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Abstract: Complex Engineering Systems are subject to cyber-attacks due to inherited vulnerabilities
in the underlying entities constituting them. System Resiliency is determined by its ability to return to
a normal state under attacks. In order to analyze the resiliency under various attacks compromising
the system, a new concept of Hybrid Attack Graph (HAG) is introduced. A HAG is a graph that
captures the evolution of both logical and real values of system parameters under attack and recovery
actions. The HAG is generated automatically and visualized using Java based tools. The results are
illustrated through a communication network example.

Keywords: Hybrid Attack Graph; Level-of-Resilience; stability; topology

1. Introduction

As a result of the rapid advancement of complex engineering systems such as infrastructure,
communications, energy systems, industrial automation, artificial intelligence, and cyber-physical
systems, new research directions in modeling, monitoring, diagnosis, optimization, and control have
emerged in recent years [1]. For instance, a control chart scheme for production processes was
developed by [2] for monitoring the mean time between two events under the neutrosophic statistics
using the belief estimator for the neutrosophic gamma distribution. The diagnosis and correction of
many production problems which often cause huge loss to the production unit can substantially be
improved with the utilization of the effective control chart technique.

In [3], the advantages of using Proportional-Integral (PI ) controller for pH control in the raceway
reactor during the whole day against traditional On/Off control were demonstrated. The paper also
presented an event-based control architecture for Proportional–Integral–Derivative (PID) controllers.
The objective is to tune a classical time-driven PI for pH control in the raceway reactor, and then to add
event-based capabilities, but keeping the initial PI control design. The event-based systems allow a
trade-off between control performance and control effort, which is perfect for the microalgae process in
raceway reactors. The performed tests were oriented to establish a trade-off between control effort and
control performance and present an alternative to traditional control.

The applicability of the Distributed Model Predictive Control (DiMPC) was investigated in [4]
to deal with the constraints in the steam/water loop of a steam power plant. A comparison was
conducted between the Decentralized Model Predictive Control (DeMPC), the Centralized Model
Predictive Control (CMPC), and the DiMPC. The results showed the effectiveness of the DiMPC [5]
designed an Optimal Nonlinear Adaptive Control (ONAC) strategy to achieve optimal parameter
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tuning of Nonlinear Adaptive Control (NAC) for Voltage Source Converter (VSC) operating in both
rectifier mode and inverter mode where an optimal and robust control can be achieved under different
operation scenarios.

A novel pole-zero cancelation method was proposed by [6] for Multi-Input Multi-Output (MIMO)
temperature control in heating process systems. In the proposed method, the temperature differences
and the transient response of each point can be controlled by considering the dead time and the
coupling effect of the MIMO system. In [7], the Slow-Mode-Based Control (SMBC) method combined
with decoupling and dead-time compensation was applied to the MIMO temperature control system.
The temperature differences and the transient response of all points can be controlled and improved by
making the output of the fast modes follow that of the slow mode. The results were then compared to
the conventional PI control and gradient temperature control methods.

The Deep Deterministic Policy Gradient (DDPG) technique for the optimum boost control on a
Variable Geometry Turbocharger (VGT)-equipped engine is implemented by [8]. The proposed DDPG
algorithm is compared with a fine-tuned PID controller to validate its optimality. The results showed
that the control performance based on the proposed DDPG algorithm can achieve a good transient
control performance from scratch by autonomously learning the interaction with the environment,
without relying on model supervision or complete environment models.

A framework was proposed by [9] to use the structural information in each Possible Conflict (PC)
for fault diagnosis of complex industrial system to design a different kind of executable model. They
proposed to build grey-box models based on a state space neural network architecture derived from
that structural information in the PC, which links measurements with equations, and consequently
with parameters related to faulty behavior. The state space Neural Networks (ssNN) were used to
track the system behavior, but once a fault detection was confirmed, the structural information in the
models and the consistency-based diagnosis paradigm were used to perform fault isolation.

Total decomposition of nonstationary variables for distributed monitoring of nonstationary
industrial processes was handled by [10], in which different variable blocks were separated with
both overlapping and nonoverlapping relationships considered, capturing different nonstationary
characteristics. A two-level monitoring strategy was designed that can supervise both the local
cointegration relationships and the interrelationship among different nonstationary blocks with
enhanced interpretation of the nonstationary process.

