
approximation of the high-detail representation, but we do not address that consideration in this work.
At the next iteration (iter = 2), we increase the detail level again, obtaining now a profit of $3.1 million,
using the contract with supplier 1, the cheap reactor, two-stage feed compression, single-stage recycle
compression, and the contract with customer 1. At this point, the algorithm terminates, as all selected
alternatives are modeled at the highest possible level of detail.

4. Conclusions

In this paper, we present GDP not only as a mathematical modeling framework supporting
advanced solution strategies, but also as a modeling tool to organize model variants. We demonstrate
through an illustrative case study that GDP is a useful model abstraction that separates algebraic and

Processes 2019, 7, 839 13 of 23

logical relationships within a process design problem. From a single GDP model capturing discrete
design alternatives as well as alternatives in modeling fidelity, variants can be generated to suit the
modeling scope and focus for different process sections by specifying appropriate logical implications.
As a result, model interoperability is improved, facilitating simplified post-solution validation analysis.
Preservation of model logical structure in GDP also offers the modeler flexibility to reformulate the
problem as an MINLP or to apply a variety of automated decomposition methods.

Author Contributions: Q.C. wrote the manuscript. I.G. supervised the project.

Funding: We graciously acknowledge funding from the U.S. Department of Energy, Office of Fossil Energy’s
Crosscutting Research Program through the Institute for the Design of Advanced Energy Systems (IDAES).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Big-M Reformulation (BM)

The Big-M reformulation for GDP model in Problem (P2) is presented in Equations (A1)–(A31).
All variables’ domains for BM are assumed to be a subset of the non-negative real numbers.

max Z = ∑
i∈I

zi (A1)

s.t. g(f , F, T, P, x) ≤ 0 (A2)

rij(f , F, T, P, x) ≤ M(1− yij) ∀i ∈ I, ∀j ∈ Ji (A3)

∑
j∈Ji

yij ≥ 1 ∀i ∈ I (A4)

ylow
i = 1 ∀i ∈ Ilow (A5)

hlow
i (f , F, T, P, x) ≤ 0 ∀i ∈ Ilow (A6)

zi = φlow
i (f , F, T, P, x, ζ) ∀i ∈ Ilow (A7)

yl
i = 0 ∀i ∈ Ilow, ∀l ∈ Li \ {low} (A8)

yhigh
i = 1 ∀i ∈ Ihigh (A9)

hhigh
i (f , F, T, P, x) ≤ 0 ∀i ∈ Ihigh (A10)

zi = φ
high
i (f , F, T, P, x, ζ) ∀i ∈ Ihigh (A11)

yl
i = 0 ∀i ∈ Ihigh, ∀l ∈ Li \ {high} (A12)

ylow
ij = yij ∀i ∈ Ilow, ∀j ∈ Ji (A13)

slow
ij (f , F, T, P, x) ≤ M(1− ylow

ij) ∀i ∈ Ilow, ∀j ∈ Ji (A14)

ζij ≥ ψlow
ij (f , F, T, P, x) + M(1− ylow

ij) ∀i ∈ Ilow, ∀j ∈ Ji (A15)

ζij ≤ ψlow
ij (f , F, T, P, x)−M(1− ylow

ij) ∀i ∈ Ilow, ∀j ∈ Ji (A16)

yl
ij = 0 ∀i ∈ Ilow, ∀j ∈ Ji, ∀l ∈ Li \ {low} (A17)

yhigh
ij = yij ∀i ∈ Ihigh, ∀j ∈ Ji (A18)

shigh
ij (f , F, T, P, x) ≤ M(1− yhigh

ij) ∀i ∈ Ihigh, ∀j ∈ Ji (A19)

ζij ≤ ψ
high
ij (f , F, T, P, x) + M(1− yhigh

ij) ∀i ∈ Ihigh, ∀j ∈ Ji (A20)

ζij ≥ ψ
high
ij (f , F, T, P, x)−M(1− yhigh

ij) ∀i ∈ Ihigh, ∀j ∈ Ji (A21)

yl
ij = 0 ∀i ∈ Ihigh, ∀j ∈ Ji, ∀l ∈ Li \ {high} (A22)

Ω̂y = b (A23)

zi ∈ R ∀i ∈ I (A24)

Processes 2019, 7, 839 14 of 23

zij ∈ R ∀i ∈ I, ∀j ∈ Ji (A25)

f ∈ R|C||K| (A26)

