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Abstract: Ionic liquids, which are classified as new solvents, have been identified to be potential
solvents in the application of CO2 capture. In this work, six ammonium-based protic ionic liquids,
containing ethanolammonium [EtOHA], tributylammonium [TBA], bis(2-ethylhexyl)ammonium
[BEHA] cations, and acetate [AC] and butyrate [BA] anions, were synthesized and characterized.
The thermophysical properties of the ammonium-based protic ionic liquids were measured. Density,
ρ, and dynamic viscosity, η, were determined at temperatures between 293.15 K and 363.15 K. The
density and viscosity values were correlated using empirical correlations and the thermal coefficient
expansion, αp, and molecular volume, Vm, were estimated using density values. The thermal stability
of the ammonium-based protic ionic liquids was investigated using thermogravimetric analyzer
(TGA) at a heating rate of 10 ◦C·min-1. The CO2 absorption of the ammonium-based ionic liquids
were measured up to 20 bar at 298.15 K. From the experimental results, [BEHA][BA] had the highest
affinity towards CO2 with the mol fraction of CO2 absorbed approaching 0.5 at 20 bar. Generally, ionic
liquids with butyrate anions have better CO2 absorption than that of acetate anions while [BEHA]
ionic liquids have higher affinity towards CO2 followed by [TBA] and [EtOHA] ionic liquids.

Keywords: ammonium-based protic ionic liquids; density; thermal expansion coefficient; viscosity;
thermal stability; CO2 absorption

1. Introduction

Natural gas consists mainly of methane as well as other higher alkanes in varied amounts. It
is mainly used as a fuel and as a raw material in petrochemical industries [1]. While natural gas
is principally a mixture of combustible hydrocarbons, many natural gases also contain impurities,
such as carbon dioxide, CO2, hydrogen sulfide, H2S, and water. Refining processes are required to
remove all of these unwanted impurities from natural gas. Besides water and higher-molecular-weight
hydrocarbons, one of the most crucial parts of gas processing is the elimination of CO2 and this
process is normally done by means of chemical absorption techniques using alkanolamine solutions.
Despite the successful practice of using alkanolamines for CO2 removal, several disadvantages have
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been identified, such as solvent loss and degradation as well as corrosion issues [2]. In view of these
issues, there is a need to develop new alternative, yet effective solvents for the same purposes. Ionic
liquids have emerged as new solvents that have potential to be used for CO2 removal due to their
special features, namely non-detectable vapor pressure, wide liquid range, and remarkable thermal
stability. Ionic liquids are low melting salts with typical melting points of below 100 ◦C. Furthermore,
there are countless possible combinations of cations and anions that can yield ionic liquids and this
flexibility is utilized to design ionic liquids based on the application. Ionic liquids are used in many
applications, such as in chemical reactions and separation processes [3–6]. In the field of CO2 capture
using ionic liquids, initial work on the CO2-ionic liquid system was done in 2001 [7] and, following
this discovery, extensive works have been done to explore the absorption of CO2 in ionic liquids
under various operating conditions [8–15]. Imidazolium-based ionic liquids were used in most of
the study of CO2 absorption. They are highly unsymmetrical and therefore have low melting points.
Recently, protic ionic liquids have been used in the study of CO2 capture [16,17]. Protic ionic liquids
are formed by a proton transfer between an equimolar amount of a Brønsted acid and a Brønsted
base. The modern type of protic ionic liquids have been described by Ohno and co-workers [18] and
an extensive review on the properties and applications of protic ionic liquids has been provided by
Greaves and Drummond [19] who also noted the ability of protic ionic liquids to support amphiphile
self-assembly [20,21]. The interest in the ionicity of protic ionic liquids has come to light due to the
unlikeliness of complete proton transfer between the acid and base contributing to the presence of a
neutral acid and base mixture [19,22,23]. MacFarlane and Seddon [24] proposed a limit of a 1% neutral
species presence in an ionic liquid to be called ‘pure ionic liquid’. The term pseudo-protic ionic liquid
was suggested by Doi et al. [25] after they discovered that a mixture of N-methylimidazole and acetic
acid exhibited electrical conductivity behavior even though the mixture was mostly dominated by
neutral species rather than ions when inspected using Raman spectroscopy.

