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Abstract: Gas turbine converts chemical energy into mechanical energy and provide energy for
aircraft, ships, etc. The performance diagnosis of rotating components of gas turbine are essential in
terms of the high failure rate of these parts. A problem that the sudden changing of operation state of
turbines may lead to the misdiagnosis due to the defect of gas turbine’s model. This paper constructs
the strong tracking filter based on the unscented Kalman filter to achieve accurate estimation of
gas turbine’s measured parameters when the state changes suddenly. In the strong tracking filter,
a parameter optimization method based on the residual similarity of measured parameters is proposed.
Next, adopt the measured parameters filtered by the strong tracking filter to construct the health
parameters estimation algorithm based on the particle filter. The particle weight is optimized by
the mean adjustment method. Performance diagnosis is realized by checking the changes of health
parameters output by particle filter. The results show that the proposed method improves the accuracy
of performance diagnosis obviously.

Keywords: Unscented Kalman Filter; particle filter; weight optimization; hybrid filter; gas turbine

1. Introduction

Performance diagnosis is essential to realize the health management of gas turbine, and is
absolutely necessary to the concept of on-condition maintenance which is an advanced maintenance
idea of gas turbine. There are many ways to achieve the performance diagnosis, the method based on
wear particle morphology analysis in lubricating oil, the method based on vibration signal analysis,
and the method based on electrostatic signal analysis at the outlet of nozzle [1–10]. Borguet Sebastien
and Leonard Olivier combine two diagnostic tools to improve the diagnosis accuracy of gas turbine.
One tool is the principal component analysis (PCA) which is used to isolate the components fault,
and another one is the Kalman filter in order to realize on-line evaluation of health condition of gas
turbine [11]. Lu Feng, Ju Hongfei, and Huang Jinquan propose a nonlinear state estimation algorithm
based on the extended Kalman filter. The transformation matrix is used to calculate estimation errors
and construct the underdetermined extended Kalman filter [12]. Vanini Sadough put forward multiple
dynamic neural networks to learn the different conditions of gas turbine. For each network, residuals
between the outputs of network and the measured values are calculated. Furthermore, the thresholds of
residuals are obtained, and performance diagnosis can be achieved by comparing the size of residuals
and their thresholds [13]. Chen Libo and Song Lanqi propose a hybrid technique which composed of
spectrometric oil analysis and auto debris classifier to enhance the diagnosis accuracy of wear fault.
The Dempster-Shafer evidence theory is adopted to detect the fault [14]. Huang Qiang, Zhang Guigang,
and Zhang Ting optimized the parameters of support vector machine by the genetic algorithm and
simulated annealing method. A performance diagnosis approach of aero engine gas path is proposed
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by the advanced support vector machine [15]. Verma Rajeev, Roy Niranjan, and Ganguli Ranjan
developed a fuzzy system based on a linear model to detect the failure of gas turbine [16]. Bachir, A
and Hafaifa, A introduce a way to monitor the working condition of gas turbine based on the vibration
signal analysis with respect to the principle of principal component analysis [17]. Yang Liu, Ding
Shuiting, and Wang Ziyao propose a risk assessment method to evaluate the health status of aeroengine
based on probability density evolution, and validate the effectiveness of this method by compare it
with the Monte Carlo simulation method [18]. Zeng Li, Long Wei, and Li Yanyan suggest an approach
based on the kernel principal component analysis to detect the fault and locate the failure by analyze
the influence of fault to gas path components [19]. All the methods mentioned above must obtain
the measured values of sensors and it is a consensus that the measurements contain many noise
signals. However, these methods do not treat the noise signals before construct the fault detection
algorithm, and it is probably lead to misdiagnosis. Furthermore, a defect exists in those methods which
based on the physical model of gas turbine is that the modeling errors may lead to the performance
diagnosis distortion.

