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Abstract: For solving the problems of closed-loop optimization on controller parameters of
multiple-controller single-output thermal engineering system, this paper proposes a recurrent
optimization method that is based on the particle swarm computing and closed-loop simulation
(PSO-RCO). It consists of a set of closed-loop identification, simulation, and optimization functions
that are organized in a recurrent working flow. The working flow makes one controller tuned at a
time whilst others keep their values. It ends after several rounds of overall optimizations. Such a
recurrently alternative tuning can greatly speed up the convergence of controller parameters to
reasonable values. Verifications on practical data from a superheated steam temperature control
system show that the optimized control system performance is greatly improved by reasonable
controller parameters and practicable control action. With the advantage of not interfering system
operation and the potential supporting on big data identification method, the PSO-RCO is a promising
method for control system optimization.

Keywords: optimization; PID; thermal engineering process; PSO; identification

1. Introduction

Proportional-Integral-Derivative (PID) control is the most classic control strategy and still the
mainstream in thermal engineering control at present [1]. Due to the characteristics of thermal
engineering system, such as large range of load variation, long-term continuous operation, nonlinear
dynamics, and multiple disturbances, the control performance of PID controller may become worse in
operation, resulting in large fluctuation and deviation of process states and jeopardizing the safe and
economic conditions of the process. Therefore, PID parameters need retuning from time to time for
adapting to varying working conditions.

There are two essential ways for optimizing PID parameters, i.e., the open-loop method and
closed-loop method. The open-loop method needs to add a step variation on manipulated variables
to an open-loop controlled process and may affect production negatively, therefore it cannot be used
for frequent PID parameter tuning. On the contrary, the closed-loop optimization method works on
closed-loop control system and does not interfere with process states, thus it could be a more suitable
way for controller parameter optimization.

There are two classes of closed-loop PID-parameter tuning methods. One is the conventional
method such as the critical proportional band method, the attenuation curve method, the single
parameter self-tuning method and so on [2]; another one is the intelligent computing (IC)-based
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parameter optimization method. Evolutionary multi-objective optimization algorithms with Particle
Swarm Optimization (PSO), Genetic Algorithm (GA) and Bacteria Foraging Optimization are used
respectively to tune PID controller parameters in [3] and compared with the conventional Ziegler
Nichols method, showing the best performance by PSO. GA is adopted for tuning PID parameters in
an application of electrical furnace temperature control and the Integral of Absolute index is used for
assessment [4]. In [5], the PID-PSO, Fuzzy-PSO, and GA-PSO are taken respectively for improving the
speed control of dual star induction motor and the Fuzzy-PSO behaves the best. Genetic Programming
is studied for the PID parameter tuning in [6]. In [7], a comparative study on the reactive nature-inspired
algorithms for PID controller tuning is taken and it reaches that PSO is the best algorithm. It is easy to
understand that the conventional method is appropriate for a single controller, but not convenient for
multiple-controller loop according to its working principle [8].

However, thermal engineering processes are often complex, including multiple variables, multiple
disturbances, coupled control loops and so on. The conventional closed-loop method cannot handle
these issues in control parameter tuning. The IC-based closed-loop control parameter optimization
method is able to handle these conditions, because IC algorithms like PSO is good at solving complex
optimization problems, especially in hyperspace. There are some examples for using IC to tune
controller parameters. The genetic algorithm is used in [9] to design PI parameters but only for a
boiler-turbine model. The particle swarm algorithm is used in [10] to optimize the inner-loop PI
parameters of a cascaded superheated-steam-temperature control system, while the outer loop is not
optimized but upgraded with a kind of advanced controller. When there are multiple controllers to
be set in a system, it is usually difficult for IC algorithm to converge quickly to the optimal solution
due to the large number of parameters of multiple controllers. Moreover, unreasonable or infeasible
controller parameters are apt to appear in optimization results due to coupled relationship among
multiple controllers in a single-output system. Therefore, there are still big problems in applying the
IC-based closed-loop control parameter optimization method to the field.

In order to solve the aforementioned problems, this paper proposes a PSO-based recurrent
closed-loop optimization method (PSO-RCO) for multiple controller parameters in a single-output
thermal engineering process. There are many multiple-controller single-output systems in thermal
engineering processes, e.g., the superheated-steam-temperature control system which often has
2–4 controllers in single or cascaded loops for regulating the outlet steam temperature of superheaters
in boiler-turbine units. In modeling, a multiple-controller single-output system should be described
as a multiple-input-and-single-output (MISO) expression. The superheated steam temperature is
always influenced by many factors, e.g., steam flow, desuperheated water flow and upstream steam
temperature [11]. It also has large inertia due to long tube volume. These all bring about control
problems for steam temperature [12]. Because superheated steam temperature is a critical quantity on
unit lifetime, efficiency and load following capability, frequent tuning on its control parameter adapting
to circumstances is in need [13]. It is also a persuasive example for verifying the PSO-RCO method.