Nevertheless, the simple synthesis pathway of protic ionic liquids, i.e., a one-step neutralization
reaction, and their proven ability to absorb CO2 motivated us to explore this type of ionic liquids in the
field of CO2 capture. Nonetheless, physical properties, such as density, viscosity, and thermal stability
of ionic liquids, are very important prior to using these new solvents in any applications. Precise
understanding on the thermophysical properties is important as it is required to evaluate the suitability
of ionic liquids to be used at an industrial scale [26]. For instance, viscosity is an important property
for the design of industrial processes involving heat and mass transfer and dissolution of compounds
in fluids [27]. Therefore, the aim of our work was to synthesize several new ammonium-based protic
ionic liquids using a 1-step neutralization reaction, measure their thermophysical properties, and, lastly,
test their ability to capture CO2. In this work, six ammonium-based protic ionic liquids, containing
acetate and butyrate anions, were synthesized using solvent-free, 1-step neutralization reaction. The
density, dynamic viscosity, and thermal stability of these ionic liquids were determined. The density
values enable the estimation of thermal expansion coefficient and the molecular volume of the ionic
liquids. To assess the capability of these ionic liquids towards CO2, absorption of CO2 was done using
a solubility cell and the screening was done in the CO2 pressure range up to 20 bar and at 298.15 K.
Results showed that the ammonium-based protic ionic liquids synthesized in this study have the
potential to absorb CO2.

2. Materials and Methods

2.1. Chemicals

Three amines and two organic acids from Merck Sdn. Bhd. were used in the production of
the ammonium-based protic ionic liquids. All chemicals were of analytical grade. The amines
and acids CAS numbers, abbreviations, and grades are as follows: ethanolamine (141–43–5, 99%),
bis(2–ethylhexyl)amine (106–20–7, 99%), tributylamine (102–82–9, 99%), acetic acid (64–19–7, 99.8%),
and butyric acid (107–92–6, 99%).
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2.2. Synthesis

For the synthesis of each of the ammonium-based protic ionic liquids, an equimolar amount of
the acid was added dropwise to the amine at ambient conditions and the mixture was consistently
stirred for 24 h to facilitate mixing. The resulting solution was dried under vacuum at 65 ◦C for 6 h
to remove remaining reactants. The final product was kept in a seal container until further use. The
combinations of two acids and three amines produce six ammonium-based protic ionic liquids. Table 1
shows the structures and the abbreviation used for the ionic liquids. All ionic liquids exist as liquids
except [BEHA][AC], which exists as a solid compound at room temperature.

Table 1. Structures of cations and anions, names and abbreviations.

Structure Name and Abbreviation
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2.3. NMR and Water Content

The structure of the ammonium-based protic ionic liquids was analyzed and confirmed via nuclear
magnetic resonance (NMR) spectroscopy. About 5 mg sample of ionic liquid was dissolved in 6 mL
deuterated solvent and the sample’s purity was determined using 500 MHz Bruker NMR Oxford
Instrument. Coulometric Karl Fischer autotitrator DL39 from Mettler was used to determine the water
content of the ionic liquids.

2.4. Thermophysical Characterization

The viscosity and density of the ammonium-based protic ionic liquids were determined
simultaneously using Anton Parr Stabinger Viscometer SVM3000 in the temperature range of 293.15 K
to 363.15 K. The temperature measurement‘s accuracy was within 0.02 K while the reproducibility
of the viscosity and density measurements were 0.35% and ±5.10−4 g·cm−3, respectively [28]. The
decomposition temperatures of the ionic liquids were examined by means of thermogravimetric
analyzer, TGA Perkin Elmer STA 6000. About 10 mg of sample was loaded into a platinum pan and
the sample was heated at a heating rate of 10 ◦C·min-1 under nitrogen flow.

2.5. CO2 Absorption Measurement

The ability of the ammonium-based protic ionic liquids to absorb CO2 was investigated based on
a pressure drop technique using a solubility cell as described in our previous publication [29]. The
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solubility cell consists of an equilibrium cell and a gas vessel immersed in a thermostatic bath. In a
pressure drop method, the gas with a known pressure at constant volume is allowed to be in contact
with the ionic liquid in the equilibrium cell and the pressure drop is monitored as the gas absorbs into
the ionic liquid until equilibrium is attained. In a typical experiment, the equilibrium cell was loaded
with a pre-weighed amount of the ionic liquid and the equilibrium cell was evacuated to remove any
gases. In the gas vessel, CO2 was allowed to stabilize before being quickly charged into the equilibrium
cell. The CO2-ionic liquid system was assumed to achieve equilibrium when the pressure attained a
constant value. The system was maintained in that conditions for an additional two hours to ensure
equilibration. Equation (1) was used to calculate the amount of CO2 absorbed in the ionic liquid,
n2 [30]:

n2 =
PiniVtotal

Z2(Pini, Tini)RTini
−

Peq
[
Vtotal −Vliq

]
Z2(Peq, Teq)RTeq

, (1)

where Pini and Tini are the initial pressure and temperature of the system, Peq and Teq are the pressure
and temperature of the system at equilibrium, Vtotal is the volume of the equilibrium cell, Vliq is the
volume of ionic liquid, R is the gas constant, and Z2 represents the compressibility factor of the gas.
Z2 can be calculated using Soave–Redlich–Kwong equation of state [31]. The mole fraction of CO2

absorbed in the ionic liquid (x2) was calculated using Equation (2):

x2 =
n2

liq(
n2

liq + n1
liq

) , (2)

where n2
liq represents the mole of dissolved CO2 and n1

liq is the mole of the ionic liquid.

3. Results and Discussion

In this work, six ammonium-based protic ionic liquids—ethanolammonium acetate
[EtOHA][AC], ethanolammonium butyrate [EtOHA][BA], tributylammonium acetate [TBA][AC],
tributylammonium butyrate [TBA][BA], bis(2-ethylhexyl)ammonium acetate [BEHA][AC], and
bis(2-ethylhexyl)ammonium butyrate [BEHA][BA]—were synthesized and characterized. All the
ammonium-based protic ionic liquids exist as liquids at room temperature except [BEHA][AC], which
is a solid. The NMR and water content of each ionic liquids are presented as follows:

[EtOHA][AC]: 1H NMR (500 MHz, D2O): δ 3.613 [t, 2H, H2(-OH)], 2.922 [t, 2H, CH2(-NH2)], 1.726 [s,
3H, CH3]. Water content: 2.93%
[EtOHA][BA]: 1H NMR (500 MHz, D2O): δ 3.669 [t, 2H, CH2(-OH)], 2.988 [t, 2H, CH2(-NH2)], 2.010 [t,
2H, CH2(-COOH)], 1.375–1.448 [m, 2H, CH2], 0.747 [t, 3H, CH3]. Water content: 2.06%
[BEHA][AC]: 1H NMR (500 MHz, D2O): δ 2.861 [d, 4H, CH2(-NH)], 1.805 [s, 3H, CH3], 1.613–1.677 [m,
2H, CH], 1.181–1.309 [m, 16H, CH2], 0.786 [t, 12H, CH3]. Solid
[BEHA][BA]: 1H NMR (500 MHz, D2O): δ 2.856 [d, 4H, CH2(-NH)], 2.062 [t, 2H, CH2(-COOH)],
1.582–1.660 [m, 2H, CH], 1.412–1.486 [m, 2H, CH2(AC)], 1.236–1.339 [m, 16H, CH2], 1.214-1.229 [t,t
15H, CH3]. Water content: 0.15%
[TBA][AC]: 1H NMR (500 MHz, D2O): δ 3.002 [t, 4H, CH2(-NH)], 1.788 [s, 3H, CH3], 1.508–10571 [m,
6H, CH2], 1.207–1.282 [m, 6H, CH2], 0.805 [t, 9H, CH3]. Water content: 0.47%
[TBA][BA]: 1H NMR (500 MHz, D2O): δ 3.003 [t, 6H, CH2(-NH)], 2.031 [t, 2H, CH2(-COOH)], 1.510–1.573
[m, 6H, CH2], 1.394–1.468 [m, 2H, CH2(AC)], 1.211-1.285 [m, 6H, CH2], 0.809 [t, 9H, CH3], 0.768 [t, 3H,
CH3(AC)]. Water content: 0.23%

