
Symmetry Detection for Quadratic Optimization Using Binary Layered
Graphs

Authors:

Georgia Kouyialis, Xiaoyu Wang, Ruth Misener

Date Submitted: 2019-12-16

Keywords: quadratically-constrained quadratic optimization, quadratic optimization, symmetry

Abstract:

Symmetry in mathematical optimization may create multiple, equivalent solutions. In nonconvex optimization, symmetry can negatively
affect algorithm performance, e.g., of branch-and-bound when symmetry induces many equivalent branches. This paper develops
detection methods for symmetry groups in quadratically-constrained quadratic optimization problems. Representing the optimization
problem with adjacency matrices, we use graph theory to transform the adjacency matrices into binary layered graphs. We enter the
binary layered graphs into the software package nauty that generates important symmetric properties of the original problem.
Symmetry pattern knowledge motivates a discretization pattern that we use to reduce computation time for an approximation of the
point packing problem. This paper highlights the importance of detecting and classifying symmetry and shows that knowledge of this
symmetry enables quick approximation of a highly symmetric optimization problem.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2019.1634
Citation (this specific file, latest version): LAPSE:2019.1634-1
Citation (this specific file, this version): LAPSE:2019.1634-1v1

DOI of Published Version: https://doi.org/10.3390/pr7110838

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)

processes

Article

Symmetry Detection for Quadratic Optimization
Using Binary Layered Graphs

Georgia Kouyialis †, Xiaoyu Wang and Ruth Misener *

Department of Computing, Imperial College London, London SW7 2AZ, UK;
g.kouyialis14@imperial.ac.uk (G.K.); xiao.wang10@imperial.ac.uk (X.W.)
* Correspondence: r.misener@imperial.ac.uk; Tel.: +44-207-594-8315
† Current address: Schlumberger Cambridge Research.

Received: 16 May 2019; Accepted: 5 November 2019; Published: 9 November 2019
����������
�������

Abstract: Symmetry in mathematical optimization may create multiple, equivalent solutions.
In nonconvex optimization, symmetry can negatively affect algorithm performance, e.g., of
branch-and-bound when symmetry induces many equivalent branches. This paper develops
detection methods for symmetry groups in quadratically-constrained quadratic optimization
problems. Representing the optimization problem with adjacency matrices, we use graph theory to
transform the adjacency matrices into binary layered graphs. We enter the binary layered graphs into
the software package nauty that generates important symmetric properties of the original problem.
Symmetry pattern knowledge motivates a discretization pattern that we use to reduce computation
time for an approximation of the point packing problem. This paper highlights the importance
of detecting and classifying symmetry and shows that knowledge of this symmetry enables quick
approximation of a highly symmetric optimization problem.

Keywords: symmetry; quadratic optimization; quadratically-constrained quadratic optimization

1. Introduction

When the optimization variables can be permuted without changing the structure of the
underlying optimization problem, we say that the formulation group of an optimization problem is
symmetric [1,2]. For motivation, consider the circle packing problem illustrated in Figure 1 [3]. Given an
integer n > 0, the circle packing problem asks: what is the largest radius r for which n non-overlapping
circles can be placed in the unit square? Costa et al. [3] show that the formulation group, i.e., a
subgroup of symmetry group generated by permuting variables and constraints, is isomorphic to a
symmetry group created by permuting the variable indices and switching the two coordinates in a unit
square (C2 × Sn). Solution methods for nonconvex optimization problems lacking symmetry-aware
formulations and/or solution procedures may end up exploring all of these equivalent solutions.
In other words, symmetry may cause classical optimization methods such as branch-and-bound to
explore many unnecessary subtrees.

More generally, a number of authors have considered a range of symmetry detection
methods, e.g., for constraint programming [4], integer programming [1,5–8], and mixed-integer
nonlinear optimization [2]. These automatic symmetry detection methods can then be used
to mitigate the computational difficulties caused by symmetries, e.g., with symmetry-breaking
constraints [9–11], objective perturbation [12], specialized branching strategies [13,14], cutting
planes [15,16], and extended formulations [17]. The recent computational comparison of Pfetsch
and Rehn [18] indicates that these state-of-the-art symmetry handling methods expedite the solution
process for the MIPLIB 2010 instances and additionally enable more instances to be solved in a
time limit.

Processes 2019, 7, 838; doi:10.3390/pr7110838 www.mdpi.com/journal/processes

Processes 2019, 7, 838 2 of 12

1 rotation

reflections

2

rotation

4

rotation

3rotation

Figure 1. Given an integer n > 0, the circle packing problem asks: what is the largest radius r for which
n non-overlapping circles can be placed in the unit square? Already for n = 2, there are four equivalent
solutions [3]; these solutions are related to one another via rotations and reflections.