To remove the noise in the measured parameters of airborne sensors and realize the performance
diagnosis exactly, Wang Lei, Liu Zhiwen, and Miao Qiang proposed use ensemble local mean
decomposition and fast kurtogram decompose the raw signal into the production functions to
characterize the fault information. Then the optimal band-pass filter to filter the selected production
functions and the impulse signal are obtained. By analyzing the fault characteristic frequencies, fault
identification can be realized [20]. Zhang Yongxiang and Randall R.B proposed fast kurtogram and
genetic algorithm to diagnose the failure of rolling element bearing. The initial parameters can be
given by fast kurtogram and the optimized parameters with minimal constraint can be obtained [21].
Pham Hongthom and Yang Bo-suk adopt the linear ARMA model and nonlinear GARCH model to
describe the fault of machine. The hybrid model can predict the future state of machine with high
accuracy and give obvious explanation of the state [22].

In this paper, a novelty hybrid filter which composed of strong tracking filter based on unscented
Kalman filter and particle filter with weight optimized is proposed to diagnose the performance
variance of gas turbine. Firstly, construct a strong tracking filter based on the unscented Kalman filter
by constraining the measurement residuals of current and last sampling time to be orthogonal. The
calculation process of the scale factor is optimized by the residual similarity of measured parameters.
The strong tracking filter is used to filter the noise signals contained in measurements. Next, the
particle filter is used to estimate the health parameters of gas turbine. The health parameters consist of
the efficiency coefficients and flow coefficients of rotating components. The outputs of strong tracking
filter are the input parameters of particle filter. The problem that the distortion of estimated values of
health parameter is resolved and the drawback of weight degradation of particle is overcome.

2. Materials and Methods

2.1. Fault Diagnosis Algorithm of Gas Turbine Based on Hybrid Filter

Compare with other component of gas turbine, the performance degradation rate of gas path
components is higher. In order to reflect the health status of gas path components accurately, the
health parameters include the efficiency coefficients and flow coefficients of turbines can be used to
indicate the performance changes of gas turbine [23–25]. Performance diagnosis can be realized by
estimating the values of health parameters. The strong tracking filter is constructed to eliminate the
noise contained in measured parameters based on unscented Kalman filter. The particle filter is used to
estimate the values of health parameters of gas turbine. To solve the problems of weight degradation
and degradation of diversity exist in the particle filter, a weight optimization method is proposed. The
principle of hybrid filter is shown in Figure 1.
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Figure 1. Principle of hybrid filter.

The two-spool turbojet is adopted as the research object. The low-pressure compressor, high-
pressure compressor, low-pressure turbine, high-pressure turbine are the principal components of
two-spool turbojet. The low-pressure compressor and the low-pressure turbine are connected by the
low-pressure rotor. The high-pressure compressor and the high-pressure turbine are connected by
the high-pressure rotor. Air enters the engine from Section 0 and compressed by the compressors.
Next, compressed air mixed with fuel in the burning room and combusts. The high temperature gas at
the exit of the burning room expands and drives the turbines to rotate. Some gas is ejected from the
nozzle to generate thrust. Due to the turbines and compressors are connected by rigid rotors, turbines
transmit torque to compressors to drive compressors to rotate, and pressurize the air. The structure of
the two-spool turbojet is shown in Figure 2.
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Figure 2. Principal components of two-spool turbo jet.

Measurements include the following contents:

Tt25 Total temperature at the outlet of LPC Tt3 Total temperature at the outlet of HPC
Tt45 Total temperature at the outlet of LPT Tt5 Total temperature at the outlet of HPT
Pt25 Total pressure at the outlet of LPC Pt3 Total pressure at the outlet of HPC
Pt45 Total pressure at the outlet of LPT Pt5 Total pressure at the outlet of HPT

There are:

Low Pressure Compressor (LPC) High Pressure Compressor (HPC)
Low Pressure Turbine (LPT) High Pressure Turbine (HPT)
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2.2. Problem in the UKF