F ∈ R|K| (A27)

T ∈ R|K| (A28)

P ∈ R|K| (A29)

x ∈ X ⊆ RnX (A30)

y ∈ {0, 1}p (A31)

Appendix B. Hull Reformulation (HR)

The Hull Reformulation model for Problem (P2) is presented in Equations (A32)–(A70). Note that
in HR, the conditional nonlinear functions, Equations (A34), (A55), (A56), (A59), and (A60) use a
perspective function formulation. To avoid the singularity at a zero value of the indicator binary
variable, various reformulations have been proposed in literature [39,43,51] and are available in
Pyomo.GDP.

max Z = ∑
i∈I

zi (A32)

s.t. g(f , F, T, P, x) ≤ 0 (A33)

yijrij

(
f̂ij

yij
,

F̂ij

yij
,

T̂ij

yij
,

P̂ij

yij
,

x̂ij

yij

)
≤ 0 ∀i ∈ I, j ∈ Ji (A34)

∑
j∈Ji

yij ≥ 1 ∀i ∈ I (A35)

f lbyij ≤ f̂ij ≤ f ubyij ∀i ∈ I, ∀j ∈ Ji (A36)

Flbyij ≤ F̂ij ≤ Fubyij ∀i ∈ I, ∀j ∈ Ji (A37)

Tlbyij ≤ T̂ij ≤ Tubyij ∀i ∈ I, ∀j ∈ Ji (A38)

Plbyij ≤ P̂ij ≤ Pubyij ∀i ∈ I, ∀j ∈ Ji (A39)

xlbyij ≤ x̂ij ≤ xubyij ∀i ∈ I, ∀j ∈ Ji (A40)

fij = ∑
j∈Ji

f̂ij ∀i ∈ I (A41)

Fij = ∑
j∈Ji

F̂ij ∀i ∈ I (A42)

Tij = ∑
j∈Ji

T̂ij ∀i ∈ I (A43)

Pij = ∑
j∈Ji

P̂ij ∀i ∈ I (A44)

xij = ∑
j∈Ji

x̂ij ∀i ∈ I (A45)

ylow
i = 1 ∀i ∈ Ilow (A46)

hlow
i (f , F, T, P, x) ≤ 0 ∀i ∈ Ilow (A47)

zi = φlow
i (f , F, T, P, x, ζ) ∀i ∈ Ilow (A48)

yl
i = 0 ∀i ∈ Ilow, ∀l ∈ Li \ {low} (A49)

Yhigh
i = 1 ∀i ∈ Ihigh (A50)

hhigh
i (f , F, T, P, x) ≤ 0 ∀i ∈ Ihigh (A51)

Processes 2019, 7, 839 15 of 23

zi = φ
high
i (f , F, T, P, x, ζ) ∀i ∈ Ihigh (A52)

yl
i = 0 ∀i ∈ Ihigh, ∀l ∈ Li \ {high} (A53)

ylow
ij = yij ∀i ∈ Ilow, ∀j ∈ Ji (A54)

yijslow
ij

(
f̂ij

yij
,

F̂ij

yij
,

T̂ij

yij
,

P̂ij

yij
,

x̂ij

yij

)
≤ 0 ∀i ∈ Ilow, ∀j ∈ Ji (A55)

ζij = yijψ
low
ij

(
f̂ij

yij
,

F̂ij

yij
,

T̂ij

yij
,

P̂ij

yij
,

x̂ij

yij

)
∀i ∈ Ilow, ∀j ∈ Ji (A56)

yl
ij = 0 ∀i ∈ Ilow, ∀j ∈ Ji, ∀l ∈ Li \ {low} (A57)

yhigh
ij = yij ∀i ∈ Ihigh, ∀j ∈ Ji (A58)

yijs
high
ij

(
f̂ij

yij
,

F̂ij

yij
,

T̂ij

yij
,

P̂ij

yij
,

x̂ij

yij

)
≤ 0 ∀i ∈ Ihigh, ∀j ∈ Ji (A59)

ζij = yijψ
high
ij

(
f̂ij

yij
,

F̂ij

yij
,

T̂ij

yij
,

P̂ij

yij
,

x̂ij

yij

)
∀i ∈ Ihigh, ∀j ∈ Ji (A60)

yl
ij = 0 ∀i ∈ Ihigh, ∀j ∈ Ji, ∀l ∈ Li \ {high} (A61)