Researchers have also developed symmetry-handling methods for specific applications including
covering design [19], circle packing [3,20], scheduling [21], transmission switching [22], unit
commitment [23–26], and heat exchanger network synthesis [27,28]. As a concrete example of the
type of contributions researchers have made, consider a job shop scheduling problem that minimizes
makespan on two identical machines. Good scheduling formulations and/or solution procedures, e.g.,
Maravelias and Grossmann [29], Maravelias [30], and Mistry et al. [31], will implicitly exclude two of
the three equivalent solutions diagrammed in Figure 2.

Time

M1

M2 Task 2

Task 1

Task 3

0 1 2 3 4 5 6 7 8 9 10 Time

M1

M2

Task 2

Task 1

Task 3

0 1 2 3 4 5 6 7 8 9 10 Time

M1

M2 Task 2

Task 1

Task 3

0 1 2 3 4 5 6 7 8 9 10

Figure 2. To observe symmetries that may arise in scheduling, consider a job shop scheduling problem
that minimizes makespan on two identical machines. Lacking symmetry-aware formulations and/or
solution procedures, a solution procedure may end up exploring all three of these equivalent solutions.

This paper develops detection methods for symmetry groups in quadratically-constrained
quadratic optimization problems. Representing the optimization problem with adjacency matrices,
we use graph theory to transform the adjacency matrices into binary layered graphs. We enter the
binary layered graphs into the software package nauty that generates important symmetric properties
of the original problem. Symmetry pattern knowledge motivates a discretization pattern that we use
to reduce computation time for an approximation of the point packing problem.

2. Formulation Symmetry for Quadratically-Constrained Quadratic Optimization Problems

Consider the quadratically-constrained quadratic optimization problem (QCQP):

min
x∈Rn

f0(x)

s.t. fk(x) ≤ 0 ∀ k = 1, . . . , m

xi ∈
[

xL
i , xU

i

]
∀ i = 1, . . . , n,

(QCQP)

where:

fk(x) =
n

∑
i=1

n

∑
j=1

αk
ijxixj +

n

∑
i=1

αk
i0xi + αk

00 ∀ k = 0. . . . , m, (1)

with finite variable bounds xL
i , xU

i ∈ R, ∀i and coefficients αk
ij ∈ R for i, j ∈ {0, . . . , n}, k ∈ {0, . . . , m}.

To represent symmetry in the QCQP formulation, consider Sn, the symmetric group of order n
formed by the n! possible permutation operations. The formulation group of QCQP , or GQCQP, is the set
of variable index permutations that preserve the objective and constraint structure [2]. For a variable
index permutation π ∈ Sn, we seek the constraint index permutations σ ∈ Sn that maintain both the

Processes 2019, 7, 838 3 of 12

objective value and the constraint structure on the feasible domain dom(f) where f = [f1, . . . , fm].
More formally:

Definition 1 (Formulation group of QCQP).

GQCQP = {π ∈ Sn | ∀x ∈ dom(f0) f0(πx) = f0(x) ∧ ∀x ∈ dom(f) ∃σ ∈ Sm (σ f (πx) = f (x))} .

Because dom(f) may be nonconvex and difficult to compute, this paper considers a GQCQP
restriction that enforces symmetry on the entire box bounds, i.e., we assume that dom(f) =

[
xL, xU]

for the purpose of computing GQCQP. The next subsections represent formulation symmetry in two
ways: (i) expression graphs in Section 2.1 and (ii) tensors in Section 2.2. Representing formulation
symmetry using expression graphs is due to Liberti [2] and the tensor representation is new to
this paper.

2.1. Symmetry Detection with Expression Graphs

One option to compare two functions is to compare their expression trees, i.e., a directed
acyclic graph representation of each function that incorporates the relevant operations, constants,
and variables [2]. These expression tree models were first developed for mixed integer nonlinear
optimization (MINLP) by Smith and Pantelides [32] and are common in most global MINLP
solvers [33–39] and other MINLP-related software [40–42]. Figure 3 illustrates a simple example
of an expression tree for 3x1 + 2x2

4 + 2x2x3. A tree comparison algorithm may recursively compare
two trees to determine equivalence [2]. More advanced implementations may detect equivalent but
differently-formulated expressions, e.g., (x1 + x2)

2 versus x2
1 + 2x1x2 + x2

2.

+

* **

2

2

23 X

X

X X1 2 3

4

^

Figure 3. Example of an expression tree for 3x1 + 2x2
4 + 2x2x3.

With a directed acyclic graph representation, Liberti [2] computes the formulation symmetry
group using the graph isomorphism problem, i.e., a problem that can be solved using off-the-shelf
software nauty [43]. Liberti [2] also proves how to map the automorphism group of a directed acyclic
graph to the formulation group of the original MINLP.