A novel diagnosis framework was proposed by [11] for considering the deep feature learning and
cross-domain feature distribution alignment simultaneously for industrial applications. Extending
the Marginal Distribution Adaptation (MDA) to Joint Distribution Adaptation (JDA), the proposed
framework can exploit the discrimination structures associated with the labeled data in source domain
to adapt the conditional distribution of unlabeled target data, and thus, guarantee a more accurate
distribution matching [12]. They reviewed over 220 technical research programs in total, with more
attention on the recent developments of the fault diagnosis approaches and their applications during
the last decade. Knowledge-based fault diagnosis, hybrid fault diagnosis, and active fault diagnosis
were reviewed comprehensively. The distinctive advantages and various constrains of these diagnosis
methods were commented on. A recent survey by [1] also summarized papers on monitoring and
diagnosis for complex engineering systems.

The implementation of diagnostic and prognostic architectures can aid the implementation of
advanced control algorithms in a resilient control system to recognize sensor degradation, as well as
failures with industrial process equipment associated with the control algorithms [13]. A resilient
control system is one that maintains state awareness and an accepted level of operational normalcy in
response to disturbances, including threats of an unexpected and malicious nature [14]. As a result,
it is hard to obtain true expectations about the consequences when a fault/attack occurs effecting or
compromising the system. Hence, evaluating systems resilience in terms of stability, performance,
and recovery time is crucial and valuable for cost management and design tradeoff. The traditional
Attack graphs can generate various attack scenarios compromising the system in terms of violations
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of a security property. However, they are only concerned with tracking the logical changes in the
system parameters under attacks, as captured by the pre and post-conditions. Therefore, the novelty
of this work lies in introducing and generating automatically a Hybrid Attack Graph (HAG) using
our new Automatic Hybrid Attack Graph (AHAG) Java based tool that combines logical and real
values of system parameters. In fact, HAG can be used to provide additional information about
the expected changes that could affect the system state by different attack scenarios constituting the
graph. In such cases, attack scenarios could be compared for the worst attack scenario that would
compromise a system. This can be done by determining the associated real values (i.e., the resilience
levels as determined in [15]). The results are illustrated through two-communication networks
example. The networks models and security properties (written using Architecture Analysis & Design
Language (AADL) [16] and AADL Annex Assume Guarantee REasoning Environment (AGREE)
plug-in [17] that relies on JKind model-checker tool [18]) are fed to the AHAG tool, which generates
all possible attack scenarios of the systems model and visualizes the graphs using Unity software [19].

This paper extends the conference version [20] significantly by introducing the concept of the
Hybrid Attack Graph (HAG), and a new developed tool for its automatic generation (AHAG).
The tool is implemented on communication networks example. The remainder of this paper is
organized as follows: Section 1.1 reviews the related work. Section 2 describes the model based attack
graph implementation through illustrative communication networks example. Section 3 explains the
Level-of-resilience assessment. Section 4 presents the Hybrid Attack Graph. Section 5 introduces our
AHAG tool to automatically generate the Hybrid attack graph and shows the experimental results.
Section 6 summarizes and presents certain future directions.

1.1. Related Work

Existing Attack graph generation tools can be summarized as follows [21]. One research
implemented a tool that consisted of three main pieces: a model builder (it takes as input information
about network topology, configuration, and a library of attack rules), an attack graph generator (SPIN),
and a Graphical User Interface (GUI) for graphical presentation. Topological Vulnerability Analysis
(TVA), Network Security Planning Architecture (NETSPA), and Multi-host Multi-stage Vulnerability
Analysis (MULVAL) tools [22]. These tools can explore all potential methods an attacker can use to
corrupt an enterprise network by determining the configuration information of the hosts and the
network. The Cauldron tool implemented by [23] automatically mapped all paths of vulnerability
by correlating, aggregating, normalizing, and fusing data from various assets. The Network Attack
Graph GENeration (Naggen) tool is developed by [24] to generate attack graph. Other research [5]
has illustrated how logical attack graph complexity can be simply elevated when a network becomes
denser and larger [25]. They utilized the MULVAL tool, but they changed its engine so that the trace of
evaluation was recorded and sent to a graph builder.

