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Abstract: This paper proposes an extremum-seeking controller (ESC) design for a class of
discrete-time nonlinear control systems subject to input constraints or quantized inputs. The proposed
method implements a proportional-integral ESC design along with a discrete-time anti-windup
mechanism. The anti-windup enforces input saturation while preserving the input dither signal.
The technique incorporates a mechanism for adjusting the amplitude of the extremum seeking control
dither signal. This mechanism ensures that any violation of constraints due to the dither signal is
removed while maintaining the probing signal active. An amplitude update routine is also proposed.
The amplitude update is coupled with a saturation bias estimation algorithm that correctly accounts
for the inherent bias associated with systems operated at or near saturation conditions. The amplitude
update is designed to remove the dither signal when the system approaches the optimum. It also
ensures that a lower bound of the amplitude is enforced to guarantee that excitation conditions
are maintained.

Keywords: real-time optimization; constrained systems; extremum-seeking control

1. Introduction

Extremum-seeking control (ESC) has grown to become the leading approach to solve real-time
optimization problems [1]. Following the seminal work of Krstic and coworkers ([2–7]), this general
and practically relevant control approach is equipped with an established and well understood
theoretical framework, as highlighted in the proof of Krstic and Wang [2]. The standard perturbation
ESC algorithm has been generalized in various forms to handle output and input constraints. ESC in
the presence of constraints has been investigated in various form in the literature. Constrained ESC
was first considered in [8] where a trajectory tracking approach was used to address the constrained
ESC problem for a class of nonlinear systems with parametric uncertainties. In this approach, a barrier
function or interior-point method was used to enforce constraints and feasibility of the closed-loop
trajectories. A similar model-free extremum-seeking approach was presented in [9]. A Lagrangian,
saddle-point, ESC technique is proposed in [10], and a similar approach is proposed in [11] to handle
a class of stochastic control systems. In [12], a Shahshahani gradient approach was proposed. This
techniques allows one to handle ESC problems subject to linear constraints by a simple reformulation of
the gradient descent dynamics. In contrast to Lagrangian-based techniques, the main advantage of the
Shahshahani gradient and barrier function approaches is the ability to preserve feasibility throughout
the optimization.

For ESC in the presence of input constraints, a variety of techniques have been proposed. In [13]
and [14], a projection algorithm is used to solve ESC problems subject to constraints in the decision
variables. In [15], a comprehensive study of anti-windup mechanisms for standard ESC is presented.
The approach draws a parallel between penalty (barrier) function methods and an anti-windup
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mechanism. A proof of convergence of the ESC in the presence of constraints is provided. In [16],
a simplistic windup algorithm for a standard ESC technique is implemented experimentally for the
real-time optimization of airside economizers.

The vast majority of existing results on ESC have focussed on continuous-time systems, as is the
case for the existing approaches for ESC in the presence of constraints. Although discrete-time systems
can be treated in an essentially similar fashion, the application of gradient descent in a discrete-time
setting requires some care. A discrete-time version of the standard ESC loop was studied in [4,6]
where convergence results similar to continuous time systems are obtained. A similar algorithm
was also proposed in [17] for the tuning of PID controllers in unknown dynamical systems using
ESC. Discrete-time ESC subject to stochastic perturbations is studied in [18]. The use of approximate
parameterizations of the unknown cost function using quadratic functions was recently proposed
in [19]. An alternative ESC-like method was proposed in [20]. In this study, a trajectory-based technique
is used to analyze the properties of nonlinear optimization algorithms as dynamical systems. It is
shown that properties of the nonlinear-optimization algorithms are suitable to assess the convergence
of certain classes of ESC applied in a sampled-data approach. This method was recently studied in the
context of global sampling methods in [21] where trajectory-based properties of nonlinear optimization
methods are used to establish robust convergence. The main objective with the trajectory-based
techniques is to analyze the properties of optimization algorithms assuming that they can converge to
the true optimum using only the measurement of the objective function and possibly the constraints.