Ω̂y = b (A62)

zi ∈ R ∀i ∈ I (A63)

zij ∈ R ∀i ∈ I, ∀j ∈ Ji (A64)

f ∈ R|C||K| (A65)

F ∈ R|K| (A66)

T ∈ R|K| (A67)

P ∈ R|K| (A68)

x ∈ X ⊆ RnX (A69)

y ∈ {0, 1}p (A70)

Appendix C. Methanol Model

The methanol synthesis model examined in this paper is adapted from the description in
Example 3 of [22]. In this appendix, we describe the main differences between the literature
model and the presented variant. We consider the original unit models to be the high-detail
version, except for the feed and product description. The original feed model is considered to be
the medium-detail description, and the original product sales model is considered the low-detail
description. Linking constraints for stream flows and material balance equations are preserved from
the original formulation.

Appendix C.1. Feed Procurement

Appendix C.1.1. High Detail

The high-detail feed model involves the choice between two different suppliers,
with purity-dependent costs for the syngas feed.

Processes 2019, 7, 839 16 of 23

Supplier 1

f1,H2 = 0.7(F1 − f1,CH4) (A71)

f1,CO = 0.3(F1 − f1,CH4) (A72)

0.03F1 ≤ f1,CH4 ≤ 0.20F1 (A73)

z1 = −425.712 + 194.973(ln f1,CH4 − ln F1)F1 (A74)

Supplier 2

f2,H2 = 0.7(F2 − f2,CH4) (A75)

f2,CO = 0.3(F2 − f2,CH4) (A76)

0.03F2 ≤ f2,CH4 ≤ 0.20F2 (A77)

z1 = −400 + 210(ln f2,CH4 − ln F2)F2 (A78)

Appendix C.1.2. Medium Detail

The medium-detail feed model is the same as in [22], with the choice between a cheaper and a
more expensive feed stream.

Cheap Feed

f1,H2 = 0.6F1 (A79)

f1,CO = 0.25F1 (A80)

f1,CH4 = 0.15F1 (A81)

z1 = −795.6F1 (A82)

f1,H2 = 0.65F1 (A83)

f1,CO = 0.30F1 (A84)

f1,CH4 = 0.05F1 (A85)

z1 = −1009.8F1 (A86)

Appendix C.1.3. Low Detail

The low-detail feed model simply defaults to the expensive feed option from the medium-detail
case, with no other option available.

f1,H2 = 0.65F1 (A87)

f1,CO = 0.30F1 (A88)

f1,CH4 = 0.05F1 (A89)

z1 = −1009.8F1 (A90)

Processes 2019, 7, 839 17 of 23

Appendix C.2. Product Sales

Appendix C.2.1. High Detail

Customer 1

0.85F23 ≤ f23,CH3OH ≤ 0.98F23 (A91)

z3 = 1682.92− 2275.6(ln(f23,H2 + f23,CO + f23,CH4)− ln F23)F23 (A92)

Customer 2

0.85F23 ≤ f23,CH3OH ≤ 0.98F23 (A93)

z3 = 1700− 2265(ln(f23,H2 + f23,CO + f23,CH4)− ln F23)F23 (A94)

Appendix C.2.2. Medium Detail

Low purity product

0.85F23 ≤ f23,CH3OH (A95)

z3 = 6000F23 (A96)

High purity product

0.95F23 ≤ f23,CH3OH (A97)

z3 = 8500F23 (A98)

Appendix C.2.3. Low Detail

0.9F23 ≤ f23,CH3OH (A99)

z3 = 7650F23 (A100)

Appendix C.3. Compressors

0 ≤ Pratio ≤ 1.74 (A101)

0 ≤W ≤ 50 (A102)

Appendix C.3.1. High Detail

Tout = PratioTin (A103)

W =
0.72(Pratio − 1)TinFin
(10)(0.75)(0.23077)

(A104)

P0.23077
out = PratioP0.23077

in (A105)

Processes 2019, 7, 839 18 of 23

Appendix C.3.2. Medium Detail

Pratio =

{
1.3 if feed compressor

1.1 if recycle compressor
(A106)

Tout =

{
1.3Tin if feed compressor

1.1Tin if recycle compressor
(A107)

W ≥


0.72(0.3)TinFin

(10)(0.75)(0.23077)
if feed compressor

0.72(0.1)TinFin
(10)(0.75)(0.23077)

if recycle compressor
(A108)