In [26], the New Symbolic Model Checker (NuSMV) model checker was implemented to develop
Attack graph counterexamples. The value iteration method was also implemented to determine
the reliability of Attack graph, which allowed designers to identify which nominal set of security
defenses would assure systems safety. A model-checking-based Automated Attack Graph Generator
and Visualizer (A2G2V) was proposed by [27]. The proposed A2G2V algorithm used existing
model-checking tools, an architecture description tool, and C code to generate an attack graph that
enumerates the set of all possible sequences in which atomic-level vulnerabilities can be exploited to
compromise system security. The A2G2V tool required building three main functions: a counterexample
parsing function, a cyclic testing function, and a Luster model editing function.
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In [28], a heuristic algorithm was used to automatically determine the optimal security hardening
through cost-benefit analysis [29]. They used multiple algorithms, such as Vulnerability Node
Matching, Attack Graph Optimization, Maximum Loss Flow, Path Seeking, and Multi-Objective
Augmented Road Sorting, to investigate the vulnerability, estimate the global path, and determine
the optimal attack path. The surveys conducted by [30,31] illustrated the state-of-the-art technologies
in Attack graph construction in computer networks, and their potential development challenges.
Alerts were also analyzed from intrusion detection system, and how well the approaches scaled to
larger networks.

A Hybrid Attack Graph (HAG) was modeled by [32], using linguistics and type extensions of
traditional attack graph given the necessary inputs of asset, topology, and fact declarations in the typed
grammar. The HAG was illustrated through an example of an attacker who is trying to compromise an
automotive car by forcing it to drivetoward a wall. The tool automates the task of creating HAGs by
compiling the inputs specified and making the appropriate connections. A Hybrid Attack Dependency
Graph (HADG) was presented by [33], which allowed discretization into intervals of the reachable and
related ranges of the system’s state variables and their evolution over the execution of attacks with
duration. The HAG generation software of [33] was used by [34] to model a Cyber physical System’s
attack for a smart grid in which an attacker has to obtain access to a Supervisory Control and Data
Acquisition (SCADA) system to cause the transformer to overheat. Thus, transformer temperature was
the continuous value in question and was discretized into intervals. The HAG was built by matching
exploit patterns to a particular system state.

The concept of adding priorities to HAGs was introduced by [35]; if multiple exploit preconditions
were met in a given state, only those with the highest priority value would be expanded into new states
of the attack graph. Lower priority exploits would then only be considered if all exploits with higher
priorities failed to meet their preconditions. By applying exploit priorities as a heuristic measure,
attack graph states can be explored in a more strategic manner.

A novel Hybrid Attack Model (HAM) was introduced by [36] that combines Probabilistic Learning
Attacker, Dynamic Defender (PLADD) game model and a Markov Chain model to simulate the
planning and execution stages of a bad data injection attack in power grid. The hybrid model is
shown to be capable of modeling long time-to-completion actions in the preparation stage and short
time-to-completion actions in the execution stage. Table 1 summarizes the main characteristics and
limitations of the existed studies in HAG generation as compared to our Automatic Hybrid Attack
Graph (AHAG) tool.

Table 1. Main characteristics and limitations of the existed studies in Hybrid Attack Graph
(HAG) generation.

Main Characteristics Limitations

HAG [32]

• Stateful graph.
• Captures blended attack vectors

(comprising discrete and continuous
exploit events).

• Time is implemented using a single
group of global exploits, each of which
increments a class of assets’ position in
time depending upon its particular state.

• Generation of attack graphs from
nontrivial scenarios (with tens of
hybrid assets) in acceptable time
is daunting.
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Table 1. Cont.

Main Characteristics Limitations

Hybrid Attack
Dependency Graph
(HADG) [33]

• Replaces the state transition graph with
a dependency graph.

• A hybrid attack takes a range of real
values as preconditions and output a
range of values as postconditions.

• Provides the capability of modeling
continuous state variables and their
evolution over the execution of attacks
with duration.