This paper proposes an extremum-seeking controller (ESC) design for a class of discrete-time
nonlinear control systems subject to input constraints. Two actuation scenarios are considered.
In the first scenario, we consider the ESC in the presence of saturated inputs. The proposed
method generalizes the discrete-time proportional-integral ESC proposed in [22] to incorporate a
new discrete-time anti-windup mechanism for ESC. One contribution of this study is the development
of a saturation bias estimation mechanism that can be used to remove the impact of dither on or near
the saturation level. This mechanism ensures that violation of the constraints due to the dither signal
are removed without the introduction of a gradient estimation bias. Moreover, it allows the system
to remain responsive to changes in the system despite operating on or very close to the saturation
level. An amplitude update routine is also proposed as a discrete-time generalization of the method
proposed in [23]. The amplitude update is coupled with the saturation bias estimation algorithm to
account for the inherent bias associated with systems operated at or near saturation conditions.

In the second scenario, we adapt the application of the anti-reset windup strategy and the
saturation bias estimation routine to handle systems with quantized actuators. We focus on ESC design
for systems with “on/off” actuators. Since the excitation signal is limited to the on or off position, the
application of the saturation bias estimation is able to remove the impact of the dither to allow the ESC
system to converge to the correct position. Such actuators have not been treated in the literature.

The paper is organized as follows. A description of the ESC problem along with the key
assumptions are given in Section 2. The proportional-integral ESC controller are presented in
Section 3. The anti-windup mechanism and amplitude adjustment mechanism are described in
Section 4. The design of ESC for quantized actuators are presented in Section 5. Simulation examples
are presented in Section 6 followed by brief conclusions and proposed future work are in Section 7.

2. Problem Description

We consider a class of nonlinear systems of the form:

xk+1 = xk + f (xk) + g(xk)uk (1)

yk = h(xk) (2)
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where xk ∈ Rn is the vector of state variables at time k, uk is the input variable at time k taking values
in U ⊂ R and yk ∈ R is the objective function at step k, to be minimized. It is assumed that f (xk) and
g(xk) are smooth vector valued functions and that h(xk) is a unknown smooth function.

The objective is to stabilize the system at the equilibrium conditions, x∗ and u∗, that achieves the
minimum value of y(= h(x∗)) subject to saturation of the input. The input variable, uk, is required to
lie in the interval U = [u−, u+]. At equilibrium, the state variables are given by the map x = π(u) that
solves the following equation:

f (π(u)) + g(π(u))u = 0.

The corresponding equilibrium cost function is given by:

y = h(π(u)) = `(u) (3)

The steady-state optimization problem is to find the minimizer u∗ of y = `(u∗) subject to u∗ ∈ U .
The set D(u) represents a neighbourhood of the equilibrium x = π(u).

The steady-state cost function, `(u), meets the following assumptions.

Assumption 1. The nonlinear system is such that

∇xh(π(u))g(π(u))(u− u∗) ≥ 0

∀u ∈ U .

Assumption 2. The cost h(x) is such that

1. ∂h(x∗)
∂x = 0

2. ∂2h(x)
∂x∂xT > βI, ∀x ∈ Rn

where β is a strictly positive constant.

Following [22], we write the cost dynamics as:

yk+1 − yk = Ψ0,k(xk, ûk) + Ψ1,k(xk, uk, ûk)(uk − ûk). (4)

where Ψ0,k(xk, ûk) = h(α(xk, ûk))− h(xk),

Ψ1,k(xk, uk, ûk) = (∇h(α(xk))g(xk) +
1
2
(uk − ûk)

>g(xk)
>∇2h(ỹk)g(xk).

and ȳk = α(xk) + θg(xk)(uk − ûk) for θ ∈ (0, 1).
The following assumptions are required to ensure the stability of the closed-loop system.

Assumption 3. There exists a function uk = αF(xk, ûk) that solves the identity:

αF(xk, ûk) = Sat(−kgΨ1,k(xk, αF(xk, ûk), ûk) + ûk).

This assumption states that the feedback:

uk = Sat(−kgΨ1,k(xk, uk, ûk) + ûk).

is well defined.
The following stabilizability condition for the nonlinear system subject to input saturation is

also required.
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Assumption 4. There exists a positive definite function (x) that satisfies the following inequalities:

β1‖x− π(û)‖2 ≤ V(x) ≤ β2‖x− π(û)‖2

with positive constants β1 and β2. For all x ∈ Ωβ = {x ∈ Rn |V(x) ≤ β} ⊂ D(û) there exists a positive
constant k∗g such that:

V(ᾱ(xk))− V(xk) ≤ −αe‖xk − π(û)‖2

with positive constant αe and ∀û ∈ U and

ᾱ(xk) = xk + f (xk)− k∗gg(xk)Ψ1,k(xk, αF, û) + g(xk)û.