3.1. Thermophysical Properties

The experimental density and dynamic viscosity values for all liquid samples of synthesized
ammonium-based protic ionic liquids are presented in Tables 2 and 3. The experimental densities of
[EtOHA][AC], [EtOHA][BA], [BEHA][BA], [TBA][AC], and [TBA][BA] as a function of temperature
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are shown in Figures 1–3. [BEHA][AC] is not included as it exists as solid. As can be seen from
Figure 1, the density of all five ammonium-based protic ionic liquids decreased gradually and linearly
with increasing temperature over the range of temperature studied. An increase in temperature
caused higher mobility of the ions which, in turn, weakens the intermolecular forces between the
constituent ions and correspondingly increases the unit volume for these ions [32]. The density of these
ammonium-based protic ionic liquids was slightly affected by the length of the alkyl chain of the anion
in which the density of ionic liquids with the [AC] anion was higher than of ionic liquids with the
[BA] anion for a fixed cation, as shown in Figure 2a,b. This observation is consistent with the literature
in which it has been shown that the density value drops as the alkyl chain gets longer [28,32–37].
Our experimental density value of [EtOHA][AC] is in good agreement with Kurnia et al. [35] and
Hosseini et al. [38] with the value differences of less than 0.2% and 0.8%, respectively. Generally,
effective arrangement of ions in a liquid can increase the density of the liquid due to a greater number
of ions available in a unit volume [39]. Based on our experimental results, as shown in Figure 3,
ionic liquids with the [EtOHA] cation have higher density values compared to the rest, suggesting
a better packing of the ions due to the small size of the cation. [TBA][BA] had the lowest density
values at all temperatures due to the combined effects of branching of the cation, which increases the
asymmetricity and steric hindrance of the ionic liquid [32], along with the large size of the alkyl chain
of the [BA] anion.

Table 2. Density (ρ) values of ionic liquids from 293.15 K to 363.15 K.

T/K ρ (g·cm−3)

[EtOHA][AC] [EtOHA][BA] [BEHA][BA] [TBA][AC] [TBA] [BA]

293.15 1.1468 1.0772 0.8695 0.9118 0.8591
303.15 1.1410 1.0725 0.8613 0.9035 0.8531
313.15 1.1359 1.0657 0.8532 0.8952 0.8445
323.15 1.1305 1.0579 0.8451 0.8869 0.8356
333.15 1.1250 1.0516 0.8368 0.8785 0.8268
343.15 1.1194 1.0452 0.8285 0.8700 0.8185
353.15 1.1137 1.0387 0.8203 0.8614 0.8102
363.15 1.1079 1.0324 0.8124 0.8527 0.8020

Table 3. Dynamic viscosity (η) values of ionic liquids from 293.15 K to 363.15 K.

T/K η (mPa·s)

[EtOHA][AC] [EtOHA][BA] [BEHA][BA] [TBA][AC] [TBA] [BA]

293.15 385.760 1814.000 26.061 1.8482 8.368
303.15 197.860 883.310 15.364 1.5090 5.832
313.15 110.780 464.320 9.780 1.1485 4.225
323.15 66.947 261.220 6.628 1.0573 3.185
333.15 43.099 155.690 4.706 0.9041 2.457
343.15 29.214 97.348 3.478 0.7886 1.949
353.15 20.677 63.345 2.652 0.6928 1.579
363.15 15.157 42.651 1.874 0.6149 1.287
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experimental density (ρ) values of [TBA][AC] and [TBA][BA] as a function of temperature.
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Figure 3. Plot of experimental density (ρ) values of [EtOHA][BA], [BEHA][BA], and [TBA][BA] as a
function of temperature.

The dynamic viscosity of the ammonium-based protic ionic liquids, presented in Figure 4, dropped
significantly as the temperature increased and the viscosity of ionic liquids with a [BA] anion was
higher than that of ionic liquids with an [AC] anion for each type of cation studied in this work, as
shown in Figure 5. The longer the alkyl chain in the ionic liquid structure, the higher the viscosity of
the ionic liquids due to the increase in van der Waals attraction between the aliphatic alkyl chains [35].
On the other hand, [EtOHA] ionic liquids have remarkable high viscosity values compared to [BEHA]
and [TBA] ionic liquids due to the presence of the hydroxyl group which enables a hydrogen bonding
interaction between the structures of the ions.
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experimental viscosity (η) values of [BEHA][BA], [TBA][AC], and [TBA][BA].
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Figure 5. (a) plot of experimental viscosity (η) values of [EtOHA][AC] and [EtOHA][BA] ionic liquids
and (b) plot of experimental viscosity (η) values of [TBA][AC] and [TBA][BA].

The values of density, ρ and dynamic viscosity, η were fitted using Equations (3) and (4) [28]:

ρ = A0 + A1T, (3)

lg η = A2 + A3/T, (4)

where ρ is the density, η is the dynamic viscosity of the ionic liquids, T is temperature in K, and A0, A1,
A2, and A3 are correlation coefficients determined using the method of least squares. The calculated
correlation coefficients together with standard deviations, SD are presented in Tables 4 and 5. The
standard deviations, SD, were calculated using Equation (5) in which Zexpt and Zcalc are experimental
and calculated values, respectively, while nDAT is the number of experimental points:

SD =

√√√√√√nDAT∑
i

(Zexp t −Zcalc)
2

nDAT
. (5)

Table 4. Fitting parameters of Equation (3) for density (ρ) correlation and standard deviation (SD) from
Equation (5).