• The process for generating HADGs
must be articulated and formalized
and its performance characterized to
better handle continuous variables.

• Expansion of the exploit list and the
asset parameters in the network file
is required to fully explore the
attack space.

HAG [36]

• Hybrid Attack Model (HAM) consists of
both Probabilistic Learning Attacker,
Dynamic Defender (PLADD) nodes and
Markov state nodes.

• The attacker must have control over all
PLADD nodes, which represent the
preparation for an attack, to be able to
execute an attack by traversing through
the Markov states.

• Considers the time difference between
the attacker’s action to prepare for an
attack in comparison to the attacker’s
action to execute for an attack.

• The number of time steps in the
Markov Chain model per unit time
in the PLADD model must be
specified by a domain expert.

• The PLADD and the Markov Chain
models do not have the means to run
a simulation where the
time-to-completion of an action for
attacker and defender can be
significantly different in the
preparation stage and the
execution stage.

Automatic Hybrid
Attack Graph
(AHAG)

• Stateful graph.
• Specifies attack patterns as sets of

preconditions and postcondition.
• The integration of level of resilience

values captures the system response
under sequential attack and
recovery actions.

• Requires comprehensive overview of
the system model and
security/resiliency property.

• Levels-of-Resilience values need to
be determined under attacks.

2. Model-Based Attack Graph Implementation

2.1. Networked Systems Examples

The two images of Figure 1a,b show two communication networks with identical clients and
services (Email, File Transfer Protocol (FTP), and Video), but with different topologies [15]. In both
networks, the routers R1, R2, and R3 are built with Routing Protocol (RIP) [37], where the traffic is
rerouted under faults as a recovery action through a redundant path (if it exists) based on hop count [37].
In addition to that, R1 is linked to three Local Area Networks (LANs); LAN1, LAN2, and LAN3, where
every LAN has 10 clients. R2 is linked to LAN4, which has 10 clients as well. Router R3 has three more
links, which connect it, respectively, to an Email server through the Internet, an FTP server, and a
Video workstation. The second communication network, CN2, has similar clients and services as CN1,
but has a different topology.
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2.2. Formal System Description for Networked Examples

The generation of Attack Graph requires an overall formal description of the system model and
security property being investigated, encoded in Architecture Analysis and Design Language (AADL)
and checked using JKind. Here, the formal descriptions of CN1 and CN2, respectively, are given as
follows [20].

1. Set of Routers R = 1, 2, 3, IP Cloud; Variable I ∈ {1, 2, 3, 4} (static parameters).
2. Set of LANs N = 1, 2, 3, 4; Variable k ∈ {1, 2, 3, 4} (static parameters).
3. Set of Service Providers S; Variable s ∈ {Ftp, Email, Video} (static parameters).
4. Set of Connection Links L ⊆ R × R, R × N, R × S; Labeled lij ≡ Link is placed between component

i and component j (static parameters).
5. System Connectivity C = L; Boolean cij = 1 if there is a connection between component i and

component j (dynamic variables).
6. System Stability T; Boolean t = 1 if system is stable (dynamic variable).
7. System Performance P ⊆ S; Boolean fk = 1 if ftp service is provided to LAN k, Boolean ek = 1 if

Email service is provided on LAN k and Boolean vk = 1 if Video service is provided on LAN k
(dynamic variables).

8. System recovery Action R; Variable r ∈ {p, a, d}, in case of normal operation r = p, in case of
recovery action r = a, and in case of no action can be done, r = d (dynamic variables).

9. Number of faulted Links that occur sequentially N; Variable n ∈ {0, 1, 2}, in case of no fault n = 0,
in case of first fault n = 1, and in case of second fault n = 2 (dynamic variables).