3. Proportional-Integral Discrete-Time ESC

In this section, we present the basic PI-ESC controller and the proposed parameter (gradient)
estimation algorithm.

PI-ESC Controller

From (4), the objective function dynamics are parameterized as follows:

yk+1 = yk + θ0,k + θT
1,k(uk − ûk)

where the time-varying parameters θ0,k and θ1,k are identified with θ0,k = Ψ0,k and θ1,k = ΨT
1,k.

The unknown parameters θ0,k and θ1,k must be estimated using a parameter estimation approach
described in the next subsection. We let θ̂0,k and θ̂1,k denote the estimates of θ0,k and θ1,k, respectively.
The proportional-integral extremum-seeking controller is given by:

uk = Sat
(
−kg θ̂1,k + ûk + dk

)
(5)

ûk+1 = ûk −
kg

τI
θ̂1,k,

where kg and τI are positive constants to be assigned. The term dk is a dither signal used to provide a
sufficiently excited signal in closed-loop. The dither signal is bounded such that ‖dk‖ ≤ D where D a
known positive constant denotes the amplitude of the dither.

In this study, the estimation of the parameter varying parameters θ0,k and θ1,k is performed using
the estimation routine described in [22]. The estimation routine implements a modified recursive least
squares approach for the estimation of time-varying parameters. It is described briefly in Appendix A.

The stability properties of the ESC considered are summarized in Appendix B.

4. Input Constrained ESC

In this section, we present the main contribution of this study. The proposed technique
incorporates three mechanisms for the solution of ESC problems in the presence of input constraints.
The first mechanism consists of a standard anti-windup mechanism that exploits the proportional
integral formulation of the ESC considered. The second mechanism proposes a dither bias estimation
routine that eliminates the presence of biases introduced when the dither signal input pushes the input
to its saturation limit. The third mechanism is a dither amplitude update that is used to remove the
dither signal when the system has converged to its optimal value, or its optimal saturation limit.
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4.1. Anti-Windup Mechanism

In this paper, we propose the use of an anti-windup mechanism for the proportional integral ESC
controller (5). A block diagram of the mechanism is shown in Figure 1.

− θ̂1,k
uk

dk
+++

−
kg Sat(·) Sat(·)

C(z)−1 − k−1
g

Figure 1. Anti-windup proportional-integral ESC.

In Figure 1, C(z) represents the discrete-time transfer function of the proportional-integral controller

C(z) = kg +
kg

τI

1
z− 1

.

The mechanism places the dither addition after the anti-windup loop but before the final
saturation. This mechanism guarantees that the dither signal is not removed when the system operates
at the saturation limits. It also guarantees that the dithered input does not violate the input constraints.

The operator Sat(·) denotes the saturation function:

Sat(u) =


u− if u ≤ u−,

u if u− < u ≤ u+,

u+ if u ≥ u+.

(6)

The proposed dynamics of the anti-windup mechanism is given by:

zk+1 = zk −
1
τI

zk −
1

kgτI
Sat(−kg θ̂1,k − kgzk)

uk = Sat(Sat(−kg θ̂1,k − kgzk) + dk). (7)

The anti windup loop is such that, in the absence of saturation, the control law reduces to the
proportional integral law and the control law becomes:

uk = Sat(−kg θ̂1,k − kg ẑk + dk)

ẑk+1 = ẑk +
1
τI

θ̂1,k. (8)

Please note that the Sat(·) remains in the control loop to ensure that the added dither signal does
not cause input constraint violation.

One of the difficulties associated with such an approach is that the saturation creates a bias in the
dither signal. This is problematic in cases where the optimum input lies close to or on the saturation
limit. This bias in the dither signal can lead to a bias in the estimation of the parameters. As result, the
value of the parameter θ̂1,k does not converge to zero even when the true value θ1,k vanishes.

It is, therefore, imperative to provide a mechanism to introduce the dither signal that prevents the
estimation bias. We consider two mechanisms in this study.
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4.2. Saturation Bias Estimation

Let us consider the case in which the optimum occurs on the upper saturation level ū. At the
optimum, the control signal for the ESC is given by

u = Sat(ū + dk).

The filter (or regressor) vector yields:

wT
k+1 = wT

k − KwT
k + [1, Sat(ū + dk)]

One of the key properties of the dither signal is that 1
N ∑k+N−1

i=k di = 0. In the absence of input
saturation, the average regressor is such that

lim
k→∞

1
N

k+N−1

∑
i=k

wi =
1
K
[1, ū]T .