2.2. Symmetry Detection with Tensors

As an alternative to the expression tree representation, Figure 4 illustrates that QCQP can
be represented as a tensor: AQCQP ∈ R(n+1)×(n+1)×(m+2n). Each of the two dimensions (n + 1)
corresponds to a constant term and the variables. Each two-dimensional slice of the tensor corresponds
to the constant, linear, and quadratic terms in a constraint. The first m slices correspond to Equation (1)
and have entries ak

ij. The next 2n slices correspond to the box constraints, i.e., xi ≥ xL
i and xi ≤ xU

i , ∀i.
The formulation group of this representation is:

GQCQP,T =
{

π ∈ Sn | ∀x ∈ dom(f0) f0(πx) = f0(x) ∧ ∀x ∈ dom(f) ∃σ ∈ Sm
(

AQCQP(π, π, σ) = AQCQP
)}

.

Processes 2019, 7, 838 4 of 12

...

...

...

...
...
...
...
...

...

...

...

...

Variables

V
ar

ia
bl

es

Constraints

Figure 4. Tensor representation of the symmetry.

2.2.1. Sparse Tensor Representation

For a given tensor AQCQP, consider a sparse representation, illustrated in Figure 5, that reduces
the memory required to store the tensor. Instead of storing the entire tensor, we store arrays of length s
where s is the number of nonzero entries in QCQP. The first array, M = (M1, . . . , Ms) stores all nonzero
entries αk

ij of QCQP. The next three arrays, I = (I1, . . . , Is), J = (J1, . . . , Js), K = (K1, . . . , Ks) represent

the indices corresponding to the nonzero αk
ij entries. The maximum size of s is (n + 1)2(m + 2n), but, in

practice, most arrays will be significantly shorter.

J

I

K

IM =

KM =

JM =

M =

Figure 5. Sparse tensor representation models AQCQP as 4 arrays with the nonzero entry αk
ij in M and

arrays I, J, K holding the index.

2.2.2. Converting Matrices to Edge-Labeled, Vertex-Colored Graphs

We convert the sparse tensor representation of AQCQP into an edge-labeled, vertex-colored
graph. Given the edge-labeled, vertex-colored graph, generating graph automorphisms to the original
problem symmetries is well-known [1,5,44,45]. To construct the edge-labeled, vertex-colored graph,
consider a graph G = (V, E, c) corresponding to an instance M, I, J, K. The function c : E 7→ r,
for r ∈ {0, . . . , `− 1} is an edge coloring where ` ∈ Z+ is the number of different coefficients in M.
Each unique element in M is stored in a vector U ∈ R`. We also partition (color) the vertex set into
four subsets: a set VF representing the objective function, VC nodes for the constraints, a constant
node VS, and VR variable nodes. The automorphism definition prevents vertices from being mapped
onto a vertex of a different color, so these colors prevent, for example variables becoming constraints.
The equivalence relation is [2]:

∀u, v ∈ VP u ∼ v =⇒ (u, v ∈ VF ∧ `(u) = `(v)) ∨ (u, v ∈ VC ∧ `(u) = `(v))

∨ (u, v ∈ VS ∧ `(u) = `(v)) ∨ (u, v ∈ VR ∧ `(u) = `(v)) .

Figure 6 illustrates the edge-labeled, vertex-colored graph. Initially, the edge set is empty E = ∅.
For i = {0, . . . , s} where s = |M|, add an edge v(r)Ii

to v(r)Ki
, i.e., from a vertex in the set that represents

the constant element / variables to a vertex in the set of the objective function / constraints, with the
relevant color. The graph construction incorporates edges between variable nodes VR for the quadratic
bilinear terms. For i = {0, . . . , s}:

• If Ii = Ji, i.e., a quadratic term, then E = E ∪ {{(vIi , vKi)
r} ∩ {(vIi)

r}}.
• else for bilinear term, Ii 6= Ji, then E = E ∪ {{(vIi , vKi)

r} ∩ {(vJi , vKi)
r} ∩ {(vIi , vJi)

r}}.

Processes 2019, 7, 838 5 of 12

C1

C0

C2

Cm

X1

X2

X0

Xn

.

..
.
..

wF

w1=

=
..

w1=

Figure 6. The tensor AQCQP as an edge-labeled, vertex-colored graph.

3. Formulation Symmetry Detection via Binary Layered Graphs

The software nauty [43], which detects symmetry, accepts vertex-colored graphs but does not
accept the Section 2.2.2 edge-labeled, vertex-colored graphs. Thus, we associate edge colors with
layers in a graph and transform the edge-labeled, vertex-colored graph into a vertex-colored graph.
Since the transformation from an edge-labeled, vertex-colored graph to a vertex-colored graph is
isomorphic [43], the transformation does not lose anything. Using the resulting binary layered graphs,
we generate the automorphism group and find symmetry in the original QCQP.

To convert a graph G = (V, E, c) with ` colors into an ` - layered graph [43], we replace each vertex
vj ∈ V with a fixed connected graph of ` vertices v(0)j , . . . , v(`−1)

j . If an edge (vj, vj′) has color r, add

an edge from v(r)j to v(r)j′ . Finally, we partition the vertices by the superscripts, Vr = {v(r)0 , . . . , v(r)n−1}.
Alernatively, a binary representation avoids too many layers in G when the number of colors is large.