In order to ensure the good accuracy of the output parameters of unscented Kalman filter, a model
that can reflect the real working state of the monitored target must be established. In the condition
monitoring of two-spool turbojet based on the unscented Kalman filter, the Component-level Gas
Path Model (CGPM) is usually used to predict the values of health parameters [26–32]. The health
parameters are the indicators of the health status of turbojet and can be used to illustrate the flowing
ability and working efficiency. The CGPM is essentially a series of physical equations based on the
principle of aerothermodynamics. By the operation of CGPM, the health parameters (flow coefficients
and efficiency coefficient of gas path components) and the measured parameters (total temperature and
total pressure of gas path components) can be calculated. The structure of CGPM is shown in Figure 3.
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The Component-level Gas Path Model of two-spool turbojet can be described as follows [1]:

Mk+1 = f (Mk, Ck+1) + vk (1)

Yk+1 = g(Mk+1, Ck+1) + wk+1 (2)

In Formulas (1) and (2), k represents the kth sampling time. Mk is the state parameters vector.
Furthermore, all of these parameters are the estimated objects. Ck+1 is the control variable. There are:

Mk = [ηLPC, FLPC, ηHPC, FHPC, ηHPT, FHPT, ηLPT, FLPT, ] Ck+1 = F f uel

η and F are the efficiencies and flow coefficients of different components, respectively, include the
low-pressure compressor, high pressure compressor, low pressure turbine, and high pressure turbine.
Ck+1 is the flow of fuel. vk and wk are the state transmission noise and measurement transmission
noise. f represents the process of predicting the health parameters based on the Component-level Gas
Path Model. Mk+1 is the vector of health parameter. The value of Mk+1 is determined by Ck+1 and Mk.
Thus, the calculation of f can be realized by the health parameters calculation module, as shown in
Figure 3. The content of g is similar with that of f . g represents the process of predicting the measured
parameters based on the Component-level Gas Path Model. Yk+1 is the vector of measured parameters
at the k + 1th sampling time. By the operation of measured parameters calculation module, function g
can be.
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The working state transformation of turbojet is a continuous process, the Component-level Gas
Path Model can not accurately reflect all the working state. If the working state of turbojet changes
suddenly, the output measured parameters of CGPM deviate greatly from those of the turbojet due to
the defect of CGPM. Consequently, the estimations of UKF may be distorted. This circumstance can be
illustrated by Figure 4.
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Figure 4. Estimations of Tt25 by UKF.

In Figure 4, the values of Tt25 are estimated by the unscented Kalman filter based on the
Component-level Gas Path Model. The working state of the turbojet changed abruptly after working
for an hour, and the measured parameters include Tt25 changed widely in short time. However, due to
the defect of Component-level Gas Path Model, the estimations of unscented Kalman filter are not
consistent with the true values of measurements, as shown in Figure 4.

2.3. Resolution

To overcome above drawback, a strong tracking filter based on the UKF is proposed. The strong
tracking filter (STF) satisfies following condition [33–35]:

E(εk · ε
T
k+i) ≈ 0 where εk = Yk − yk (3)

εk and εk+i are the residuals of measurements and outputs of model at the kth and (k + i)th
sampling times. Yk and yk are the measurements and outputs of model, respectively. Equation (3)
means that the residuals of measurements and outputs of model is orthogonal if the UKF is working
normally. When the working state of the engine changes abruptly, the residuals are not orthogonal
anymore. Paper design STF to adjust the variance ratio of measurements at different times to force the
residuals keep orthogonal so that the accuracy of estimated parameters remains high. The steps of STF
are as follows:

Samples collection and weight calculation.

X0 = x, W0 = υ/(υ+ n) i = 0

Xi = x +
√
(υ+ n)Pxx Wi = 1/(2(υ+ n)), i = 1, 2, . . . , n

Xi = x−
√
(υ+ n)Pxx Wi = 1/(2(υ+ n)), i = n + 1, n + 2, . . . , 2n
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Xi are the estimated objects (state variable) which consist of Tt25, Tt3, Tt45, Tt5, Pt25, Pt3,Pt45,
and Pt5. x denotes the mean vector of the estimated objects. W is the weight of estimated object. υ is
the parameter to reduce prediction error. n is the number of estimated objects and there is n = 8. Pxx is
the covariance matrix of the estimated objects.