P0.23077
out =

{
1.3P0.23077

in if feed compressor

1.1P0.23077
in if recycle compressor

(A109)

Appendix C.3.3. Low Detail

Pratio =

{
1.3 if feed compressor

1.1 if recycle compressor
(A110)

Tout =

{
1.3Tin if feed compressor

1.1Tin if recycle compressor
(A111)

W ≥ 0.54Fin (A112)

Pout = 3.8Pin (A113)

Appendix C.4. Expansion Valve

Appendix C.4.1. High Detail

ToutP0.23077
in = TinP0.23077

out (A114)

Pout ≤ Pin (A115)

Appendix C.4.2. Medium Detail

[
Tout = 0.94Tin

0.75Pin ≤ Pout ≤ 0.9Pin

]
∨
[

Tout = 0.9Tin

0.6Pin ≤ Pout ≤ 0.75Pin

]
(A116)

Appendix C.4.3. Low Detail

Tout = 0.94Tin (A117)

Pout = 0.77Pin (A118)

Processes 2019, 7, 839 19 of 23

Appendix C.5. Cooler

Appendix C.5.1. High Detail

Q = 0.00306(35.0)(FinTin − FoutTout) (A119)

Appendix C.5.2. Medium Detail

[
Q = 1.61(Tin − Tout)

10 ≤ Fin ≤ 20

]
∨
[

Q = 0.80(Tin − Tout)

5 ≤ Fin ≤ 10

]
∨
[

Q = 0.54(Tin − Tout)

0 ≤ Fin ≤ 5

]
(A120)

Appendix C.5.3. Low Detail

Q = 1.0(Tin − Tout) (A121)

Appendix C.6. Heater

Appendix C.6.1. High Detail

Q = 0.00306(35.0)(FoutTout − FinTin) (A122)

Appendix C.6.2. Medium Detail

[
Q = 1.8(Tout − Tin)

10 ≤ Fin ≤ 20

]
∨
[

Q = 0.80(Tout − Tin)

5 ≤ Fin ≤ 10

]
∨
[

Q = 0.11(Tout − Tin)

0 ≤ Fin ≤ 5

]
(A123)

Appendix C.6.3. Low Detail

Q = 1.0(Tout − Tin) (A124)

Appendix C.7. Reactors

Appendix C.7.1. High Detail

P2 Psq,inv = 1 (A125)

T Tinv = 1 (A126)

r = X fin,H2 (A127)

(FinTin − FoutTout)(35.0) = 0.01∆Hrxnr (A128)

Xeq = 0.415(1− (26.25e−18Tinv)Psq,inv) (A129)

X Fin =

{
Xeq(1− e−10)(fin,H2 + fin,CO + fin,CH3OH) expensive reactor

Xeq(1− e−5)(fin,H2 + fin,CO + fin,CH3OH) cheap reactor
(A130)

Processes 2019, 7, 839 20 of 23

Appendix C.7.2. Medium Detail

T = 5.23 (A131)

P2 Psq,inv = 1 (A132)

r = X fin,H2 (A133)

Xeq = 0.415(1− (26.25e−18/5.23Psq,inv)) (A134)

X Fin =

{
Xeq(1− e−10)(fin,H2 + fin,CO + fin,CH3OH) expensive reactor

Xeq(1− e−5)(fin,H2 + fin,CO + fin,CH3OH) cheap reactor
(A135)

Appendix C.7.3. Low Detail

T ≥ 5.23 (A136)

X =

{
0.35 expensive reactor

0.30 cheap reactor
(A137)

P ≥ 14.3 (A138)

r = X fin,H2 (A139)

Appendix C.8. Flash

Appendix C.8.1. High Detail

(13.6333− ln(7500.6168Pvap
H2

))(100T − 3.19) = 164.9 (A140)

(14.3686− ln(7500.6168Pvap
CO))(100T + 13.15) = 530.22 (A141)

(18.5875− ln(7500.6168Pvap
CH3OH))(100T + 34.29) = 3626.55 (A142)

(15.2243− ln(7500.6168Pvap
CH4

))(100T + 7.16) = 897.84 (A143)

ξH2(ξCOPvap
H2

+ (1− ξCO)Pvap
CO) = Pvap

H2
ξCO (A144)