The major contributions of the paper are summarized as follows.

(1) A controller parameter optimization approach based on closed-loop identification and simulation
is proposed for thermal engineering processes. It takes advantage of field data in history database
to identify precise dynamic model for optimizing practicable controller parameters.

(2) A recurrent optimization working flow is proposed for tuning multiple controllers and single
output system. Comparing to the simultaneous optimization on all controller parameters, it can
better avoid unreasonable or infeasible optimization solution due to couplings among multiple
controllers in a single-output system.

(3) Considering multiple disturbances in thermal engineering system, the intelligence computing is
considered for the optimization on controller parameter rather than classical tuning methods.
The IC-based optimization can find improved practicable controller parameters through operating
simulation model with field data inputs.
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(4) Due to efficient optimization ability on multi-dimension real-number problems, the canonical
PSO algorithm is adopted for PID parameter optimizing in the approach.

(5) For an integrated consideration of control performance and control energy cost, the multi-objective
fitness function is adopted in PSO.

The rest of the paper is organized as follows. Section 2 presents the whole idea of the PSO-RCO
method first and then unfolds details of modeling, simulation and optimization methods involved
in PSO-RCO. Section 3 applies the PSO-RCO method on a superheated-steam-temperature control
system. Section 4 draws the conclusions.

2. Methodology

The PSO-RCO algorithm is composed of closed-loop identification function, control loop simulation
function, PSO parameter-tuning function, and recurrent-optimization monitor, as shown in Figure 1.
The holistic working flow is organized by the recurrent-optimization monitor. The major concern of
each function and overall working flow will be explained in the following subsections.
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2.1. Control Loop Simulation

Since the simulation-based controller parameter optimization requires high similarity to the field
system, a high-fidelity simulation model of the control system to be optimized should be established
first. The real control strategy for thermal engineering processes is often very complex for dealing
with the complicated process dynamics including large inertia, strong coupling, nonlinearity and the
like. Besides PID controllers, there are many other auxiliary links in control strategies for feedforward
compensation, high and low limitation on manipulated variables, input dead-zone limitation, and
noise filtering. All the links applied in field control loops should be included in simulation models.
Therefore, the closed-loop simulation model should be built strictly according to the practical control
strategy. Another equally important aspect about the simulation accuracy is the similarity of model for
describing the dynamic characteristics of controlled plant.
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2.2. Closed-Loop Identification on Controlled Plant

The dynamic model of controlled plant should be able to reflect all major measurable influences
which are defined as the manipulated variable and disturbance variables. To this end, the MISO
model for the controlled plant is adopted and identified by using field data sampled from closed-loop
systems. First of all, the selection for appropriate identification samples should keep the following
principles [14].

Principle 1. Persistent excitation on input signals.

There must be some persistent excitation on input signals of the identified plant. Since the
variables of a thermal engineering process are strongly coupled, a continuous and obvious load
variation can make the input variables of a MISO model varying and the sampled data during this
period can meet the requirement.

Principle 2. Closed-loop identifiability.

The identifiability for a controlled plant of using its closed-loop samples can be supported by any
of the following conditions.

(1) The controlled process has long time delay or large inertia
(2) There are disturbances in the feedback channel and the inputs and outputs of a plant

are measurable.
(3) The data is sampled from setpoint perturbation processes.

Principle 3. Linear independence of input signals.

The input signals with noisy measurement of a MISO thermal system can guarantee the linear
independence of the input signals which is necessary for dynamic model identification.

Therefore, the closed-loop identification method is suitable for thermal engineering processes
with large-inertia or time-delay dynamics, setpoint tracking, and noise-involved measurements.

The following MISO AutoRegressive eXogenous(ARX) model is adopted for identification.

yt = −
n∑

i = 1

aiyt−i +

nu∑
p = 1


mp∑

j = 1

bp, jup,t− j−dp

, dp ≥ 0 (1)

where yt denotes the output at time instant t which is the linear combination of the previous output
sequence yt-i with coefficient ai and the sum of nu- input linear combination. The pth input linear
combination is the sum of inputs up,t-j-dp, with coefficient bp,j, where up,t-j-dp is the value of the pth input
variable at time instant (t-j-dp), mp is the inertia order of the pth input variable, dp is the time delay of
the pth input variable and nu is the number of input variables. n is the order of output variable, and mp

is often taken the same as n in identification. The format of Model (1) implicates the long time delay
denoted by dp or large inertia denoted by mp which are required by closed-loop identifiability as stated
in Principle 2. When identifying model (1), the structural parameters of order and time delay need to
be determined first and then the coefficients.