Definition 2 (Binary Layered Graph). Let ` ∈ Z+ be the number of edge labels of G. A binary layered graph
is a vertex-colored graph where the number of layers L = dlog2 (`+ 1)e matches a binary representation.

We assign a unique positive integer µ(z) to each z ∈ U and map edge labels µ(z) to a binary
representation that switches on/off parameters ct to represent the edge colors as layers. If ct = 1, add
a new edge from vt

i to vt
j for every ct ∈ {c1, . . . , cL−1}:

µ(z) = 2L−1 · cL−1(z) + 2L−2 · cL−2(z) + · · ·+ 20 · c0(z), for ct ∈ {0, 1}, t = {0, . . . , L− 1}. (2)

Figure 7 illustrates the resulting binary labeled graph with its L = dlog2 (`+ 1)e + 2 layers.
There are vertices for the objective function and each constraint and layers of copies of these constraints
(connected with vertical edges). The horizontal edges encode the problem coefficients. On the upper
part of Figure 7, there are vertices for a constant element and each variable and a layer of variable
copies (connected with vertical edges). Here, the horizontal edges and loops distinguish the linear and
bilinear terms. Algorithms 1 and 2 summarize computing the vertex and edge sets, respectively.

objective
function + constraints

identity +

2

bilinear
relations

Figure 7. Binary layered graph representation of QCQP using the tensor representation AQCQP.

Processes 2019, 7, 838 6 of 12

Algorithm 1 Algorithm constructing the vertex set

1: procedure G=(V, E)
2: V ← ∅, Vs ⊂ V ← ∅ ∀ s, E← ∅
3: L ∈ Z, L = dlog2 (|U|+ 1)e+ 2 . Define L ∈ Z+ the number of layers
4: for s = 0→ L− 3 do . Partition of vertices representing the constraints
5: for k = 0→ m do
6: Vs ← Vs ∪ {v(s)k } . Copies of vertices representing the constraints
7: end for
8: V ← V ∪Vs
9: end for

10: for s = L− 2, L− 1 do . Partition of vertices representing the variables
11: for i = 0→ n do
12: Vs ← Vs ∪ {v(s)i } . Copies of vertices representing the variables
13: end for
14: V ← V ∪Vs
15: end for
16: return G
17: end procedure

Algorithm 2 Algorithm constructing the edge set

1: procedure G=(V, E)
2: V ← V
3: E← ∅
4: for s = 0→ L− 4 do . Vertical edges between copies of vertices
5: for k = 0 . . . m do . Copies of vertices representing the constraints
6: E = E ∪ E ∪ (v(s)k , v(s+1)

k)
7: end for
8: end for
9: . Vertical edges between copies of vertices

10: for j = 0 . . . n do . Copies of vertices representing the variables
11: E = E ∪ (v(L−2)

j , v(L−1)
j)

12: end for
13: for F = 0, . . . N − 1 do . Bilinear terms
14: if IM(F) = JM(F) then . Add a loop
15: E = E ∪ (v(L−1)

IM(F), v(L−1)
IM(F))

16: else
17: if IM(F) < JM(F) then . Add an edge
18: E = E ∪ (v(L−1)

IM(F), v(L−1)
JM(F))

19: else
20: E = E ∪∅
21: end if
22: end if
23: end for
24: for F = 0 . . . N − 1 do
25: for k = 0 . . . m do
26: if KM(F) = k then
27: if IM(F) = 0 then
28: E = E ∪ (v(s)k , v(L−2)

JM(F))
29: else
30: E = E ∪ (v(L−1)

IM(F), v(L−1)
JM(F))

31: end if
32: end if
33: end for
34: end for
35: return G
36: end procedure

Processes 2019, 7, 838 7 of 12

4. Numerical Discussion and Comparison to the State-of-the-Art

The following example incorporates the algorithms proposed in this paper. We construct the
binary labeled graph and then enter it into nauty through the dreadnaut command line interface:

max
x1,x2,x3,x4∈[0,1]

3x1 + 3x4 + 2x2x3 (c0),

x2 + x1
2 + 1 ≤ 0 (c1),

x3 + x2
4 + 1 ≤ 0 (c2),

x2 + x3 + 1 ≤ 0 (c3).

The optimization problem has sparse matrix representation: M = (3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1),
I = (0, 0, 2, 0, 0, 1, 0, 0, 4, 0, 0, 0), J = (1, 4, 3, 0, 2, 1, 0, 3, 4, 0, 2, 3), K = (0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3),
vector of unique elements U = [1, 2, 3], and L = dlog2 4e = 2 layers.