State variable calculation based on model.

Xi
k+1 = f (Xk, Ck+1) + vk (4)

Xk+1 =
10∑

i=1

Wm
i Xi

k+1 (5)

PX,k+1 =
10∑

i=1

Wc
i (X

i
k+1 −Xk+1)(Xi

k+1 −Xk+1)
T (6)

Yi
k+1 = g(Xk+1, Ck+1) + wk+1 (7)

Yk+1 =
10∑

i=1

Wm
i Yi

k+1 (8)

PY,k+1 = Fk+1 ∗

10∑
i=1

Wc
i (Y

i
k+1 −Yk+1)(Yi

k+1 −Yk+1)
T (9)

PXY,k+1 =
10∑

i=1

Wc
i (X

i
k+1 −Xk+1)(Yi

k+1 −Yk+1)
T (10)

Kk+1 = PXY,k+1p−1
Y,k+1 (11)

Xk+1 = X + Kk+1(yk+1 −Yk+1) (12)

Pk+1 = PX,k+1 −Kk+1PY,k+1K−1
k+1 (13)

State variable is calculated by Equation (4). Ck+1 is the value of fuel flow. Xk+1 and Xk are the
estimated variables (state variable) at the K + 1th and Kth sampling time. Xk+1 is the mean vector of
estimated variables and PX,k+1 is the covariance matrix. Yi

k+1 and Yk+1 are the estimated values and
the mean value of measurements respectively. PXY is the covariance matrix of X and Y. PY and PX

are the variances of Y and X, respectively. yk+1 is the measurement vector obtained by sensors. Kk+1
is the Kalman gain. vk and wk are the state transmission noise and measurement transmission noise.
vk ∈ N(0, 0.0022), wk ∈ N(0, 0.0022).

The need to pay attention is that Fk+1 is fading factor vector. There is Fk+1 = diag( f1, f2, . . . , f8).
fi denotes the fading factor. By regulating the proportion of fading factors, the residual of measurements
at the current and last sampling time can be kept orthogonal. The emphasis of STF is to calculate the
value of Fk+1. For Fk+1, set each fading factor as:

fi = a ∗ pi, i = 1, 2, 3, . . . , 8 (14)

a is the common parameter and pi is the ratio parameter. The ratio value of fading factors can be
determined by experience, there is:

f1 : f2 : f3 : . . . : f8 = p1 : p2 : p3 : . . . : p8 (15)

Obviously, fi can be calculated if a is obtained. Equation (3) can be transformed as:

E(εkεk+i) ≈ PXY,k −KkCk = 0 (16)
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Ck is the residual covariance matrix of measurements. The condition to satisfies Equation (16)
is that:

I − P−1
Y,kCk = 0 (17)

There is:

Ck = Fk
10∑

i=1
Wc

i (Y
i
k −Yk)(Yi

k −Yk)
T
+ Qk

= a ∗ diag(p1, p2, . . . , p8) ∗
16∑

i=0
Wc

i (Y
i
k −Yk)(Yi

k −Yk)
T
+ Qk

(18)

Qk is the noise statistical matrix of measurements. Compute the trace of Equation (18), and the
expression of a can be obtained.

a =
tr(Ck −Qk)

tr(diag(p1, p2, . . . , p8)
∑16

i=0(Y
i
k −Yk)(Yi

k −Yk)
T
)

(19)

Ck =

 ε0εT
0 k = 0

σCk−1 + εkε
T
k

1+σ k ≥ 1
(20)

σ named scale factor is used to adjust the ratio of residual covariance matrix at the k− 1th sampling
time. The greater the value of σ, the greater the proportion of Ck−1. Otherwise, the greater the
proportion of εkε

T
k . Usually, the value of σ is determined by experience, and there is a drawback that

unreasonable value of σ may lead to the distortion of Ck. Paper proposes a method to obtain σ. The
steps are as follows:

(1) Construct a variance vector ψk−1 which consist of the diagonal elements of Ck−1. Furthermore,
obtain the residual vector ζk which consist of diagonal elements of εkε

T
k .