2.2.1. Auto-Selection of Model Order and Time Delay

The cross-correlation function of each input-and-output channel is computed to identify its pure
time delay [15]. The cross-correlation function is given by

Rp =
1
S

S∑
j = 1

∣∣∣up( j)y( j + dp)
∣∣∣ (2)
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where S denotes the number of samples, dp = 1, 2, . . . , Kp, Kp(<< S) denotes the maximum of time
delay from the pth input to the output. The value of dp corresponding to the maximum of Rp indicates
the pure time delay from the pth input to the output, denoted as dp,s.

Then using the singular value decomposition (SVD) method based on Hankel matrix [16], one can
find the order of model (1). The method is described in the following.

First, the pth (p = 1, nu) input time series should be right shifted by dp,s-sampling points according
to its output sequence. Second, a sufficient high-order MISO ARX model, e.g., 15th-order, need to be
identified on the shifted input and output time series. Then the parameter estimation method like the
recursive least squares (RLS) is adopted to estimate the coefficients of the sufficient high-order MISO
ARX model for determining its proper reduced order. Third, using the identity impulse signal to excite
the identified sufficient high-order MISO ARX model, one can get the impulse response sequence and
then construct the following Hankel matrix.

H(k) =


h(k) h(k + 1) · · · h(k + l− 1)

h(k + 1) h(k + 2) · · · h(k + l + 1)
...

h(k + l− 1) h(k + l + 1) · · · h(k + 2l− 2)

 ∈ Rl×(l×nu) (3)

where
h(k) =

[
h1(k) h2(k) · · · hnu(k)

]
∈ R1×nu (4)

hi(k) denotes the impulse response value from the ith input to the output at time instant k, l belongs to
integer and is greater than the model order; letting k = 0, one makes the singular value decomposition
on H(0) and has H(0) = U0ΛVT

0 ,where matrix U0 ∈ Rl×l and V0 ∈ R(nu×l)×(nu×l) are orthogonal,

Λ =


λ1

. . .
λr

0

 ∈ Rl×(l×nu) has the singular values λi > 0, i = 1, · · · r in descending order

as its diagonal entries and the rank of H(0) is r(≤l). The index of the sharply decreasing place in its
diagonal value sequence can be taken as the estimation value of actual model order.

2.2.2. Model Parameter Estimation

Parameters of MISO ARX model (1) are identified by using recursive least squares method. The
recursive least squares method is given by

Kt = Pt−1φt
T[1 + φtPt−1φt

T]
−1

θ̂t = θ̂t−1 + Kt[yt −φtθ̂t−1]

Pt = Pt−1 −KtφtPt−1

(5)

where t represents the current moment, yt the actual measurement value of output
at time instant t; the observed value vector of inputs and output is denoted as
φt = [−yt−1,−yt−2, . . . ,−yt−n, u1,t−1, u1,t−2, . . . , u1,t−n, . . . , up,t−1, up,t−2, . . . , up,t−n], t = 1, 2, . . . , S,
S denotes the number of samples; The parameter vector,
θ = [a1, a2, . . . , an, b1,1, b1,2, . . . , b1,n, . . . , bp,1, bp,2, . . . , bp,n]

T has its estimation of the previous
moment denoted as θ̂t−1. Its initial value is set as θ̂0 = 10−61n×(p+1); the initial value of the estimated
error covariance matrix Pt is set as P0=106In × (p+1); Kt denotes the gain matrix. Formula (5) updates
the estimations on Kt, θ and Pt at every sampling time with observed value vector φt under sliding
window.
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2.3. PSO for Controller-Parameter

PSO is an efficient optimization algorithm, especially in hyperspace. In 1987, Reynolds developed
three rules to summarize the complicated swarm behavior of birds swarm. Then Kennedy and Eberhart
brought out the PSO by doing the simulation experiences of imitating birds seeking food in 1995 [17].

2.3.1. Canonical PSO

The canonical PSO is an optimization technique with continuous variables developed through
simulation of simplified social models such as swarm of birds. Each bird in a swarm plays a searching
point called the particle. The ith particle position in the search space at time step t can be denoted as a
vector xj(t), j = 1, d, and d denotes the number of the parameters to be optimized. Based on stochastic
and multipoint search, each particle has its own best individual position which takes the one of the
minimal fitness value among the individual search records, and the best position of the swarm is the
one of the minimum fitness value in the swarm′s search history. In the search process of a particle
swarm, thee particles are distributed randomly in the search space initially and then each particle is
oriented by its velocity. The initial velocity is random and then updated iteratively by Equation (6).
Each particle position is change by Equation (7).

v j(t + 1) = w× v j(t) + c1 × rand(0, 1) × [p j(t) − x j(t)] + c2 × rand(0, 1) × [pg(t) − x j(t)] (6)

x j(t + 1) = x j(t) + v j(t + 1), 1 ≤ t ≤ G− 1, 1 ≤ j ≤ N (7)

where w is the inertia weight, c1, c2 are called the learning factor, rand (0,1) denotes random real
numbers in (0,1), pj(t) is the jth particle′s best individual position after t times of iteration, and pg(t) is
the swarm’s best position after t times of iteration [18]. Equation (6) is composed of an original velocity
term and an individual best term and a global best term. Figure 2 shows that the velocity is updated
using the total vector of the three terms in Equation (6) and then change its position. VjBest and VgBest
in Figure 2 denote the second and third terms in Equation (6), respectively.
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2.3.2. Multi-Objective PSO for PID

In PSO for PID controller parameters, the position of each particle represents the parameters
in searching, like the proportional, integral and derivative coefficients. The particle swarm is
usually initialized by random vectors, i.e., a swarm of particles located randomly in searching space.
A commonly used PID controller is given by the following transfer function.