Equation (2) computes the binary representation of each unique element, e.g., 3 = 21 + 20

indicates that there is an edge between vertices on layer zero and another edge between the same
vertices on layer 1. The graph consists of four layers and |V| = 18, one associated with a constant
element and one with the objective function and the rest for the problem variables and constraints.
The left-hand side of Figure 8 illustrates the graph representation. Nauty generates permutations:
π = (1, 2)(5, 6)(9, 12)(10, 11)(14, 17)(15, 16). To see how these Nauty-generated permutations usefully
explain the symmetry properties of the entire problem, observe: (i) Permutations (1, 2)(5, 6), as shown
in Figure 8, permute the constraints c1, c2 and (ii) Permutations (9, 12)(10, 11) are associated with the
variables x1, x4 and x2, x3 with (14, 17)(15, 16) their copies. These permutations therefore allow us to
automatically calculate the formulation group G = (x1x4)(x2x3).

I X1 X2 X3 X4

C1C0 C2 C3

+ + + +

* * * ^ ^

23 X XX1 2 3 1X4

Figure 8. Illustration of the example problem using the binary labeled graph representation (left) and
the directed acyclic graph representation (right).

The right-hand side of Figure 8 uses Section 2.1 to develop a directed acyclic graph representation
for the same problem. The graph colors represent the vertex partitioning that enables node exchanges.
In this case, the directed acyclic graph representation uses a smaller number of vertices and edges than
the tensor-based representation. However, the representations generate the same formulation group.

Comparison. To evaluate the trade-offs between the tensor and directed acyclic graph
representations, observe that both methods will search for the same formulation group symmetries.
However, the tensor representation may be especially useful when working with problems with
many differently-valued coefficients, i.e., the logarithmic number of layers may reduce the number of
nodes. The function assigning integer values to the problem coefficients lets us work not only with 0–1
coefficients, but also with any other value.

Processes 2019, 7, 838 8 of 12

5. Exploiting Symmetry in the Point Packing Problem

Once symmetry has been detected, we can use our knowledge of the symmetry to mitigate
the computational difficulties caused by symmetry. Here, we focus on solving the point packing
problem [46–49]. The point packing problem concerns packing n points to a unit square. The aim is to
maximize the in-between distance between any two points:

max θ

subject to (xi − xj)
2 + (yi − yj)

2 ≥ θ 1 ≤ i < j ≤ n,

0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1 1 ≤ i ≤ n,

where θ denotes the minimum distance between any two points. To approximate this problem, consider
a grid approach that approximates the optimal solution by adding grid lines to the unit square and
forcing the points to be placed only to the vertices generated by these grid lines. Note that the point
packing problem has significant applications, e.g., in placing mobile phone towers.

For n points, there will be at most a k ∗ ×k∗ grid, where k∗ is the smallest number whose square
is the least integer that is greater than n, i.e., (k ∗ −1)2 < n and k∗2 ≥ n. In other words, we add at
most 2k∗ grid lines. On this k ∗ ×k∗ grid, points will occupy most of the vertexes and the unit length
of spacing has been maximized. This approach, unfortunately, has the potential of missing the optimal
solution. Consider fitting six points to the square. The most fitting grid is 3× 3 and the optimal θ

we achieve is 0.5. However, the optimal solution of 0.6009 is achieved by the arrangement shown in
Figure 9, which is not available on a 3× 3 grid. Although an approximation, k∗ is still a useful pruning
tool, e.g., points need to be at least 1

k∗−1 away from any other point.

Figure 9. Optimal arrangement of six points.

Exhaustive Search and 2D Symmetry Removal

First, consider Algorithm 3, an exhaustive search method. To break the symmetries, start by
calculating how many grids can possibly have points and the upper limit on the number of points on
any occupied grid lines. Once calculated, the complete set of all possible combinations on the x-axis is
calculated. For example, on a 5× 5 grid, one possible x-coordinate setup is (2, 0, 1, 0, 2). If we label the
five horizontal grid lines from 1 to 5, this setup means that there are two points on grid 1, no points on
grid 2, one point on grid 3, no points on grid 4 and two points on grid 5. To remove x-axis symmetries,
we consider reflections as a duplication, i.e., only one of (1, 0, 2, 0, 2) and (2, 0, 2, 0, 1) are considered.

Algorithm 3 Algorithm 1—Exhaustive Search
Input: number of points n, number of grids k, number of occupied grids m.
Output: The optimal solution d∗

1: Step1 Calculate the upper bound of number of points on each occupied grid u
2: Step2 Generate complete set of combinations of x-coordinate
3: Step3 Symmetries removal on x-coordinates
4: Step4 Generate all y-coordinate sets based on binomial coefficient
5: Step5 Y-coordinates pruning

Processes 2019, 7, 838 9 of 12

Algorithm 3 considers the unique x-axis combinations. The y-axis, i.e., the horizontal grid lines,
should preserve the same characteristics. Thus, in the improved Algorithm 4, we generate the set O of
possible point arrangement such as (2, 0, 1, 0, 2), and this is applied to both horizontal and vertical grid
lines; in other words, we now consider the product O×O to give the exact coordinates of all n points.