Ionic Liquid A0 A1 SD

[EtOHA][AC] 1.3087 −0.0006 0.016
[EtOHA][BA] 1.2702 −0.0007 0.015
[BEHA][BA] 1.1093 −0.0008 0.006
[TBA][AC] 1.1592 −0.0008 0.014
[TBA][BA] 1.1051 −0.0008 0.011

Table 5. Fitting parameters of Equation (4) for dynamic viscosity (η) correlation and standard deviation
(SD) from Equation (5).

Ionic Liquid A2 A3 SD

[EtOHA][AC] −4.7222 2127.7 0.031
[EtOHA][BA] −5.1998 2469.4 0.021
[BEHA][BA] −4.4045 1696.4 0.020
[TBA][AC] −2.1829 713.31 0.014
[TBA][BA] −3.2888 1229.3 0.011
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The thermal expansion coefficient, αp, for the ammonium-based protic ionic liquids can be
calculated using Equation (6) [28] while the molecular volume, Vm can be estimated from Equation (7)
in which M is the molar mass of the ionic liquid and NA represents the Avogadro’s number [32,36,37]:

αp = -1/ρ · (∂ρ/∂T)p = - (A1)/(A0 + A1T) and (6)

Vm = M/NA · ρ. (7)

The calculated thermal expansion coefficients and molecular volume values of the
ammonium-based protic ionic liquids are presented in Tables 6 and 7. The calculated values lie
in the range of (5.3 to 9.8)·10-4 K-1 for all five ionic liquids. The thermal expansion coefficients
were found to be quite consistent over the temperature range studied and therefore are considered
to be temperature independent. The pattern of the results is consistent with other types of ionic
liquids [27,28,36,40,41]. The molecular volume, Vm, of the [BA] ionic liquid was greater than that of
[AC] for a fixed cation and this may be attributed to the presence of additional CH2 groups [36,37]. In
this work, the Vm decreased in the sequence of [BEHA] > [TBA] > [EtOHA] for a fixed anion, i.e., [BA].

Table 6. Thermal expansion coefficients (αp) of the ionic liquids calculated using Equation (6).

T/K αp × 10-4/(K-1)

[EtOHA][AC] [EtOHA][BA] [BEHA][BA] [TBA][AC] [TBA] [BA]

293.15 5.3 6.6 9.1 8.7 9.2
303.15 5.3 6.6 9.2 8.7 9.3
313.15 5.4 6.7 9.3 8.8 9.4
323.15 5.4 6.7 9.4 8.9 9.4
333.15 5.4 6.8 9.5 9.0 9.5
343.15 5.4 6.8 9.6 9.0 9.6
353.15 5.5 6.8 9.7 9.1 9.7
363.15 5.5 6.9 9.8 9.2 9.8

Table 7. Molecular volume (Vm) of the ionic liquids calculated using Equation (7).

T/K nm3

[EtOHA][AC] [EtOHA][BA] [BEHA][BA] [TBA][AC] [TBA] [BA]

293.15 0.1754 0.2300 0.6295 0.4470 0.5287
303.15 0.1763 0.2310 0.6355 0.4511 0.5324
313.15 0.1771 0.2325 0.6416 0.4553 0.5378
323.15 0.1780 0.2342 0.6477 0.4596 0.5436
333.15 0.1788 0.2356 0.6542 0.4640 0.5493
343.15 0.1797 0.2371 0.6607 0.4685 0.5549
353.15 0.1807 0.2386 0.6673 0.4732 0.5606
363.15 0.1816 0.2400 0.6738 0.4780 0.5663

The thermal decomposition (Td) of the ammonium-based protic ionic liquids were measured
at a heating rate of 10 ◦C·min-1. The Td was approximately determined by the intersection of the
baseline weight from the beginning of the measurement and the tangent of the weight against the
temperature curve as the decomposition process occurs. The Td of the ionic liquids are presented
in Table 8 and the thermal decomposition curves for [EtOHA][BA] and [BEHA][BA] are given in
Figure 6. The thermal stability of the ammonium-based protic ionic liquids in this study varied with
the ion combination. The Td of [BA] ionic liquid was higher than that of [AC] ionic liquid for every
type of cation studied while [EtOHA] ionic liquids displayed the highest Td followed by [BEHA] and
[TBA]. However, ammonium-based protic ionic liquids in this work and from the literature [36] tend to
possess lower thermal stability compared to other ionic liquids, such as imidazolium and pyridinium
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ionic liquids [28,41,42]. However, generalization must not be made as the thermal stability depends
largely on the combination of the cation and anion of the ionic liquids.