ξH2(ξCH3OH Pvap
H2

+ (1− ξCH3OH)Pvap
CH3OH) = Pvap

H2
ξCH3OH (A145)

ξH2(ξCH4 Pvap
H2

+ (1− ξCH4)Pvap
CH4

) = Pvap
H2

ξCH4 (A146)

f21,H2 = ξH2 f20,H2 (A147)

f21,CO = ξCO f20,CO (A148)

f21,CH3OH = ξCH3OH f20,CH3OH (A149)

f21,CH4 = ξCH4 f20,CH4 (A150)

PF22 = Pvap
H2

f22,H2 + Pvap
CO f22,CO + Pvap

CH3OH f22,CH3OH + Pvap
CH4

f22,CH4 (A151)

Processes 2019, 7, 839 21 of 23

Appendix C.8.2. Medium Detail

Pvap
H2

= 73.332 (A152)

Pvap
CO = 64.232 (A153)

Pvap
CH3OH = 3.722 (A154)

Pvap
CH4

= 60.125 (A155)

ξH2(73.332ξCO + 64.232(1− ξCO)) = 73.332ξCO (A156)

ξH2(73.332ξCH3OH + 3.722(1− ξCH3OH)) = 73.332ξCH3OH (A157)

ξH2(73.332ξCH4 + 60.125(1− ξCH4)) = 73.332ξCH4 (A158)

f21,H2 = ξH2 f20,H2 (A159)

f21,CO = ξCO f20,CO (A160)

f21,CH3OH = ξCH3OH f20,CH3OH (A161)

f21,CH4 = ξCH4 f20,CH4 (A162)

PF22 = 73.332 f22,H2 + 64.232 f22,CO + 3.722 f22,CH3OH + 60.125 f22,CH4 (A163)

Appendix C.8.3. Low Detail

ξH2 = 0.99 (A164)

ξCO = 0.99 (A165)

ξCH3OH = 0.85 (A166)

ξCH4 = 0.99 (A167)

f21,H2 = 0.99 f20,H2 (A168)

f21,CO = 0.99 f20,CO (A169)

f21,CH3OH = 0.85 f20,CH3OH (A170)

f21,CH4 = 0.99 f20,CH4 (A171)

T = 4 (A172)

References

1. Floudas, C.A.; Gounaris, C.E. A review of recent advances in global optimization. J. Global Optim.
2009, 45, 3–38. [CrossRef]

2. Trespalacios, F.; Grossmann, I.E. Review of mixed-integer nonlinear and generalized disjunctive
programming methods. Chem. Ing. Tech. 2014, 86, 991–1012. [CrossRef]

3. Lee, J.; Leyffer, S. (Eds.) Mixed Integer Nonlinear Programming; The IMA Volumes in Mathematics and its
Applications; Springer: New York, NY, USA, 2012; Volume 154. [CrossRef]

4. Kronqvist, J.; Bernal, D.E.; Lundell, A.; Grossmann, I.E. A Review and Comparison of sSolvers for Convex MINLP;
Springer: New York, NY, USA, 2019; Volume 20, pp. 397–455. [CrossRef]

5. Dowling, A.W.; Biegler, L.T. A framework for efficient large scale equation-oriented flowsheet optimization.
Comput. Chem. Eng. 2015, 72, 3–20. [CrossRef]

6. Kondili, E.; Pantelides, C.; Sargent, R. A general algorithm for short-term scheduling of batch operations—I.
MILP formulation. Comput. Chem. Eng. 1993, 17, 211–227. [CrossRef]

7. Smith, E.; Pantelides, C. Design of reaction/separation networks using detailed models. Comput. Chem. Eng.
1995, 19, 83–88. [CrossRef]

Processes 2019, 7, 839 22 of 23

8. Bagajewicz, M.J.; Manousiouthakis, V. Mass/heat-exchange network representation of distillation networks.
AIChE J. 1992, 38, 1769–1800. [CrossRef]

9. Friedler, F.; Tarjan, K.; Huang, Y.; Fan, L. Combinatorial algorithms for process synthesis. Comput. Chem. Eng.
1992, 16, S313–S320. [CrossRef]

10. Farkas, T.; Rev, E.; Lelkes, Z. Process flowsheet superstructures: Structural multiplicity and redundancy Part
I: Basic GDP and MINLP representations. Comput. Chem. Eng. 2005, 29, 2180–2197. [CrossRef]