In the presence of a bias in the dither signal, the regressor vector does not average to the correct
value. As a result, the parameter estimation of θ1,k is subject to a bias, and the system would converge
to an erroneous optimum state and input.

In this section, we design an update mechanism that accounts for this saturation bias. This is
achieve by introducing a signal δk in the control, uk, which is such that the average input is unbiased.
That is, for a fixed value of the input uk = ū, the following property is achieved:

1
N

k+N−1

∑
i=k

Sat(ū + di + δk) = ū. (9)

We first define the variable

Υk =

(
Sat(Sat(−kg θ̂1,k − kg ẑk) + dk + δk)− Sat(−kg θ̂1,k − kg ẑk)

)
.

The bias estimation update proposed in this study is given by:

δk+1 = δk −
{

λΥk if uk = u− or uk = u+

λδk otherwise
(10)

Proposition 1. The saturation bias estimate update (10) is such that:

1. For uk ∈ (u−, u+),
lim
k→∞

δk = 0

2. For u = u−, or u = u+,

lim
k→∞

k+N−1

∑
i=k

Sat(u + di + δk) = u.

Proof. For Statement 1, the conclusion is straightforward.
The proof of Statement 2 is as follows. To establish the property (9), we first compute the average

in the case where the value of the input is at one its saturation limits. Let us consider the case where the
input is at its upper limit, u+. From a set of N samples of the input, assume that there are N1 samples
at which Sat(u+ + dk + δk) = u+ with the remaining N2 samples for which Sat(u+ + dk + δk) < u+.
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Let µ2(j), j = 1, . . . , N2 denote the indices of the samples that are not saturated. As a result, we can
decompose the averaged quantity as follows:

k+N−1

∑
i=k

Sat(u+ + di + δi) = u+ +
N2

∑
j=1

(dµ2(j) + δµ2(j)) = u+ +
N2

∑
j=1

dµ2(j) +
N2

∑
j=1

δµ2(j).

Thus if one considers the update (10). Following the above argument, we average both sides by
summing over N samples. Let us consider the situation where the input is at its upper saturation limit
u+ and decompose the overall average into N1 saturated values and N2 inputs whose perturbed value
is not saturated. This yields

k+N−1

∑
i=k

δi+1 =
k+N−1

∑
i=k

δi − λ
N1

∑
j=1

(
Sat(u+ + dµ1(j) + δµ1(j))− Sat(u+)

)

− λ
N2

∑
j=1

(
Sat(u+ + dµ2(j) + δµ2(j))− Sat(u+)

)

This gives the following recursion of sums:

k+N−1

∑
i=k

δi+1 =
k+N−1

∑
i=k

δi − λ
N2

∑
j=1

dµ2(j) − λ
N2

∑
j=1

δµ2(j).

For every sample from the set of points that are saturated at step k, it follows that δµ1(j)+1 = δµ1(j).
As a result, we can write

N2

∑
j=1

δµ2(j)+1 =
N2

∑
i=1

δµ2(j) − λ
N2

∑
j=1

dµ2(j) − λ
N2

∑
j=1

δµ2(j).

Defining the variable

δ̄k =
N2

∑
j=1

δµ2(j),

we obtain the following recursion:
δ̄k+1 = δ̄k − λδ̄k − λd̄k.

As a result, we see that the average δ̄k approaches the negative value of the mean dither d̄k. As a
result, the bias (9) is completely removed by the saturation bias update (10). This completes the proof
of Statement 2.

In cases where the optimum lies on or close to a saturation, the update (10) would lead to an
effective removal of the dither signal. However, in fact, the dither is not removed. It is simply
compensated for by the bias estimate δk. If a disturbances affects the system, moving the optimum
inside the saturation, then the dither signal would resume and the ESC would operate in a normal
way. As a result, the dither would not be effectively removed.

4.3. Dither Amplitude Update

In this study, we consider a dither signal of the form: dk = ak sin(νk) where νk can be taken to be
a zero-mean Gaussian variable or simply νk = ωk for some frequency ω. The amplitude of the dither
signal ak is obtained using an amplitude update.
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Let the upper or lower limit if uk be denoted generically by ū. We first define the signal:

Θk =

{
θ̂1,k uk 6= ū,

θ̂0,k + θ̂1,kū otherwise.