WPID(s) = kp(1 +
ki
s
)(

kds
kd
ka

s + 1
) (8)
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where kp is the proportional gain, ki is the integral gain, kd is the differential gain and ka is the filter gain,
all in positive value. Then in PSO for optimizing these gains, the jth particle position vector after t
times of iteration can be denoted by

x j(t) = [ kp ki kd ka ], t = 1, · · · , G, j = 1, · · · , N (9)

where N denotes the number of the particles in a swarm and G the generations of PSO. The jth particle
speed vector after t times of iteration is denoted by

v j(t) = [ ∆kp ∆ki ∆kd ∆ka ], t = 1, · · · , G, j = 1, · · · , N (10)

where ∆kp is the change of proportional gain, ∆ki is the change of integral gain, ∆kd is the change of
differential gain, and ∆ka is the change of filter gain.

The controller parameters coded as particles in a swarm are set into the controllers to be optimized
in the control simulation loop. Through initiating a step disturbance on setpoint, the particle fitness
function is calculated with the samples of controlled and control variables from control simulation loop.
The objective function for evaluating the setpoint-tracking performance and actuator work is given by

J1
(
x j(t)

)
=

L∑
j = 1

(w1
∣∣∣y j − r j

∣∣∣+ w2ui, j + w3
∣∣∣ui, j − ui, j−1

∣∣∣), i = 1, 2, . . . , Cu (11)

where, L is the number of sampling points, y denotes the output, r is the setpoint value, ui,j is the jth
sampled value of the ith control variable, Cu is the number of controllers, w1, w2, w3 are the weights
representing control performance preference. Moreover, since there are a lot of combinations of the
proportional gain, integral gain, differential gain and the filter gain which can achieve best control
performance, the mere optimization on fitness function J1 cannot guarantee PID parameters to converge
quickly, thus another objective function for optimizing the decision vector xj(t) to approach some
optimal value is given by.

J2
(
x j(t)

)
= w4

(
kp − k∗p

)
+ w5

(
ki − k∗i

)
+ w6(kd/ka−(kd/ka)

∗) (12)

where w4, w5, w6 are the weights for suppressing the deviation from the optimal value[
k∗p k∗i (kd/ka)

∗
]

of the controller parameters. Big value of these parameters easily leads to
fluctuating regulation and costs more energy on actuator actions or being very sensitive to noise, thus
small values of k∗p, k∗i , (kd/ka)

∗ are preferred in (12) when energy cost, fluctuations of regulation
process and actuator actuators and noise sensitivity are considered.

Since the objective functions J1 and J2 may be in conflict with each other when performing
the optimization, it is proposed to minimize the maximum deviation of the two objective functions
to their optima, instead of directly minimizing the sum of weighted objective function J1 and J2.
The multi-objective fitness function is given by

J
(
x j(t)

)
= min(max(β1 J1, β2 J2)) (13)

where β1 and β2 are the preference coefficients on objective J1 and J2, respectively.

2.4. Iterative-Tuning Monitor

The PSO-RCO method tunes controller parameters in MISO thermal engineering processes
through collaborations of each module shown in Figure 1. The overall working flow is organized by
the recurrent-optimization monitor and shown in Figure 3. The details of the working flow is explained
in the following.
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1. A closed-loop control simulation model for the thermal engineering process to be optimized
should be built first. The utilization of actually applied control algorithm, the sampling data of
input variables imported from historical database at big data platform and the accurate dynamic
model of the controlled process ensures a high-approximation simulation from the model to the
actual process. In the simulation, manipulated variables and controlled variables are produced
by the simulation control algorithm and model.

2. MISO ARX models for describing the controlled-process dynamics are identified on historical
data. The chosen identification data segment includes the samples of manipulated variable, input
disturbances and controlled variable. It should keep the identifiable conditions which have been
discussed in Section 2.2. By applying the identification algorithms described in Sections 2.2.1
and 2.2.2, the MISO ARX model of the controlled process can be obtained and imported into the
simulation loop. Then an approximate simulation loop of the process is set up.