10. Attack Instance AI ⊆ A × R × R, A × R × N, A × R × S, Labeled aij
m
≡ Attack a on the Link

between component i and component j, where m ⊆ L is a sequence of the previous faulted link(s)
if exists. (static parameters)

11. Pre-Attack conditions for CN1:
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• Pre(a13) ≡ (c13 = 1) ∧ (t = 1) ∧ (r = p) ∧ (n = 0)
• Pre(a12) ≡ (c12 = 1) ∧ (t = 1) ∧ (r = p) ∧ (n = 0)
• Pre(a23) ≡ (c23 = 1) ∧ (t = 1) ∧ (r = p) ∧ (n = 0)
• Pre(a23

13) ≡ (c23 =1) ∧ (r = a) ∧ (n = 1)
• Pre(a23

12) ≡ (c23 =1) ∧ (r = p) ∧ (n = 1)
• Pre(a13

23) ≡ (c13 =1) ∧ (r = a) ∧ (n = 1)
• Pre(a13

12) ≡ (c13 =1) ∧ (r = p) ∧ (n = 1)
• Pre(a12

13) ≡ (c12 =1) ∧ (r = a) ∧ (n = 1)
• Pre(a12

23) ≡ (c12 =1) ∧ (r = a) ∧ (n = 1).

12. Post-Attack conditions for CN1:

• Post(a13) ≡ (c13 = 0) ∧ (r = a) ∧ (n = 1)
• Post(a12) ≡ (c12 = 0) ∧ (r = p) ∧ (n = 1)
• Post(a23) ≡ (c23 = 0) ∧ (r = a) ∧ (n = 1)
• Post(a23

13) ≡ (t = 0) ∧ (c23 = 0) ∧ (f1 = f2 = f3 = f4 = e1 = e3 = e4 = v2 = v3 = 0) ∧ (r = d) ∧
(n = 2)

• Post(a23
12) ≡ (t = 0) ∧ (c23 = 0) ∧ (f4 = e4 = 0) ∧ (r = d) ∧ (n = 2)

• Post(a13
23) ≡ (t = 0) ∧ (c13 = 0) ∧ (f1 = f2 = f3 = f4 = e1 = e3 = e4 = v2 = v3 = 0) ∧ (r = d) ∧

(n = 2)
• Post(a13

12) ≡ (t = 0) ∧ (c13 = 0) ∧ (f1 = f2 = f3 = e1 = e3 = v2 = v3 =0) ∧ (r = d) ∧ (n = 2)
• Post(a12

13) ≡ (t = 0) ∧ (c12 = 0) ∧ (f1 = f2 = f3 = e1 = e3 = v2 = v3 = 0) ∧ (r = d) ∧ (n = 2)
• Post(a12

23) ≡ (t = 0) ∧ (c12 = 0) ∧ (f4 = e4= 0) ∧ (r = d) ∧ (n = 2)

13. Pre-Attack conditions for CN2:

• Pre(a13) ≡ (c13 = 1) ∧ (t = 1) ∧ (r = p) ∧ (n = 0)
• Pre(a12) ≡ (c12 = 1) ∧ (t = 1) ∧ (r = p) ∧ (n = 0)
• Pre(a23) ≡ (c23 = 1) ∧ (t = 1) ∧ (r = p) ∧ (n = 0)
• Pre(a23

13) ≡ (c23 =1) ∧ (r = a) ∧ (n = 1)
• Pre(a23

12) ≡ (c23 =1) ∧ (r = p) ∧ (n = 1)
• Pre(a13

23) ≡ (c13 =1) ∧ (r = a) ∧ (n = 1)
• Pre(a13

12) ≡ (c13 =1) ∧ (r = p) ∧ (n = 1)
• Pre(a12

13) ≡ (c12 =1) ∧ (r = a) ∧ (n = 1)
• Pre(a12

23) ≡ (c12 =1) ∧ (r = a) ∧ (n = 1).

14. Post-Attack conditions for CN2:

• Post(a13) ≡ (c13 = 0) ∧ (r = a) ∧ (n = 1)
• Post(a12) ≡ (c12 = 0) ∧ (r = p) ∧ (n = 1)
• Post(a23) ≡ (c23 = 0) ∧ (r = a) ∧ (n = 1)
• Post(a23

13) ≡ (t = 0) ∧ (c23 = 0) ∧ (f2 = f3 = f4= e3 = e4 = v2 = v3 = 0) ∧ (r = d) ∧ (n = 2)
• Post(a23