The proposed amplitude update is given by:

ak+1 = ak + σ1

(
γ1

2
π

tan−1(Θk)− γ2λmin [Σk]− ak

)
(11)

where a0 ≥ 0, σ1, γ1 and γ2 are tuning parameters. This mechanism confers two actions to adjust the
amplitude of the dither signal.

The term γ1
2
π tan−1(Θk) decreases the amplitude when the gradient estimate decreases or when

the system has reached an equilibrium corresponding to a saturation input level. In [23], a similar
amplitude update is proposed. The proposed method complements that approach in two ways. First,
we adjust for the situation in which the input has stabilized on a saturation level. In this case, the
estimated value of θ1,k cannot reach 0. As a result, the approach of [23] using only θ̂1,k would yield a
larger value of the amplitude. If the optimization does not lead to a saturated value of the input, the
update acts as the update of [23] and reduces the amplitude to a suitable lower level.

Second, the proposed method assigns a minimum value of the amplitude ak. As the proof of
stability of the PI-ESC algorithm demonstrates [22], the practical stability of the unknown optimum
requires a persistent dither signal with ak > 0 for all k. In practice, setting ak = 0 would prevent the
system from responding to possible changes in the changes that may arise from changing conditions.
This property of the ESC system was recognized in [23], which required a fixed lower bound for
the amplitude. However, the choice of this lower bound can be conservative. The second term in
the update (11), γ2λmin [Σk], aims to increase the amplitude ak when the smallest eigenvalue of the
matrix Σ decreases. This update guarantees a minimum amount of excitation in the system in order to
respond to possible process changes.

The action of the amplitude update can be summarized as follows.

Proposition 2. For σ1 < 1, the update (11) is such that ak is bounded and limk→∞ ak approaches γ2λmin [Σ∞]

in a region of an unconstrained optimum θ̂1,k = 0 or on a saturation level of the input θ̂0,k + θ̂1,kū = 0.

The combination of the anti-windup (Figure 1) and the amplitude update (11) provides an effective
mechanism to minimize the bias of the system arising from the saturation. It also removes the need for
the tuning of the amplitude. We demonstrate this in simulations in the next section.

5. ESC for Systems with Quantized Actuators

The three mechanisms proposed in the previous section can be easily adapted to a situation where
the actuators of the system are limited to quantized (or on-off) input settings. In this case, we consider
an actuator whose on-off action can be implemented using a hysteresis mechanism of the form:

u = Γ(u, ε) =

{
u− if u ≤ (u− + u+)/2 + ε

u+ if u ≥ (u− + u+)/2− ε
(12)

where ε > 0 is a small positive constant. The function Γ(u) implements the discrete actuator using a
hysteresis mechanism.

In this study, we propose a quantized actuator ESC using the mechanism depicted in Figure 2.
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− θ̂1,k
uk

dk
+++

−
kg Γ(·, ε) Γ(·, ε)

C(z)−1 − k−1
g

Figure 2. Proportional-integral ESC with quantized actuator.

As above, we consider the anti-windup ESC given by:

uk = Γ(−kg θ̂1,k − kg ẑk + dk, ε)

ẑk+1 = ẑk +
1
τI

θ̂1,k. (13)

Since the ESC only provides quantized control action uk = u+ or uk = u−, we must consider a
saturation bias estimation to eliminate the bias and remove the b presented in Section 4.3. The reason
for this is that the update (14) yields the required property of the saturation bias as the system reaches
the limits. The proposed bias update is given by:

δk+1 = δk −
{

λΥk if uk = u− or uk = u+

λδk otherwise
(14)

where

Υk = Γ(Γ(−kg θ̂1,k − kg ẑk) + dk + δk, ε)− Γ(−kg θ̂1,k − kg ẑk, ε).

The amplitude of the dither signal is implemented as in Section 4.3.

6. Simulation

6.1. Anti-Windup PIESC

We consider the application of the PI-ESC approach to the following linear discrete-time system:

xk+1 = a1xk + uk

yk = (xk − p1)
2 + q1

where a1 = 0.8,

p1 =


3 k < 200

2 200 ≤ k < 300

4 300 ≤ k < 400

−2 k ≥ 400

, q1 =


1 k < 200

2 200 ≤ k < 300

5 300 ≤ k < 400

2 k ≥ 400

.