3. The PSO-RCO method optimizes the controllers of a MISO thermal process one by one in several
optimization circulations to approach the optimal controller parameters. When the ith (I = 1,
2, n)controller is selected for optimization, the controller parameters like the proportional gain,
integral time and derivative gain, are coded into the particles of the PSO algorithm with the
initial value of the previous value plusing a random bias. After running the simulation model
for enough steps, each particle’s fitness which represents the performance of corresponding
controller is evaluated on the fitness function. After enough generations of particle update, the
particle swarm converges to the optimal fitness and controller parameters. The optimization
result is the new parameters of the ith controller in place of the old ones.
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4. If the number of controllers in control loop, denoted by n, is larger than 1 and the order of the
current optimized controller i is smaller than n, the next controller to be set is the (i + 1)th and let
i = i + 1. Then the operations in (3) run again for optimizing the (i + 1)th controller parameters.

5. When i reaches n, one round of optimization on multiple controller parameters for the single-output
thermal process is done. If the rounds of recurrent parameter-tuning is less than the set number,
the next round of optimization is initiated again, starting with the 1st controller and then proceeds
to the nth through optimizing process (3). When the rounds of optimization is reached, the whole
controller-parameter optimization is finished and the optimized controller parameters are set into
the simulation model for verifications. After comparing the optimized control performance with
the pre-optimized, the improved controller parameters can be applied to field control system or
be a guidance for controller parameter tuning.

3. Verification

The boiler process includes several superheating processes. Each of the processes serve as an
energy transferring system, i.e., energy being transferred from the flue gas to the steam. In order to
regulate the outlet superheated steam temperature for the sake of safety and high efficiency, each
superheater is equipped with desuperheaters which inject desuperheating water at the upstreams of
superheater. The desuperheating water is drawn from the boiler feedwater pump.

In Figure 4, the flowchart of a superheater in a 330 MW-rated thermal power unit is shown.
The steam flows in two sides of heat-transferring channels in boiler and then merges to be heated
by the flue gas in the superheater. In order to keep the outlet superheated steam temperature at
setpoint, two desuperheaters are equipped upstream on each side to change the outlet superheated
steam temperature. This is a typical MISO control system consisting of two manipulated variables, the
positions of A-side and B-side desuperheater valves, and the controlled variable, the outlet superheated
steam temperature. Therefore, two desuperheater controllers work in parallel to control two sides of
desuperheater valve position, as shown in Figure 5.
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In order to optimize the A-side and B-side desuperheater controllers by PSO-RCO, the accurate
models of the controlled process should be identified and put into a simulation system in which the
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control strategy is identical to that in the field. The schematic diagram of the simulation system is
shown in Figure 5 where the parameters of the two controllers are adjustable by the result of the
PSO-RCO. The PSO-RCO implements the controller optimization through operating the simulation
system on field data samples like setpoint, load, inlet steam temperature and other disturbance data,
which ensures that the optimization result matches the field controllers. And these field data samples
come from the history database on a big data platform which is fed with clean on-line field data after
the data preprocess.

3.1. Model Identification

For describing the dynamic characteristics of superheated steam temperature precisely, three
models are identified corresponding to three sectors of steam-gas heat exchanging process which are
the A-side lead sector, B-side lead sector and the lag sector [19]. Each model is MISO.

Following Principle 1, 8000 continuous samples were picked out of time series, among which
the front half was used for identification and the left half for verification. The selected data includes
input and output series for the identified MISO models. The three output series are shown as black
dash-dot curves in Figures 6–8, respectively. The load is varying in this period. Since the variables of a
boiler-turbine power-generating process are strongly coupled, the sampled data during this period
can meet the condition of persistent excitation on input signals as stated in Principle 1. Checking the
time delay and order by cross-correlation function and SVD method, three MISO ARX models were
identified by using RLS and then transformed into Z-transfer functions.
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The model for A-side lead sector is expressed by

y1(z) = G1,1(z)u1,1(z) + G1,2(z)u1,2(z) + G1,3(z)u1,3(z)

G1,1(z) =
y1(z)

u1,1(z)
= −0.0028z−2

1+0.9459z−1

G1,2(z) =
y1(z)

u1,2(z)
= −0.0187z−2

1+0.9459z−1

G1,3(z) =
y1(z)

u1,3(z)
= −0.0515z−2

1+0.9459z−1

(14)

where y1 denotes the steam temperature at the A-side desuperheater outlet, u1,1 denotes the power,
u1,2 denotes the opening of A-side desuperheater valve, and u1,3 denotes the steam temperature at the
A-side desuperheater inlet.

The model for B-side lead sector is described by

y2(z) = G2,1(z)u2,1(z) + G2,2(z)u2,2(z) + G2,3(z)u2,3(z)

G2,1(z) =
y2(z)

u2,1(z)
= −0.0070z−2

1+0.9432z−1

G2,2(z) =
y2(z)

u2,2(z)
= −0.0111z−2

1+0.9432z−1

G2,3(z) =
y2(z)

u2,3(z)
= −0.0586z−2

1+0.9432z−1

(15)

where y2 denotes the steam temperature at the B-side desuperheater outlet, u2,1 denotes the power,
u2,2 denotes the opening of B-side desuperheater valve, and u2,3 denotes the steam temperature at the
B-side desuperheater inlet.