Algorithm 4 Algorithm 2—2D Symmetry Removal
Input: number of points n, number of grids k, number of occupied grids m.
Output: The optimal solution d∗

1: Step1 Calculate the upper bound of number of points on each occupied grid u
2: Step2 Generate complete set of combinations of x-coordinate
3: Step3 Symmetries removal on x-coordinates
4: Step4 Use the x-coordinate set to determine y-coordinate
5: Step5 Y-coordinates pruning

Example 1. Consider for five points on a 5 × 5 grid where we have O as {O1 = (1, 0, 2, 0, 2), O2 =

(1, 2, 0, 0, 2), O3 = (1, 0, 0, 2, 2), O4 = (2, 1, 0, 0, 2), O5 = (2, 0, 1, 0, 2)}. The finalized set of full coordinates
would contain 25 elements where the product of O with itself is taken. One particular point setup generated by
this approach is for example, O3 ×O4. If we call the vertical grids as V1 to V5, respectively, and the horizontal
grids as H1 to H5, respectively, O3 ×O4 would mean that we have the following point locations:

1. One point on V1, 2 points on V4 and 2 points on V5. This is from O3.
2. Two points on H1, 1 point on H2 and 2 points on H5. This is from O4.

For O3 ×O4, we would have five complete point setups, as shown in Figure 10. In the last setup, we have
also added the labels for grids to match what we defined earlier. This diagram contains all possible arrangements
of points under this particular orbit partitioning.

(a) (b) (c) (d) (e)

Figure 10. Five point setups for O3 ×O4. (a) point setup1; (b) point setup2; (c) point setup3; (d) point
setup4; (e) point setup5.

To improve further, we can implement pruning mechanisms such as using the bound 1
k∗−1 to

prune the non-optimal setups. In this particular example, we would have pruned all five setups as
none of them satisfy the 0.5 bound from the most fitting grid. This means that O3 ×O4 is not the
optimal point setup for five points on a 5× 5 grid.

6. Results and Comparisons

Both algorithms have been implemented and run on the same devices (HP EliteDesk 800 G2 TWR
Intel Core i7-6700 3.4 GHz) to provide effective comparisons. Figure 11 shows the experimental results
of 2D Symmetry Removal for packing 6 points. We eliminated the result from Exhaustive Search as it is
clear that 2D Symmetry Removal outperforms Exhaustive Search in terms of run-time. We notice that
m, the number of occupied grids (in the diagram, this corresponds to the occupied vertical grids), has
an impact on the run-time. To a reasonable extent, the larger the m, the more choices we have regarding
where we place the points so it in general takes longer time to compute. Although our strategies
effectively convert the point packing QCQP into a mixed-integer linear optimization problems, we
could have alternatively designed a branch-and-bound algorithm that is symmetry aware.

Processes 2019, 7, 838 10 of 12

Figure 11. Run-time for six points on different grids with different number of occupied grids. The line
m = 4 is above the line m = 3.

7. Conclusions

This paper has explored alternative representations for finding symmetry in formulation groups
of a quadratically-constrained optimization problem. We also show that, after knowing the symmetry,
we can design significantly better methods to solve the optimization problems. The contributions in
this paper are relevant to industrial problems that contain a point packing element [50–52].

Author Contributions: Conceptualization, G.K. and R.M.; methodology, G.K.; validation, X.W.; writing, G.K.,
X.W., and R.M.; supervision, R.M.

Funding: This work was funded by an Engineering & Physical Sciences Research Council (ESPRC) Research
Fellowship to R.M. (Grant No. EP/P016871/1) and an EPSRC DTP to G.K.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

MINLP Mixed-integer nonlinear optimization
QCQP Quadratically-constrained quadratic optimization

References

1. Margot, F. Symmetry in Integer Linear Programming. In 50 Years of Integer Programming 1958–2008: From the
Early Years to the State-of-the-Art; Springer: Berlin/Heidelberg, Germany, 2010; pp. 647–686.

2. Liberti, L. Reformulations in mathematical programming: Automatic symmetry detection and exploitation.
Math. Program. 2012, 131, 273–304. [CrossRef]

3. Costa, A.; Hansen, P.; Liberti, L. On the impact of symmetry-breaking constraints on spatial
Branch-and-Bound for circle packing in a square. Discret. Appl. Math. 2013, 161, 96–106. [CrossRef]

4. Puget, J.F. Automatic Detection of Variable and Value Symmetries. In Proceedings of the 11th International
Conference on Principles and Practice of Constraint Programming—CP 2005, Sitges, Spain, 1–5 October
2005; van Beek, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 475–489.

5. Salvagnin, D. A Dominance Procedure for Integer Programming. Master’s Thesis, University of Padua,
Padua, Italy, 2005.