The input variable uk in constrained to values over the interval [0, 0.6].
We consider the PIESC algorithm with k = 0.1 and τI = 5. The estimation routine parameters

are set to α = 0.25, σ = 10−5 and Kk = 0.99. The amplitude is used with γ1 = 0.1, γ2 = 0.01 and
σ1 = 0.1 with an initial condition a0 = 0. The dither signal is dk = ak sin(2k). The choice of these
tuning parameters reflect the tuning guidelines that have been presented in [22]. For the saturation
bias update is implemented with λ = 0.05. This choice guarantees that the bias update responds
quickly to changing conditions.
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The simulation results are shown in Figures 3 and 4. Figure 3 shows the input and output
trajectories for the resulting closed-loop system. It also shows the changes in the amplitude of the
dither signal. Figure 4 shows the corresponding parameter estimates.

In this simulation, the location of the optimum is changed. For k ∈ [0, 200], the optimum occurs
at y∗ = 1 with u∗ = 0.6. This places the minimizer directly on the input constraint. The ESC system
identifies the optimum correctly. The amplitude update rule is also able to reduce the amplitude to
a suitable minimum level. For k ∈ [200, 300], the unknown optimum occurs at y∗ = 2 and u∗ = 0.4.
Since the dither amplitude update routine (11) prevented the amplitude from values that are too small,
the PIESC is able to respond quickly to the change in conditions.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

y
k

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

u
k

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

a
k

k

Figure 3. Performance of the anti-windup PIESC for Example 1. The top plot shows the progression
of the cost function. The corresponding input variable is shown in the middle plot. The bottom plot
shows the resulting amplitude of the dither signal.

0 50 100 150 200 250 300 350 400 450 500

-8

-6

-4

-2

0

2

4

6

8

10

Figure 4. Parameter estimates of the anti-windup PIESC with the saturation bias update for Example 1.

For the period k ∈ [300, 400], the unconstrained minimum occurs at y∗ = 5 and u∗ = 0.8. As
required in this case, the PIESC system converges to the saturated value of uk = 0.6 with cost yk = 6.
Finally, for k ≥ 400, the system cannot reach the unconstrained optimum y∗ = 2 and u∗ = −0.4 but
converges correctly to the lower saturation level of uk = 0 with cost yk = 6.

Overall, the PIESC with anti-windup mechanism performs effectively. First, the system is able
to perform the optimization task in the presence of input saturation. Second, the proposed approach
allows the partial removal of the dither signal when the system operates at saturation.
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6.2. Quantized Actuator ESC

In this section, we consider the same dynamical system subject to the quantized actuator:

Γ(u, ε) =

{
0 if u ≤ 0.3 + ε

0.6 if u ≥ 0.3− ε
(15)

where ε = 0.01 for the purpose of simulation.
The proposed dither signal is given by the sine wave signal:

dk = aksign(sin(ωk)) + δk (16)

where δk is the bias update and sign(·) is the sign function.
The parameters, p1 and q1, are chosen as follows:

p1 =


3 k < 200

−1 200 ≤ k < 300

4 300 ≤ k < 400

−2 k ≥ 400

, q1 =


1 k < 200

2 200 ≤ k < 300

5 300 ≤ k < 400

2 k ≥ 400

.

We consider the PIESC algorithm with k = 0.1 and τI = 5. The estimation routine parameters are
set to α = 0.25, σ = 10−5 and Kk = 0.99. The amplitude is used with γ1 = 0.1, γ2 = 0.01 and σ1 = 0.9
with an initial condition a0 = 0.5. We consider the bias update (14) with update parameter λ = 0.95.

The simulation results are shown in Figure 5. The ESC system is able to respond quickly to
the changing conditions. The correct optimal setting of the discrete actuator is correctly identified,
u∗ = 0.6 for 0 ≤ t ≤ 200, u∗ = 0 for 200 < t ≤ 300, u∗ = 0.6 for 300 < t ≤ 400 and u∗ = 0 for
t ≥ 400. The combination of the amplitude update and the bias estimation works very effectively in
this case. The systems reintroduces excitation in the system in response to the change in conditions.
The resulting excitation introduces a short sequence of discrete switches that vanish once the correct
optimum is identified.
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Figure 5. Performance of the discrete actuator PIESC for Example 1. The top plot shows the progression
of the cost function. The corresponding input variable is shown in the middle plot. The bottom plot
shows the resulting amplitude of the dither signal.
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7. Conclusions