The model for lag sector is described by

y3(z) = G3,1(z)u3,1(z) + G3,2(z)u3,2(z) + G3,3(z)u3,3(z)

G3,1(z) =
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(16)

where y3 denotes the superheated steam temperature at the outlet, u3,1 denotes the steam temperature
at the A-side desuperheater outlet, u3,2 denotes the power, and u3,3 denotes the steam temperature at
the A-side desuperheater outlet. Since the models for A-side and B-side are in series with the model
for lag sector, u3,1 is equal to y1 and u3,1 to y2.
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The model-fitting results of three de-mean steam temperatures are shown in Figures 6–8. It can be
seen that the model outputs are fitting well with the measurement data. The identification models can
accurately describe the modelled process in term of dynamics.

3.2. Optimization on Controller Parameters

Based on the complete control system model, the optimization on controller parameters can be
initiated after the newly identified parameters set into the plant models. The transfer functions of the
A-side and B-side desuperheater controllers are in the following form.

W(s) = k1kp(1 +
ki

60s
)(

60× kds + 1

60× Kd
ka

s + 1
) (17)

where s is the Laplace operator, kp is the proportional gain, ki is the integral gain, kd is the differential
gain, ka is the filter gain and k1 is the total gain. The PSO algorithm is taken to optimize kp, ki, kd, ka

for the A-side and B-side desuperheater controllers, k1 is set as 0.2, and the parameters in objective
function (11) and (12) are set as L = 800, w1 = 3, w2 = 0.02, w3 = 0.001, w4 = 50, w5 = 60, w6 = 70.

In the first round of optimization, let β1 = β2 = 1 in fitness function (13), and the initial value of
the jth particle position vector is generated randomly by

x j(0) = Low + (High− Low) × rand(0, 1), j = 1, · · · , N (18)

Low = [ k−p k−
i

k−
d

k−a ], High = [ k+p k+
i

k+
d

k+a ] (19)

where superscript “+” denotes the high limit of the corresponding variable, and “−” denotes the low
limit. From the operating experience of the superheated steam temperature control system, we set
Low = [ 0 0 0 1 ], High = [ 30 20 10 50 ]. In order to achieve lower optimal controller
gain, we set k∗p = 0.12, k∗i = 0.1, (kd/ka)

∗ = 0.12 in objective function (12).
In the succeeding round of optimization, let β1 = 1, β2 = 2 in fitness function (13), and the initial

value of the jth particle position vector is generated randomly around the optimization result of the
previous round, i.e.,

x j(0) = [ k0
p k0

i
k0

d
k0

a ]+(rand(0, 1) − 0.5)[ k0
p k0

i
k0

d
k0

a ], j = 1, · · · , N (20)

where superscript “0” denotes the optimization result of the corresponding variable at the
previous round. For a finer adjustment on the acquired controller parameters, we set
[k∗p, k∗i , (kd/ka)

∗] = [ k0
p, k0

i ,
(
k0

d
/k0

a

)
] in objective function (12).

Fulfilling the working flow in Figure 3 for 5 times and 2 rounds per time, we obtained 5 groups of
optimized controller parameters. The optimization results for desuperheater controller A are listed in
Table 1, and controller B in Table 2.

Table 1. Optimized controller parameters of desuperheater controller A.

Times kp ki kd ka

1 10.065 1.436 0.839 15.097
2 10.072 1.456 0.839 15.106
3 10.088 1.444 0.841 15.132
4 10.037 1.480 0.836 15.055
5 10.048 1.457 0.837 15.072

Mean 10.062 1.4546 0.8384 15.0924
Standard deviation 0.02 0.0167 0.0019 0.03
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Table 2. Optimized controller parameters of desuperheater controller B.

Times kp ki kd ka

1 1.296 2.359 0.108 1.944
2 0.413 5.860 0.034 0.620
3 0.392 6.965 0.033 0.588
4 0.567 5.447 0.047 0.850
5 1.178 2.447 0.098 1.766

Mean 0.7692 4.6156 0.0640 1.1536
Standard deviation 0.4344 2.0949 0.0362 0.6513

The tables show that all the optimized gains of controller A and B are in the lower band of their
ranges and the optimization results are quite close each time.