11. D’Anterroches, L.; Gani, R. Group contribution based process flowsheet synthesis, design and modelling.
Fluid Phase Equilibria 2005, 228–229, 141–146. [CrossRef]

12. Lutze, P.; Babi, D.K.; Woodley, J.M.; Gani, R. Phenomena based methodology for process synthesis
incorporating process intensification. Ind. Eng. Chem. Res. 2013, 52, 7127–7144. [CrossRef]

13. Bertran, M.O.; Frauzem, R.; Sanchez-Arcilla, A.S.; Zhang, L.; Woodley, J.M.; Gani, R. A generic methodology
for processing route synthesis and design based on superstructure optimization. Comput. Chem. Eng.
2017, 106, 892–910. [CrossRef]

14. Wu, W.; Henao, C.A.; Maravelias, C.T. A superstructure representation, generation, and modeling framework
for chemical process synthesis. AIChE J. 2016, 62, 3199–3214. [CrossRef]

15. Li, J.; Demirel, S.E.; Hasan, M.M.F. Process Integration Using Block Superstructure. Ind. Eng. Chem. Res.
2018, 57, 4377–4398. [CrossRef]

16. Raman, R.; Grossmann, I. Modelling and computational techniques for logic based integer programming.
Comput. Chem. Eng. 1994, 18, 563–578. [CrossRef]

17. Grossmann, I.E.; Trespalacios, F. Systematic modeling of discrete-continuous optimization models through
generalized disjunctive programming. AIChE J. 2013, 59, 3276–3295. [CrossRef]

18. Balas, E. Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J.
Algebraic Discrete Methods 1985, 6, 466–486. [CrossRef]

19. Balas, E. Disjunctive Programming; Springer International Publishing: Cham, Switzerland, 2018. [CrossRef]
20. Raman, R.; Grossmann, I. Relation between MILP modelling and logical inference for chemical process

synthesis. Comput. Chem. Eng. 1991, 15, 73–84. [CrossRef]
21. Hooker, J. Logic-Based Methods for Optimization; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [CrossRef]
22. Türkay, M.; Grossmann, I.E. Logic-based MINLP algorithms for the optimal synthesis of process networks.

Comput. Chem. Eng. 1996, 20, 959–978. [CrossRef]
23. Lee, S.; Grossmann, I.E. Global optimization of nonlinear generalized disjunctive programming with bilinear

equality constraints: applications to process networks. Comput. Chem. Eng. 2003, 27, 1557–1575. [CrossRef]
24. Ruiz, J.P.; Grossmann, I.E. Global optimization of non-convex generalized disjunctive programs: A review

on reformulations and relaxation techniques. J. Global Optim. 2017, 67, 43–58. [CrossRef]
25. Williams, H.P. Model Building in Mathematical Programming, 5th ed.; John Wiley & Sons, Ltd.:

Hoboken, NJ, USA, 2013.
26. Chen, Q.; Grossmann, I. Recent developments and challenges in optimization-based process synthesis.

Annu. Rev. Chem. Biomol. Eng. 2017, 8, 249–283 [CrossRef] [PubMed]
27. Rolandi, P.A. The Unreasonable Effectiveness of Equations: Advanced Modeling For Biopharmaceutical

Process Development. In Computer Aided Chemical Engineering; Elsevier B.V.: Amsterdam, The Netherlands,
2019; pp. 137–150. [CrossRef]

28. Siirola, J.D.; Hauan, S. Polymorphic optimization. Comput. Chem. Eng. 2007, 31, 1312–1325. [CrossRef]
29. Tian, Y.; Demirel, S.E.; Hasan, M.M.; Pistikopoulos, E.N. An overview of process systems engineering

approaches for process intensification: State of the art. Chem. Eng. Process. Process Intensif. 2018, 133, 160–210.
[CrossRef]

30. Tsay, C.; Pattison, R.C.; Piana, M.R.; Baldea, M. A survey of optimal process design capabilities and practices
in the chemical and petrochemical industries. Comput. Chem. Eng. 2018, 112, 180–189. [CrossRef]

31. Tula, A.K.; Eden, M.R.; Gani, R. Computer-aided process intensification: Challenges, trends and
opportunities. AIChE J. 2019. [CrossRef]

32. Sitter, S.; Chen, Q.; Grossmann, I.E. An overview of process intensification methods. Curr. Opin. Chem. Eng.
2019. [CrossRef]