12) ≡ (t = 0) ∧ (c23 = 0) ∧ (f4 = e4 = 0) ∧ (r = d) ∧ (n = 2)
• Post(a13

23) ≡ (t = 0) ∧ (c13 = 0) ∧ (f2 = f3 = f4= e3 = e4 = v2 = v3= 0) ∧ (r = d) ∧ (n = 2)
• Post(a13

12) ≡ (t = 0) ∧ (c13 = 0) ∧ (f2 = f3 = e3 = v2 = v3 = 0) ∧ (r = d) ∧ (n = 2)
• Post(a12

13) ≡ (t = 0) ∧ (c12 = 0) ∧ (f2 = f3 = e3 = v2 = v3= 0) ∧ (r = d) ∧ (n = 2)
• Post(a12

23) ≡ (t = 0) ∧ (c12 = 0) ∧ (f4 = e4 = 0) ∧ (r = d) ∧ (n = 2)

15. Initial state: (t =1) ∧ (c23 = c12 = c13 = 1) ∧ (f1 = f2 = f3 = f4 = e1 = e3 = e4 = v2 = v3 = 1) ∧ (r = p) ∧
(n = 0). (Initially, the system is stable, normally operated, and no service outages).

16. The security/resiliency property ϕ is that both CN1 and CN2 are always stable under the given
attacks/faults. This can then be written by a CTL formula: ϕ ≡ AG(t = 1) ≡ AG(¬ (t = 0)).
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2.3. Attack Scenarios Implementation

In this section, we present the Attack Graphs resulted by running the JKind model checker for the
encoded AADL CN1 and CN2 descriptions, respectively, against the security property ϕ [20]. JKind
is an infinite state model checker for checking safety properties of synchronous systems [38], which
are expressed in Lustre, a formally defined, declarative, and synchronous dataflow programming
language for programming reactive systems [39]. The Verification is based on k-induction and property
directed reachability using a back-end Satisfiability Modulo Theories (SMT) solver. A verified property
is determined to be true for all runs of the system. A property violation is reported with an explicit
Counter-Example (CE), which is given here as an attack scenario (a sequence of attack and recovery
actions resulting in system disruption).

In our work, the CN1 and CN2 descriptive models included entities and their interfaces and
connections, which were encoded using Architecture Analysis and Design Language (AADL), within
the open-source integrated development environment (Osate2). The AADL models were embedded
with the AGREE Annex plug-in [17] that is used to specify the component models and system-level
security properties. AGREE also translates the AADL+Annex models and properties to Lustre
language, which JKind can verify against a security property of concern and delivers the result as a CE,
if it exists [40].

Figures 2 and 3 show the Attack graphs for CN1 and CN2, respectively [20], capturing the state
evolution of the two networks dynamical variables given in the earlier formal description under attack
instances. These graphs are visualized using Unity tool that supports two-dimensional (2D) and
three-dimensional (3D) graphics, drag-and-drop functionality, and scripting using C# [41].
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From the obtained graphs it can be seen that both networks have six attack scenarios, resulting in
networks loss of stability as determined by the unbounded traffic loss over time [42]. Each attack is a
sequence of faults and recovery actions occurring sequentially as follow:

S1: a13→ a23
13

S2: a13→ a12
13

S3: a12→ a23
12

S4: a23→ a13
23

S5: a23→ a12
23

S6: a12→ a13
12
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3. Level-of-Resilience Assessment

Each path in the graph is a single attack scenario and has an associated Level-of-Resilience
(LoR) [20]. The following definition can be utilized to identify the worst case Level-of-Resilience of a
system with its Attack graph given. A system is the worst resilient to an attack scenario in the graph if
it acquires the highest loss of stability, the highest loss of performance, or the highest recovery-time.

Definition 1 ([20]). Given a system M and an attack graph AG comprising a set of attack scenarios S ≡ ∪ Si,
i ∈ {1, . . . , z}, where z is the number of attack scenarios, we say that LoR(M, Si) is the worst if:

[LoSR(M, Si) > LoSR(M, S − Si)]
∨ [[LoSR(M, Si) = LoSR(M, S − Si)
∧ [LoPR(M, Si) >LoPR(M, S − Si)]]
∨ [[LoSR(M, Si) = LoSR(M, S − Si)]
∧ [LoPR(M, Si) = LoPR(M, S − Si)]
∧ [RT(M, Si) > RT(M, S − Si)]]

The next definition compares the LoR of many systems against an Attack scenario. A system is
the most resilient to an attack scenario if this attack acquires a smallest loss of stability, a smallest loss
of performance, or smallest recovery-time.