Processes 2019, 7, 838 11 of 12

6. Berthold, T.; Pfetsch, M. Detecting Orbitopal Symmetries. In Proceedings of the Annual International
Conference of the German Operations Research Society (GOR), Augsburg, Germany, 3–5 September 2008;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 433–438.

7. Bremner, D.; Dutour Sikirić, M.; Pasechnik, D.V.; Rehn, T.; Schürmann, A. Computing symmetry groups of
polyhedra. LMS J. Comput. Math. 2014, 17, 565–581. [CrossRef]

8. Knueven, B.; Ostrowski, J.; Pokutta, S. Detecting almost symmetries of graphs. Math. Program. Comput. 2018,
10, 143–185. [CrossRef]

9. Sherali, H.D.; Smith., J.C. Improving Discrete Model Representations via Symmetry Considerations.
Manag. Sci. 2001, 47, 1396–1407. [CrossRef]

10. Liberti, L. Automatic Generation of Symmetry-Breaking Constraints. In Combinatorial Optimization and
Applications; Yang, B., Du, D.Z., Wang, C.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 328–338.

11. Liberti, L.; Ostrowski, J. Stabilizer-based symmetry breaking constraints for mathematical programs. J. Glob.
Optim. 2014, 60, 183–194. [CrossRef]

12. Ghoniem, A.; Sherali, H.D. Defeating symmetry in combinatorial optimization via objective perturbations
and hierarchical constraints. IIE Trans. 2011, 43, 575–588. [CrossRef]

13. Ostrowski, J.; Linderoth, J.; Rossi, F.; Smriglio, S. Constraint Orbital Branching. In Proceedings of the 13th
International Conference on Integer Programming and Combinatorial Optimization IPCO, Bertinoro, Italy,
26–28 May 2008; pp. 225–239.

14. Ostrowski, J.; Linderoth, J.; Rossi, F.; Smiriglio, S. Orbital branching. Math. Program. 2011, 126, 147–178.
[CrossRef]

15. Margot, F. Pruning by isomorphism in branch-and-cut. Math. Program. 2002, 94, 71–90. [CrossRef]
16. Kaibel, V.; Peinhardt, M.; Pfetsch, M.E. Orbitopal fixing. Discret. Optim. 2011, 8, 595–610. [CrossRef]
17. Faenza, Y.; Kaibel, V. Extended Formulations for Packing and Partitioning Orbitopes. Math. Oper. Res. 2009,

34, 686–697. [CrossRef]
18. Pfetsch, M.E.; Rehn, T. A computational comparison of symmetry handling methods for mixed integer

programs. Math. Program. Comput. 2019, 11, 37–93. [CrossRef]
19. Margot, F. Small covering designs by branch-and-cut. Math. Program. 2003, 94, 207–220. [CrossRef]
20. Costa, A.; Liberti, L.; Hansen, P. Formulation symmetries in circle packing. Electron. Notes Discret. Math.

2010, 36, 1303–1310. [CrossRef]
21. Ostrowski, J.; Vannelli, A.; Anjos, M.F. Symmetry in Scheduling Problems; Cahier du GERAD G-2010-69;

GERAD: Montreal, QC, Canada, 2010.
22. Ostrowski, J.; Wang, J.; Liu, C. Exploiting Symmetry in Transmission Lines for Transmission Switching.

IEEE Trans. Power Syst. 2012, 27, 1708–1709. [CrossRef]
23. Ostrowski, J.; Wang, J. Network reduction in the Transmission-Constrained Unit Commitment problem.

Comput. Ind. Eng. 2012, 63, 702–707. [CrossRef]
24. Ostrowski, J.; Anjos, M.F.; Vannelli, A. Modified orbital branching for structured symmetry with an

application to unit commitment. Math. Program. 2015, 150, 99–129. [CrossRef]
25. Lima, R.M.; Novais, A.Q. Symmetry breaking in MILP formulations for Unit Commitment problems.

Comput. Chem. Eng. 2016, 85, 162–176. [CrossRef]
26. Knueven, B.; Ostrowski, J.; Wang, J. The Ramping Polytope and Cut Generation for the Unit Commitment

Problem. INFORMS J. Comput. 2018, 30, 739–749. [CrossRef]
27. Kouyialis, G.; Misener, R. Detecting Symmetry in Designing Heat Exchanger Networks. In Proceedings

of the International Conference of Foundations of Computer-Aided Process Operations-FOCAPO/CPC,
Tucson, AZ, USA, 8–12 January 2017.