This study proposed an extremum-seeking control algorithm for systems subject to input saturated
or quantized actuators. The approach couples a well known anti-reset windup technique with a
saturation bias estimation routine that improves the performance of the ESC near or on the saturation
level by removing the impact of the dither signal. An amplitude update is also proposed to further
improve the performance of the ESC system.
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Funding: This research was partially funded by the Natural Sciences and Engineering Council of Canada.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Projection Operator

The estimation routine consists of the following output predictor dynamics

ŷk+1 = ŷk + θ̂0,k + θ̂T
1,k(uk − ûk) + Kkek − wT

k+1(θ̂k − θ̂k+1) (A1)

with auxiliary regressor variable,
wk+1 = wk + φk − Kkwk, (A2)

where θ̂k = [θ̂0,k, θ̂T
1,k]

T is the vector of parameter estimates at time step k given by any update law,
Kk is a correction factor at time step k, ek = yk − ŷk is the state estimation error at time step k. We let
φk = [1, (uk − ûk)

T ]T . The variable wk is initiated w0 = 0.
The parameter estimation update dynamics are given by:

Σ−1
k+1 = (αΣk + σI)−1 − (αΣk + σI)−1wkQkwT

k (αΣk + σI)−1, (A3)

where Qk = (1 + 1
α wT

k (αwk + σI)−1wk)
−1, and

¯̂θk+1 = Proj{θ̂k + (αΣk + σI)−1wkQk(ek), Θk} (A4)

where, Proj, denotes the projection operator.The operator Proj represents an orthogonal projection onto
the surface of the uncertainty set applied to the parameter estimate. The parameter uncertainty set is
defined by the ball function B(θ̂, zθ̂), where θ̂ and zθ̂ are the parameter estimates and uncertainty set
radius, respectively.

Following [24], the projection operator is such that

• θ̂k+1 ∈ Θ0

• ¯̃θT
k+1Σk+1

¯̃θk+1 ≤ θ̃T
k+1Σk+1θ̃k+1

One possible algorithm for the projection algorithm is as follows. Define the upper bound for ‖θ‖
(= L1). Let R =Chol(Σk+1) denote the Cholesky factor of Σk+1. Then we perform the following:

Algorithm A1:

If ‖θ̂k+1‖ ≥ L1 then

• Let δ = L1 θ̂k+1

‖θ̂k+1‖
and zρ =

√
δTΣk+1δ,

• With ρ = Rθ̂k+1 define ρ̄ =
ρzρ

‖ρ‖ ,

• Set ¯̂θk+1 = R−1ρ̄.
Otherwise,
• Set ¯̂θk+1 = θ̂k+1.
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Appendix B. Stability Properties

Assumption A1. There exists constants β > 0, βT > 0 and T > 0 such that

βT I <
1
T

k+T−1

∑
i=k

wiwT
i ≤ βI, ∀k > T. (A5)

This requirement is a standard persistency of excitation condition that can be found in most
references on adaptive control and adaptive estimation. The reader is referred to [24] for more details.

The following theorem establishes the stability properties of the ESC system in the presence of
the input saturation. The result is a direct consequence of the results of [22].

Theorem A1. Consider the nonlinear discrete-time system (1) with cost function (2), the extremum seeking
controller (5) and parameter estimation scheme (A1)–(A4). Let Assumptions 1– 4 and A1 be fulfilled. Then, for
any x0 ∈ Ωβ, there exists positive constants α, K, kg and τI such that for every τI ≥ τ∗I , the states xk and input
uk of the closed-loop system enter a neighbourhood of the unknown optimum (x∗, u∗).

Proof. The proof follows the result presented in [22] subjected to a saturated controller that, by
Assumption 4, locally asymptotically stabilizes the unknown optimum. The key element of the result
is the existence of suitable tuning parameters that achieves stability of the optimum.

The proof presented in [22] establishes that the stability of the closed-loop ESC relies on the
bounded of the covariance matrix. Assuming that Σ0 = α0 I, it is shown that:

αT

1− α
βT I + σI ≤ Σk ≤ α0 I +

1
1− α

T(β + σ)I.

In this study, the application of parameter projection algorithm and the saturation of the input
guarantees that the upper bounds on (A5) and Σk are met. The lower bound on Σk can only be met by
ensuring that the lower bound on (A5) is met. We propose a dither amplitude update that can minimize
the impact of the dither signal on the closed-loop system close to the optimum. The amplitude also
monitors the lower bound of Σk to guarantee that the closed-loop maintains a sufficient amount
of excitation.
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