Comparing the control results shown in Figure 9, one can find that the root-mean-square error
(RMSE) between the controlled variable and setpoint of superheated steam temperature from the
optimized control system is much smaller than that from the field original controller, i.e., 1.06 ◦C vs
2.42 ◦C. Since the superheated steam channel has many disturbances from steam flow, gas flow and
temperature, ash blowing etc., the superheated steam temperature always deviates from its setpoint a
lot, resulting in heat efficiency loss or device damage. Figure 9 shows that the optimized controllers can
make the RMSE reduced 1.36 ◦C which will does great benefit to the system operation. Subject to the
same range and speed limitations as the original controller outputs, the control variable values from the
optimized controller A and B can be seen feasible and reasonable from Figures 10 and 11. Comparing
the gains of controller A and B from Tables 1 and 2, one can find that the proportional gain of controller
A is dominated and the integral gain of controller B as well. Therefore, controller A focuses efforts on
suppressing deviations of superheated steam temperature from the setpoint during transient process,
while controller B focuses on eliminating steady offsets. The optimization result of such a controller
function allocation contributes to high-quality control performance in multi-controller-single-output
systems. Therefore, the A-side and B-side desuperheater controllers have been effectively optimized
by the PSO-RCO parameter-tuning method, and the regulation performance on the superheated steam
temperature is greatly improved.
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Figures 12 and 13 show the fitness value trends of the global optimal particles in two rounds of
PSO optimizations on setting desuperheater controller A and B, respectively. The PSO optimization
order in each round is Controller A-Controller B. Each controller parameters are coded by a particle
swarm of 30 4-dimensional individuals and experience 20-generation iterative optimization every
round. Each of Figures 12 and 13 has two subfigures. The upper one shows the fitness value trend
from generation 1–20, and the lower one from generation 21–40. One can observe that there is an
obvious drop on the global-best fitness value from generation 20 to generation 21 in Figure 12 or
Figure 13. The drop on fitness value of one controller’s particle swarm is caused by the optimization
on another controller ahead which improves the overall control performance and reduces the RMSE
of the controlled variable. At the beginning of the 2nd round optimization on any one controller,
the best fitness value of its particle swarm obviously decreases than it was at the end of the 1st
round optimization. Therefore, such recurrently alternative optimizations can greatly speed up the
convergence of controller parameters. Since the next round optimization on any one controller always
proceeds from a better start point by the optimization on other subsequent controllers in the previous
round, the PSO-RCO ensures that the multi-controller parameters in a single process advance in the
direction of better system performance.
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3.3. Comparisons with Other Methods

The major contribution of this paper is the recurrent multi-objective PSO optimization approach
for multiple PID controllers in a single-output system, thus the comparisons to the non-recurrent
single-objective PSO optimization as well as recurrent single-objective PSO optimization are made for
evaluating the improvement of the proposed method.

(1) Comparison with non-recurrent single-objective optimization
In this non-recurrent single-objective optimization, the multiple-controller parameters are put

together to be optimized by the canonical PSO algorithm, and thus the fitness function is given by

J =
L∑

j = 1

(w1
∣∣∣y j − r j

∣∣∣+ nu∑
i = 1

w2,iui, j +

nu∑
i = 1

w3,i
∣∣∣ui, j − ui, j−1

∣∣∣) (21)

where, the number of sampling points L = 800, the number of controllers nu = 2. Through many trials
with different weights of the optimization, it seems that some parameters often reach their limits before
convergence, like letting w1 = 3, w2,1 = 0.05, w2,2 = 0.02, w3,1 = 0.001, w3,2 = 0.001 and having the
optimization result including boundary values listed in Table 3. The boundary gains of controller B lead
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to dramatical movements of desuperheater valve B as shown in Figures 14 and 15 shows that the action
of desuperheater valve A is much violent than that from the recurrent multi-objective optimization as
shown in Figure 10, due to its higher proportional gain.

Table 3. Optimized controller parameters of non-recurrent single-objective PSO.

Controller k1 kp ki kd ka

A 0.2 17.2029 0 7.7268 49.6785
B 0.2 30 20 6.1738 37.3926
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(2) Comparison with recurrent single-objective optimization.
The difference between the proposed approach and the recurrent single-objective PSO optimization

is that the latter one only use objective function (11) as the fitness function. The parameters in fitness
function (11) are set the same as that in multi-objective PSO, i.e., L = 800, w1 = 3, w2 = 0.02, w3 = 0.001,
k1 = 0.2. Through 2 rounds of the working flow in Figure 3 and 15-generation updates for each round,
the best one group of optimized controller parameters among several results was obtained and listed
in Table 4. Comparing with the results from the multi-objective PSO in Tables 1 and 2, the proportional
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gains of both sides of controllers are of higher value. Therefore, the controller outputs are more violent
as shown in Figures 16 and 17 compared to Figures 10 and 11 resulted from the proposed method.
The varying of fitness values of function (11) for the desuperheater controllers A and B are shown in
Figures 18 and 19, respectively. In the figures, the circle mark with letter “a” denotes the endpoint of the
1st round of parameter optimization and “b” denotes the startpoint of the 2nd round of optimization
for each controller. Figure 19 shows that the fitness value of optimizing desuperheater controller B
cannot converge within predetermined 15 generations.

Table 4. Optimized controller parameters of recurrent single-objective PSO.

Controller k1 kp ki kd ka

A 0.2 12.6868 1.057 1.9453 12.4708
B 0.2 13.2124 2.1215 2.7846 15.1559
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Figure 19. Fitness values of controller B.