Definition 2 ([20]). Given a set of systems M ≡ ∪Mj, j ∈ {1, . . . , y}, where y is the number of systems, and an
attack scenario Si ∈ S, we say that LoR(Mi, Si) > LoR(M-Mi, Si) if:

[LoSR(Mi, Si) < LoSR(M −Mi, Si)]
∨ [[LoSR(Mi, Si) = LoSR(M −Mi, Si)]
∧ [LoPR(Mi, Si) < LoPR(M −Mi, Si)]]
∨ [[LoSR(Mi, Si) = LoSR(M −Mi, Si)]
∧ [LoPR(Mi, Si) = LoPR(M −Mi, Si)]
∧ [RT(Mi, Si) < RT(M −Mi, Si)]].
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4. Hybrid Attack Graph (HAG)

The states of Attack graph reflect the logical evolution of system parameters (e.g., system stability
and services are either true or false) during attacks until reaching the final states where the security
property ϕ is violated and hence are the worst states. As multiple attacks can reach the same final
state, it is essential to identify the worst attack scenario. A Hybrid Attack Graph (HAG) associates
real values to all attack scenarios terminating in these final states. These real values correspond to
the Level-of-Resilience parameters determined from the system dynamical response. The detailed
computations of LoSR, eventual LoPR and RT of networks CN1 and CN2 under AG scenarios are given
in [43], and [15]. We formally define HAG as follows.

Definition 3. A Hybrid Attack Graph (HAG) of a system model M is a data structure representing a union of
all attack paths comprising AG annotated with the associated Levels-of-Resilience.

HAG = AG ∪ LoR(M, AG).

Algorithm 1 compares the Levels-of-Resilience, associated with the attacks comprising an Attack
graph, and alerts the worst-case scenario.

Algorithm 1 Alerting Worst-Case Attack Scenario

INPUT: Attack graph (AG) Comprising Attack Scenarios (S ≡ ∪Si, i ∈ {1, . . . , z}) and associated LoR values
OUTPUT: Alert Worst Case S[i]
Procedure:
for Case [LoSR, LoPR, RT]

if S[i]{LoSR} > S−S[i] {LoSR}:
Alert Worst Case S[i]
else if S[i] {LoPR, Ftp} > S−S[i] {LoPR, Ftp}
Alert Worst Case S[i]
else if S[i]{LoPR, Video} > S−S[i] {LoPR, Video}
Alert Worst Case S[i]
else if S[i]{LoPR, Email} > S−S[i]{LoPR, Email}
Alert Worst Case S[i]
else if S[i]{RT} > S−S[i] {RT}:
Alert Worst Case S[i]
else
no Alert

5. Automatic Hybrid Attack Graph (AHAG) Tool

In Section 2, the attack scenarios were generated by repeatedly running AGREE, and updating
the security property in every run to exclude the previously generated attack scenarios. Here, the
automatic generation of attack scenarios is presented.

The Automatic Hybrid Attack Graph (AHAG) tool was developed through NetBeans, an Integrated
Development Environment (IDE) for Java [44]. NetBeans allows applications to be developed from a
set of modular software components called modules. In addition to Java development, NetBeans has
extensions for other languages like Personal Home Page (PHP), C, C++, and fifth version of Hyper
Text Markup Language (HTML5). Maven, a build automation tool used primarily for Java projects,
was selected as the main project for the AHAG tool in NetBeans [45].