(2) Similarity calculation between ζk and ψk−1.

sk =
〈ζk,ψk−1〉

(|ζk| ∗ |ψk−1|)
(21)

sk is the cosine value between ζk and ψk−1, and sk ∈ [−1, 1]. Considering the Equation (20),
coefficients of Ck−1 and εkε

T
k are σ

1+σ and 1
1+σ respectively. Obviously, the sum of σ

1+σ and 1
1+σ is 1.

Set the angle between ψk−1 and ζk as θ, there is:

cosθ = sk

sin2 θ = 1− s2
k

Replace the original coefficients of Ck−1 and εkε
T
k with sk and 1 − sk. Equation (20) can be

transformed as:

Ck =


ε0εT

0 , k = 0
s2

kCk−1 + (1− s2
k) ∗ εkε

T
k , k > 0, s2

k < 1/2
(1− s2

k)Ck−1 + s2
k ∗ εkε

T
k , k > 0, s2

k > 1/2
(22)

According to the working principle of gas turbine and taking into account that the proportion
of current (the kth sampling time) information should be greater than that of previous sampling
time. Equation (22) ensures that the coefficient of εkε

T
k is greater than that of Ck−1. Estimate Tt25 by

above method.
Compare with Figures 4 and 5 accurately reflects the sudden change of measurements. It shows

the validity of STF proposed by paper, which compensates the model error and enhances the
estimation accuracy.
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2.4. Health Parameters Estimation

Paper adopt particle filter to estimate the health parameters. The measurements filtered by the
STF are used to determine the posterior probability. Weight degradation that may lead to the accuracy
decrease of estimations is a commonly problem exists in the process of particle filter Particle resampling
is a traditional way to solve this problem. By increasing the number of larger-weight particles and
make all particles have the same weight, the weight degradation has been effectively solved. But the
above-mentioned method will lead to another problem, that is, the loss of particle diversity. In order to
coordinate these two issues, paper proposes a weight optimization method in the PF. The core idea of
this method is to adjust the posterior probability density function of health parameters. By properly
increasing the weight of small weight particles and reducing the weight of large weight particles,
the diversity of particles can be kept, and the high accuracy of probability density function can be
ensured. The steps of health parameters estimation algorithm based on weight optimization PF are as
follows [33,34]:

(1) k = 0, particles initialization.

k denotes the sampling time. Set the number of particles is 100. Each particle represents the value
of health parameter. Generate particles {x0

i }
100
i=1 according to the importance probability density function

q(x). x consists of health parameters which include the efficiency coefficients of LPC, HPC, HPT, LPT,
and the flow coefficients of LPC, HPC, HPT, and LPT. q(x) is the uniform distribution function.

(2) k = 1,2, 3, . . . . weight update.

Predict the health parameters based on the prior probability distribution function:

xk
i ∝ p(xk

i |x
k−1
i )

Above calculation can be realized based on the component-level model of engine. Weight update:

ωk
i ∝ ω

k−1
i p(yk

i |x
k
i )

y consists of different measurements filtered by STF. There are total temperatures at the outlet of
LPC, HPC, HPT, LPT, and total pressures at the outlet of LPC, HPC, HPT, and LPT.
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Weight optimization. Calculate the mean of weights, there is:

ωk =

∑100
i=1 ω

k
i

100

Adjust the weight of each particle:

ωk
i = ωk

i − (ω
k
i −ωk)R

R is regulator and R ∈ (0, 1). The function of R is to regulate the weight of particles. Normalize
the weights:

ωk
i =

ωk
i∑100

i=1 ω
k
i

(3) Particles resampling:

xk
i ∼ {x

k
i ,ωk

i }, i = 1, 2, 3, . . . , 100 ωk
i =

1
100

(4) Optimize the health parameters:

xk =
100∑
i=1

xk
i ∗ω

k
i

In order to verify the validity of proposed method, a simulation to detect the failure occurrence
of two-spool turbojet is conducted. By suddenly changing the value of health parameters, failure
occurrence can be simulated [1,13]. According to the research of previous chapters, by estimate the
values of health parameters, failure detect can be realized [13]. The steps to conduct the simulation are
as follows:

1 Generate the measured parameters from a software named Gasturb13 (Gasturb 13 is a simulation
software for gas turbine performance calculation with high accuracy). Add noise w to these
measured parameters. w ∈ N(0, 0.0022), N is the normal probability density function.

2 Establish the Component-level Gas Path Model of turbojet. This model is the detailed expression
of the Equations (1) and (2).

3 Build the module of strong tracking filter according the method introduced in Section 2.3. The
measured parameters including noise are input into the module and output to the particle filter
after being processed by the strong tracking filter.

4 Build the module of particle filer with weight optimization according to the method introduced
in Section 2.4. This module is used to estimate the health parameters.

5 Input the measured parameters to the particle filter and estimate the health parameters. The way
to simulate the failure are listed as follows:

FLPC = Fini − ∆F
ELPC = Eini − ∆E

FLPC and ELPC are the latest values of low-pressure compressor’s flow coefficient and efficiency
coefficient after the failure is simulated. Fini and Eini are the initial values of low-pressure compressor’s
flow coefficients and efficiency coefficient before failure are simulated. ∆F = F̂(T − T f ailure). ∆F named
the failure factor is variation volume of Fini. F̂ denotes the degradation value of flow coefficients during
every sampling time if failure happen. The meaning of ∆E and Ê are similar to that of ∆F and F̂. T and
Tfailure represent current sampling time and failure occurrence time. The design working parameters of
engine are as follows:



Processes 2019, 7, 819 10 of 14

Efficiency of LPC: ELPC = 0.868 Pressure ratio of LPC: πLPC
Efficiency of HPC: EHPC = 0.878 Pressure ratio of HPC: πHPC
Efficiency of high-pressure rotator: EHPR = 0.98 Efficiency of low-pressure rotator: ELPR = 0.98
Efficiency of burning room: EBR = 0.98 Air intake coefficient of cabin: EAI = 0.01
Cooling coefficient of HPT: CHPT = 0.03 Efficiency of HPT: EHPT = 0.89
Cooling coefficient of LPT: CLPT = 0.01 Efficiency of LPT: ELPT = 0.91
Design rotating speed of Low Pressure Rotator: SLPR = 104r/m
Design rotating speed of High Pressure Rotator: SHPR = 1.6 × 104r/m
Total temperature at the outlet of burning room: Tt4 = 1600 K
Heat value of fuel: FHV = 4.29 × 104

Due to limitation of space, the estimation of low-pressure compressor’s flow coefficient and
efficiency coefficient are listed only. The estimation processes of other health parameters of high-pressure
compressor, high-pressure turbine, low-pressure turbine are similar with that of low-pressure pressure.
Assure that 100 measured parameters are collected. When the engine performance degrades slowly,
the efficiency coefficient decreases by 0.6% compared with the initial value, and the flow coefficient
decrease by 0.7%. To simulate the failure, at the 11th sampling time, set the flow coefficient and
efficiency coefficient decreased by 0.3%.

Figure 6 shows the Estimated health parameters of low-pressure compressor based on the
traditional unscented Kalman filter and particle filter. Set there are 100 sampling times. The initial
theoretical values of the efficiency coefficient and the flow coefficient are 0.868 and 0.92, respectively.
During each sampling time, the variation of efficiency coefficient and flow coefficient are 5.2 × 10−6

and 6.4 × 10−6, as shown in Table 1. There are:

Eini − Eend
Eini

= 0.6%

Fini − Fend
Fini

= 0.7%

Eend and Fend are the values of efficiency coefficient and flow coefficient after the performance
degrades slowly. It can be seen that the estimations are close to the theoretical values of health
parameters basically. However, the estimations curve fluctuates greatly, and the accuracy degree of
estimations is not high.
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Table 1. Error analysis under the condition of slow degradation of performance based on traditional method.