33. Simon, H.A. The architecture of complexity. In Facets of Systems Science; Springer US: Boston, MA, USA,
1991; pp. 457–476. [CrossRef]

Processes 2019, 7, 839 23 of 23

34. Knueven, B.; Laird, C.; Watson, J.P.; Bynum, M.; Castillo, A.; US DOE. Egret v. 0.1 (beta), Version v. 0.1 (beta).
2019. [CrossRef]

35. Gani, R.; Hytoft, G.; Jaksland, C.; Jensen, A.K. An integrated computer aided system for integrated design of
chemical processes. Comput. Chem. Eng. 1997, 21, 1135–1146. [CrossRef]

36. Kravanja, Z.; Grossmann, I.E. Prosyn—An automated topology and parameter process synthesizer.
Comput. Chem. Eng. 1993, 17, S87–S94. [CrossRef]

37. Miller, D.C.; Siirola, J.D.; Agarwal, D.; Burgard, A.P.; Lee, A.; Eslick, J.C.; Nicholson, B.; Laird, C.; Biegler, L.T.;
Bhattacharyya, D.; et al. Next generation multi-scale process systems wngineering framework. Comput. Aided
Chem. Eng. 2018, 44, 2209–2214. [CrossRef]

38. Castro, P.M.; Grossmann, I.E. Generalized disjunctive programming as a systematic modeling framework to
derive scheduling formulations. Ind. Eng. Chem. Res. 2012, 51, 5781–5792. [CrossRef]

39. Lee, S.; Grossmann, I.E. New algorithms for nonlinear Generalized Disjunctive Programming.
Comput. Chem. Eng. 2000, 24, 2125–2141. [CrossRef]

40. Ruiz, J.P.; Grossmann, I.E. A hierarchy of relaxations for nonlinear convex generalized disjunctive
programming. Eur. J. Operat. Res. 2012, 218, 38–47. [CrossRef]

41. Trespalacios, F.; Grossmann, I.E. Cutting plane algorithm for convex generalized disjunctive programs.
INFORMS J. Comput. 2016, 28, 209–222. [CrossRef]

42. Bogataj, M.; Kravanja, Z. Alternative mixed-integer reformulation of Generalized Disjunctive Programs.
Comput. Aided Chem. Eng. 2018, 43, 549–554. [CrossRef]

43. Furman, K.C.; Sawaya, N.; Grossmann, I. A computationally useful algebraic representation of nonlinear
disjunctive convex sets using the perspective function. Optim. Online 2017.

44. Brook, A.; Kendrick, D.; Meeraus, A. GAMS, a user’s guide. ACM SIGNUM Newslett. 1988, 23, 10–11.
[CrossRef]

45. Vecchietti, A.; Grossmann, I.E. LOGMIP: A disjunctive 0-1 non-linear optimizer for process system models.
Comput. Chem. Eng. 1999, 23, 555–565. [CrossRef]

46. Chen, Q.; Johnson, E.S.; Siirola, J.D.; Grossmann, I.E. Pyomo.GDP: Disjunctive Models in Python. In
Proceedings of the 13th International Symposium on Process Systems Engineering; Eden, M.R., Ierapetritou, M.G.,
Towler, G.P., Eds.; Elsevier B.V.: San Diego, CA, USA, 2018; pp. 889–894. [CrossRef]

47. Hart, W.E.; Laird, C.D.; Watson, J.P.; Woodruff, D.L.; Hackebeil, G.A.; Nicholson, B.L.; Siirola, J.D.
Pyomo—Optimization Modeling in Python, 2nd ed.; Springer Optimization and Its Applications;
Springer International Publishing: Cham, Switzerland, 2017; Volume 67. [CrossRef]

48. Trespalacios, F.; Grossmann, I.E. Improved big-M reformulation for generalized disjunctive programs.
Comput. Chem. Eng. 2015, 76, 98–103. [CrossRef]

49. Vecchietti, A.; Grossmann, I.E. Modeling issues and implementation of language for Disjunctive
Programming. Comput. Chem. Eng. 2000, 24, 2143–2155. [CrossRef]

50. Douglas, J.M. A hierarchical decision procedure for process synthesis. AIChE J. 1985, 31, 353–362. [CrossRef]
51. Grossmann, I.E.; Lee, S. Generalized convex disjunctive programming: Nonlinear convex hull relaxation.

Comput. Optim. Appl. 2003, 26, 83–100. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