Table 8. Thermal decomposition (Td) temperature of the ionic liquids.

[EtOHA][AC] [EtOHA][BA] [BEHA][AC] [BEHA][BA] [TBA][AC] [TBA] [BA]

T/◦C 147.23 237.47 124.89 146.06 111.46 120.58
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3.2. CO2 Absorption

The experimental results of CO2 absorption in the ammonium-based protic ionic liquids are
shown in Figure 7. Generally, the CO2 absorption in these ammonium-based protic ionic liquids
increased with pressure following Henry’s law; the solubility of a gas in a liquid is proportional to the
partial pressure of the gas above the surface of the liquid. The mol fraction of CO2 absorbed in the
ammonium-based protic ionic liquids was in the range of about 0.02 to 0.48 and up to 20 bar at 298.15
K. The effects of cation structure on the CO2 absorption in the ionic liquids are shown in Figure 8. For
a fixed anion, the solubility of CO2 increased in the sequence of [EtOHA] < [TBA] < [BEHA] where the
mol fraction of CO2 absorbed in [BEHA][BA] was 0.486 in comparison to 0.328 and 0.307 in [TBA][BA]
and [EtOHA][BA], respectively. Meanwhile, Figure 9 indicates a slight increase in the CO2 solubility
when the anion of a common cation was changed from [AC] to [BA]. Based on our experimental
results, there is a relationship between absorption of CO2 with the density and the molecular volume
of the ionic liquids. As the density decreases and molecular volume increases, the fractional free
volume increases and, thus, the solubility of CO2 increases [43,44]. By using a common anion, the CO2

absorption in [BEHA][AC] was compared with 1-ethyl-3-methylimidazolium acetate, [EMIM][AC] [45]
and 1-butyl-3-methylimidazolium acetate, [BMIM][AC] [11]. At about 20 bar and 298.15 K, there was
only a marginal difference between the CO2 solubility in [BEHA][AC] compared to that of [EMIM][AC]
and [BMIM][AC]. This result shows a positive indication that our newly synthesized [BEHA][AC]
and [BEHA][BA] ionic liquids have comparable performance towards CO2 capture when compared to
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more established type of ionic liquids. However, more experimental investigation and data are needed
to further evaluate the potential ability of our ammonium-based protic ionic liquids in the application
of CO2 capture.
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(b) plot of CO2 absorption in ammonium-based protic ionic liquids with [BA] anion at 298.15 K.
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Figure 9. (a) Plot of CO2 absorption in ammonium-based protic ionic liquids with the [BEHA] cation;
(b) plot of CO2 absorption in ammonium-based protic ionic liquids with the [TBA] cation; (c) plot of
CO2 absorption in ammonium-based protic ionic liquids with the [EtOHA] cation and; and (d) plot of
CO2 absorption in [BEHA][AC], [EMIM][AC] [45] and [BMIM][AC] [11] at 298.15 K.

4. Conclusions

Six ammonium-based protic ionic liquids were successfully synthesized via solvent-free 1-step
neutralization reaction. The density, viscosity, and decomposition temperature were measured. The
thermal expansion coefficient and the molecular volume were calculated using the density values. The
density and viscosity values were inversely proportional with temperature in the range of temperature
studied at atmospheric pressure. The density decreased when the alkyl chain of the anion increased,
while the viscosity increased with the alkyl chain of the anion. The decomposition temperature of
the ammonium-based protic ionic liquids was affected by the combination of cation and anion and
[EtOHA] ionic liquids had the highest thermal stability when compared to the other ionic liquids. The
absorption of CO2 in the six ammonium-based protic ionic liquids was measured at 298.15 K and up to
a pressure of 20 bar. The CO2 absorption values in the ammonium-based protic ionic liquids increased
with pressure and both the cation and anion affected the solubility of CO2 in the ionic liquids. The
amount of CO2 absorbed was affected by the length of the alkyl chain of the anion while [BEHA]
ionic liquids displayed higher CO2 absorption capacity compared to [TBA] and [EtOHA] ionic liquids.
Results indicate the potential of the ammonium-based protic ionic liquids to be used as solvents for
CO2 capture.
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