In the recurrent single-objective optimization, as seen from above results, the control parameters
converge slowly and the obtained controller gains may be a little higher without involving more
objectives like J2 in optimization. Actually, there are many groups of control parameter combinations in
the searching space resulting in acceptable J1 (possibly not the minimum) in term of practical application.
But the higher controller gains represent more energy cost by actuators and more fluctuations in
regulating process.

Table 5 shows the comparisons among the three methods on RMSE of the controlled variable, i.e.,
superheated steam temperature. The non-recurrent single-objective PSO achieved the largest RMSE
with unreasonable manipulated variable values, the recurrent multi-objective PSO got the moderate
result with mild control valve movements, and the recurrent single-objective PSO has the minimal
one but with more control energy consumption than the multi-objective PSO. Therefore, the moderate
optimization result from the recurrent multi-objective PSO is preferred in practice and the method
is better.
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Table 5. Optimized controller parameters of recurrent single-objective PSO.

Methods Non-Recurrent
Single-Objective PSO

Recurrent
Single-Objective PSO

Recurrent
Multi-Objective PSO

Control RMSE (◦C) 1.5964 0.7989 1.06

4. Discussions

Since the PSO-RCO is based on close-loop simulation, the model accuracy is important for the
optimization result. From the field experiment for applying this method, we have some remarks in
the following.

Remark 1. If the identification model is not very precise but can reflect right dynamic trend, the optimized
results can be used as a direction-guide for tuning the PID parameters. In this case, it is still very meaningful to
process operation because there are multiple parameters in the control system and it is hard to tune the parameters
only by trial-and-error.

Remark 2. If the identification model is accurate enough, like the degree of closed-loop fitting is over 80%, the
optimized results can be used in field controllers by little more tuning.

In order to identify more accurate process model for closed-loop simulation, it encourages making
full use of big data resources and machine learning approaches [20], e.g., Bayes classifier for filtering
sampled data and neural network for nonlinear process identification. Moreover, replacing PID control
with advanced approach like model predictive control can greatly improve control performance, and
the proposed PSO-RCO method still works for MPC parameter tuning.

The PSO-RCO is not only a controller-parameter recurrent closed-loop tuning method, but also
proposes a kind of algorithm framework which is based on the recurrent working flow and involves
IC algorithm for multiple-controller-single-output thermal engineering control system optimization.
Only canonical PSO was used for optimization in this paper, thus more improvements on PSO-RCO
might be achieved if some new methods like fuzzy adaptive PSO, nonlinear time varying PSO and
others [21] are introduced into the present algorithm framework.

With the advantage of not interfering system operation, with the potential supporting on big
data identification method and with the development of IC algorithms, the PSO-RCO is a promising
approach for control system optimization.
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Abbreviations

AbbreviationTerms
PSO-RCO PSO-based recurrent closed-loop optimization method
PID Proportional-Integral-Derivative
IC intelligent computing
PSO particle swarm optimization
MISO multiple-input-and-single-output
RLS recursive least squares
ARX AutoRegressive eXogenous
SVD singular value decomposition
RMSE Root-mean-square error
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Nomenclature

Symbols Meanings
yt output variable value at time instant t
ai coefficient of the output variable yt-i
n order of output variable
up,t value of the pth input variable at time instant t
dp time delay of the pth input variable
bp,j coefficient of the input variable up,t-j-dp
mp order of the pth input variable
nu number of input variables
S number of samples for RLS
Kp maximum of time delay from the pth input to the output
dp,s estimated pure time delay from the pth input to the output
hi(k) impulse response from the ith input to the output at time instant k
l a given integer number
Rl×l l × l real matrix space
H(k) Hankel matrix of time instant k
U0, V0 orthogonal matrices
λi the ith diagonal entry of matrix Λ ∈ Rl×(l×nu)

r rank of Hankel matrix
φt observed value vector of inputs and output at time instant t
θ parameter vector
θ̂t−1 estimation on θ at time instant t − 1
Pt error covariance matrix of RLS
Kt gain matrix of RLS
WPID(s) transfer function of PID controller
kp proportional gain of transfer function
ki integral gain of transfer function
kd differential gain of transfer function
ka filter gain of transfer function
x j(t) the ith particle position vector after t times of iteration
N number of the particles in a swarm
G generations of PSO
v j(t) the jth particle speed vector after t times of iteration
∆kp the change of proportional gain of transfer function
∆ki the change of integral gain of transfer function
∆kd the change of differential gain of transfer function
∆ka the change of filter gain of transfer function
J fitness function of PSO
L number of simulation epochs
r setpoint value
Cu number of controllers
w1, w2, w3, w4,
w5, w6

weights representing control performance preference

Gi, j(z) Z-transfer function from the jth input to the ith output
s Laplace transformation operator
z Z transformation operator
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