When running an AGREE based JKind model-checker for Lustre models within Osate2, it can only
produce one counterexample at a time. However, if executed more than once, it may repeat the same
counterexample. The AHAG tool shown in Figure 4 confirms that a different new counterexample is
produced (if exists) each time the JKind is called, and automatically, all possible attack scenarios are
visualized using Unity software.
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AHAG tool takes only the first Lustre model (a translation of the system model and the security
property from AGREE). Then, it generates all possible combinations of potential attack scenarios
(i.e., CEs) as (.lus) format files. Next, AHAG communicates with the model checker JKind through
the Command Prompt Commands (CMD) to iteratively check the system model and the potential CE
against the security property within the Lustre files. Doing so, AHAG generates all corresponding
results as separate Excel files, illustrating if the potential CE is truly an attack scenario or not. Once all
Excel files are generated, AHAG converts them to (.csv) files to be used later along with LoR values in
Unity Visualizer.
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The AHAG Algorithm 2 is as follows. The user inserts the first Lustre Model as input and defines
the attack instances/actions constituting the attack paths in a single-dimensional array. In addition to
that, the user has to choose the maximum expected length n of an attack scenario. AHAG in turns,
generates all potential combinations of attack scenarios An, where A is number of attack instances/actions.
Each new potential attack scenario is stored as a variable CE_1 within (.lus) generated files. Next, JKind
is called iteratively to check these files against the security property φ. If CE_1 violates the security
property, then it is a true attack scenario, which belongs to the Attack graph, and the result is given as
an Excel sheet (.xlsx). Otherwise, AHAG will reject the CE_1. Afterward, since it is easier for Unity
visualizer to read (.csv) files, AHAG converts xlsx to csv files and feed them to Unity.
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Algorithm 2 AHAG

INPUT: System Model (Luster 0.lus), Attack instances A[ ], maximum length (n)
OUTPUT: All attack scenario in (.csv)
Procedure:

insert attack instances in the Single-Dimensional Array (A)
set maximum length (n)

loop 1:
CE_1 = possible combination from A[ ] of length n
New Lustre = do new (.lus) copy (Lustre 0.lus)
New Lustre = New Lustre + CE_1
goto loop 1

loop 2:
call JKIND through cmd
New Lustre.xlsx= do result in (.xlsx) format

loop 3:
New Lustre.csv = replace (New Lustre.xlsx) format to (.csv) format
goto loop 3
goto loop 2

loop 4:
if New Lustre.csv contains CE_1 = False
delete (New Lustre.csv)
goto loop 4

generate violating attack scenarios

The generated attack scenarios were visualized using Unity visualizer tool and the Levels-
of-Resilience values, including Level-of-Stability-Reduction (LoSR), Level-of-Performance-Reduction
(LoPR) in the networks applications (given by FTPR, EmailR, and VideoR), and the Recovery-Time (RT)
are annotated to the attack scenarios terminating at the final states using Algorithm 1. This generates
the HAG for CN1 and CN2, as shown in Figures 5 and 6, respectively. It can be seen that Attack
scenario S4 was chosen as the worst attack scenario (highlighted in red). The detailed computations
of Levels-of-Resilience values for networks CN1 and CN2 are given in [43], and [15]. By comparing
the generated HAGs to the traditional Attack graphs of Figures 2 and 3, respectively, it is clear how
HAG can aid in differentiating attack scenarios terminating in the same state, yet with distinguishable
resilience levels. Thus, network designers can have a better overview on the attack scenario that the
network is most vulnerable to.
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6. Conclusions

In this paper, we presented a new concept of Hybrid Attack Graph (HAG), which captures both the
logical changes in the system parameters under attacks (as determined by the pre and post-conditions),
and the real values of the levels of resilience parameters associated with the attacks constituting
the graph. The nearest C-language based tool, Automated Attack Graph Generator and Visualizer
(A2G2V), proposed by [27], interacts with the model-checker JKind for the generation of the attack
paths one at a time, and with another tool Graph visualization (Graphviz) for visual display of the
attack graph. Similar to our Automatic Hybrid Attack Graph (AHAG) tool, A2G2V tool requires
one-time modeling effort to obtain the system description for components, connectivity, services,
and their vulnerabilities. However, AHAG integrates the Levels-of-Resilience values obtained from
system’s dynamical response with the Attack graph. This automatically generates a HAG, which can
aid system designers to investigate and select the worst LoR system design and its corresponding
attack scenario from the graph. This ensures an appropriate defense and countermeasures placement
in the system. The results were illustrated through a communication networks example.
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