Estimated Parameters Maximum Error Mean Value of Error Variance

Efficiency coefficient 0.162% 0.118% 5.2 × 10−6

Flow coefficient 0.158% 0.112% 6.4 × 10−6

Figure 7 shows the estimated values of LPC’s flow coefficient and efficiency coefficients when the
working state of two-spool turbojet is steady based on the proposed hybrid filter. Under this working
condition, the variations range of health parameters (flow coefficient and efficiency coefficient of LPC)
are small and slow degradation of performance is happened due to the poor working circumstance of
turbojet. The purple curve consists of the estimated values and black curve consists of the theoretical
values. Obviously, the method proposed in this paper can accurately characterize the change trend of
health parameters. Furthermore, the accuracy of the estimations is also consistent with the theoretical
values of health parameters. The estimations variance of efficiency coefficient and flow coefficient are
2.59 × 10−6 and 4.05 × 10−6 respectively, as shown in Table 2.
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Figure 7. Estimated health parameters of low-pressure compressor (LPC) by the proposed hybrid filter.

Table 2. Error analysis under the condition of slow degradation of performance based on proposed method.

Estimated Parameters Maximum Error Mean Value of Error Variance

Efficiency coefficient 0.094% 0.076% 2.59 × 10−6

Flow coefficient 0.089% 0.073% 4.05 × 10−6

Figure 8 shows the estimated values of low-pressure compressor’s flow coefficient and efficiency
coefficients based on the method proposed by this paper when the working state of two-spool turbojet
breaks down. At the 11th sampling time, set the efficiency coefficient and flow coefficient have a
sudden change of 0.3%. There are:

Eini − Eend
Eini

= 0.3%

Fini − Fend
Fini

= 0.3%
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Paper simulate the failure by changing the health parameters at the tenth sampling time. Due
to the occurrence of failure, the measured parameters have a sudden change. By the application of
strong tracking filter, the measured parameter can be estimated with high accuracy. According to the
introduction of Section 2.1, the output of strong tracking filter is input to the particle filter. Due to
the high accuracy tracking ability of the STF to the state mutation and the weight optimization of
particle filter, the health parameters are estimated with high accuracy by the particle filter, as shown
in Figure 8. The value of efficiency coefficient reduced from 0.8675 to 0.8649, and the value of flow
coefficient reduced from 0.9196 to 0.9168. From Figure 8, the mutations in health parameters are
accurately reflected on the curve and the occurrence of failure can be detected.
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3. Conclusions

In this paper, a developed method based on the unscented Kalman filter and particle filter is
proposed. To eliminate the noises contained in measurements which obtained by sensors, UKF
is adopted to dispose these noises. Furthermore, in order to enhance the estimation accuracy of
measurements when the working state of turbojet changes suddenly, a strong tracking filter is
constructed by adjust the variance ratio of measurements at different sampling times based on the
UKF. The output (The measurements filtered by STF) of STF is used to determine the weight of each
particle. According to the simulations conducted by paper, there are three conclusions can be made.

1 The strong tracking filter is used to eliminate the noise contained in measurements and the
accuracy of measured parameters is enhanced when the turbojet performance changes slowly.
Besides, the estimation accuracy remains high when the working state of turbojet changes abruptly
by adjust the variance ratio of measurements.

2 An optimization method for strong tracking filter is proposed. By calculating the similarity
between covariance vectors at different sampling times of measured parameters, the value of
scale factor can be obtained. This calculation method replaces the traditional way of relying
on experience.

3 In particle filter, to ensure the diversity of particles, paper proposes a weight optimization method
to adjust the weights of different particles. The regulation equation is derived according to the
regulator R and the mean of all weights. By above method, the high accuracy of probability
density function can be ensured.
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