28. Letsios, D.; Kouyialis, G.; Misener, R. Heuristics with performance guarantees for the minimum number of
matches problem in heat recovery network design. Comput. Chem. Eng. 2018, 113, 57–85. [CrossRef]

29. Maravelias, C.T.; Grossmann, I.E. A hybrid MILP/CP decomposition approach for the continuous time
scheduling of multipurpose batch plants. Comput. Chem. Eng. 2004, 28, 1921–1949. [CrossRef]

30. Maravelias, C.T. Mixed-Time Representation for State-Task Network Models. Ind. Eng. Chem. Res. 2005,
44, 9129–9145. [CrossRef]

31. Mistry, M.; Callia D’Iddio, A.; Huth, M.; Misener, R. Satisfiability modulo theories for process systems
engineering. Comput. Chem. Eng. 2018, 113, 98–114. [CrossRef]

Processes 2019, 7, 838 12 of 12

32. Smith, E.M.B.; Pantelides, C.C. A symbolic reformulation/spatial branch-and-bound algorithm for the
global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 1999, 23, 457–478. [CrossRef]

33. Tawarmalani, M.; Sahinidis, N.V. A polyhedral branch-and-cut approach to global optimization.
Math. Program. 2005, 103, 225–249. [CrossRef]

34. Belotti, P.; Lee, J.; Liberti, L.; Margot, F.; Wachter, A. Branching and Bounds Tightening techniques for
Non-convex MINLP. Optim. Methods Softw. 2009, 24, 597–634. [CrossRef]

35. Youdong, L.; Linus, S. The global solver in the LINDO API. Optim. Methods Softw. 2009, 24, 657–668.
36. Misener, R.; Floudas, C.A. ANTIGONE: Algorithms for coNTinuous/Integer Global Optimization of

Nonlinear Equations. J. Glob. Optim. 2014, 59, 503–526. [CrossRef]
37. Vigerske, S. Decomposition in Multistage Stochastic Programming and a Constraint Integer Programming

Approach to Mixed-Integer Nonlinear Programming. Ph.D. Thesis, Humboldt-Universität zu Berlin, Berlin,
Germany, 2013.

38. Mahajan, A.; Leyffer, S.; Linderoth, J.; Luedtke, J.; Munson, T. Minotaur: A mixed-integer nonlinear
optimization toolkit. Optim. Online 2017, 6275.

39. Boukouvala, F.; Misener, R.; Floudas, C.A. Global optimization advances in Mixed-Integer Nonlinear
Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO. Eur. J. Oper. Res. 2016,
252, 701–727. [CrossRef]

40. Fourer, R.; Maheshwari, C.; Neumaier, A.; Orban, D.; Schichl, H. Convexity and concavity detection in
computational graphs: Tree walks for convexity assessment. INFORMS J. Comput. 2010, 22, 26–43. [CrossRef]

41. Hart, W.E.; Laird, C.; Watson, J.; Woodruff, D.L. Pyomo: Modeling and solving mathematical programs in
python. Math. Program. Comput. 2011, 3, 219–260. [CrossRef]

42. Ceccon, F.; Siirola, J.D.; Misener, R. SUSPECT: MINLP special structure detector for Pyomo. Optim. Lett.
2019. [CrossRef]

43. McKay, B.D.; Piperno, A. Practical graph isomorphism, II. J. Symb. Comput. 2014, 60, 94–112. [CrossRef]
44. Ramani, A.; Aloul, F.; Markov, I.; Sakallah, K.A. Breaking instance-independent symmetries in exact graph

coloring. J. Artif. Intell. Res. 2006, 1, 324–329. [CrossRef]
45. Ramani, A.; Markov, I.L. Automatically Exploiting Symmetries in Constraint Programming. In Recent

Advances in Constraints; Faltings, B.V., Petcu, A., Fages, F., Rossi, F., Eds.; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 98–112.

46. Anstreicher, K.M. Semidefinite programming versus the reformulationlinearization technique for nonconvex
quadratically constrained quadratic programming. J. Glob. Optim. 2009, 43, 471–484. [CrossRef]

47. Misener, R.; Floudas, C.A. Global optimization of mixed-integer quadratically-constrained quadratic
programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program. 2012,
136, 155–182. [CrossRef]

48. Misener, R.; Floudas, C.A. GloMIQO: Global mixed-integer quadratic optimizer. J. Glob. Optim. 2013,
57, 3–50. [CrossRef]

49. Furini, F.; Traversi, E.; Belotti, P.; Frangioni, A.; Gleixner, A.; Gould, N.; Liberti, L.; Lodi, A.; Misener, R.;
Mittelmann, H. QPLIB: A library of quadratic programming instances. Math. Program. Comput. 2019,
11, 237–265. [CrossRef]

50. Jones, D.R. A fully general, exact algorithm for nesting irregular shapes. J. Glob. Optim. 2014, 59, 367–404.
[CrossRef]

51. Misener, R.; Smadbeck, J.B.; Floudas, C.A. Dynamically generated cutting planes for mixed-integer
quadratically constrained quadratic programs and their incorporation into GloMIQO 2. Optim. Methods
Softw. 2015, 30, 215–249. [CrossRef]

52. Wang, A.; Hanselman, C.L.; Gounaris, C.E. A customized branch-and-bound approach for irregular shape
nesting. J. Glob. Optim. 2018, 71, 935–955. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

