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Abstract: A computational fluid dynamics software (DynamFluid) based on the application of
the finite element method with the characteristic-based-split algorithm is presented and validated.
The software is used to numerically integrate the steady and unsteady Navier–Stokes equations
for both constant-density and Boussinesq non-isothermal flows. Benchmark two-dimensional
computations carried out with DynamFluid show good agreement with previous results reported in
the literature. Test cases used for validation include (i) the lid-driven cavity flow, (ii) mixed convection
flow in a vertical channel with asymmetric wall temperatures, (iii) unsteady incompressible flow
past a circular cylinder, and (iv) steady non-isothermal flow past a circular cylinder with negligible
buoyancy effects. The new software is equipped with a graphical user interface that facilitates
the definition of the fluid properties, the discretization of the physical domain, the definition
of the boundary conditions, and the post-processing of the computed velocity, pressure and
temperature fields.

Keywords: finite element method; characteristic-based-split algorithm; benchmark problems;
lid-driven cavity flow; non-isothermal vertical channel; flow past a circular cylinder; Boussinesq
approximation

1. Introduction

The science of fluid mechanics involves a broad spectrum of techniques for the study of fluid
flows [1,2]. Experimental fluid mechanics plays an important role in the validation of theoretical
models and the determination of their limits of application. Moreover, laboratory-scale experiments
(e.g., wind tunnel model testing) combined with dimensional analysis [3,4] provides the science with
an effective way of studying complex flows, saving the time and money that would otherwise be
employed in full-scale experimental studies. On the other hand, computational fluid dynamics (CFD)
is the art of substituting the set of partial differential equations governing the flow by a set of algebraic
equations that can be solved with computers [5–10]. As a result, CFD can be regarded as the connection
between theory and experiments, providing an economical alternative to experimental model testing.
The ever growing importance of CFD has driven the development of a large variety of commercial
software (ANSYS Fluent [11], Star-CCM+ [12], COMSOL’s CFD [13], Altair AcuSolve [14], to name
a few) and open source solutions (OpenFOAM [15–17], FreeFEM++ [18], FEniCS [19], for example) in
the last decades.

This paper presents a new CFD software tool (DynamFluid) based on the finite element method
(FEM) for the analysis of incompressible flows. The finite element method has been selected in favour
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of other options, such as the finite difference method (FDM) or the finite volume method (FVM),
because of its higher adaptability to arbitrarily shaped domains, as other methods require complex
curvilinear transformation when trying to solve problems in complex geometries represented in regular
Cartesian coordinates. This and other advantages are already exploited in a variety of commercial and
open-source codes, such as the above mentioned COMSOL’s CFD [13], FreeFEM++ [18] or FEniCS [19].
Although the developed code has the capability of solving fully three-dimensional (3D) problems with
arbitrary density variations and the general form of the gravitational term (body force), the validation
process in this work will be restricted to two-dimensional (2D) flows where the fluid density undergoes
tiny variations, so that the Boussinesq approximation can be employed. Further validation in 3D
geometries with large density variations is left for future work. DynamFluid is implemented in C++.

The main characteristics of the DynamFluid tool can be summarized as follows:

1. Windows-based software, which can be run in any Windows Operating System: both 32- and
64-bit architectures are supported. When run in a 64-bit architecture, the software leverages on
the larger word-size when performing computations.

2. Graphical user interface for defining the geometric domain, physical model, boundary conditions,
and displaying the results obtained in any simulation.

3. Custom database for storing both the project domain definition and all the information generated
during the simulation. The database provides the user with ODBC (Open DataBase Connectivity)
interface for interacting with any ODBC client.

4. Support for NASTRAN format file importing, which allows the user to import any geometry and
physical definition in DMAP (Direct Matrix Abstraction Programming) language.

5. Vtk file format capabilities, to export generated simulations into ASCII text Vtk files that can be
visualized using Paraview [20].

6. Basic meshing capabilities to sample the geometric domain. Two methods have been
implemented: (a) structured meshing (linear, logarithmic) using both quadrangular
elements (QUAD) and triangular elements (TRIA) for regular geometric domains, and (b)
Delaunay–Voronoi meshing for irregular geometric domains.

7. Software designed to run in a computer with a motherboard that may have one or several
multi-core processors. This includes parallel computation of the finite element matrices, parallel
assembly of the global matrices and parallel computation of the right hand side of each step of
the algorithm. The software uses the conjugate gradient stabilized algorithm provided by the
Eigen library [21] to solve the linear systems, and it has been compiled with the openmp compiler
flag so that the Eigen library exploits the multiple cores available in the hardware.

8. Custom user language for post-processing the results (velocity, pressure and temperature), with
basic algebra functions and support for different coordinate reference systems. Internal compiler
for translating this user language into machine code that can be applied in parallel to every node
and/or finite element.

9. Support for different types of finite elements (both Lagrangian and Serendipity): (a) linear TRIA
elements and (b) linear and quadratic QUAD elements.

10. DynamFluid is a freeware CFD tool available at https://sites.google.com/view/dynamfluid.

Four benchmark 2D problems have been selected in this work for validation purposes, namely (i) the
lid-driven cavity flow, (ii) mixed convection flow in a vertical channel with asymmetric wall temperatures,
(iii) unsteady incompressible flow past a circular cylinder, and (iv) steady non-isothermal flow past
a circular cylinder with negligible buoyancy effects. These problems are briefly outlined below.

(i) The lid-driven cavity flow.This is a classical benchmark problem that has been widely used
since the early days of CFD to assess and validate new techniques and methods. This test
case is easy to set and simulate because its boundary conditions are particularly simple.
However, the fully developed flow displays almost all fluid mechanical phenomena, with
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increasingly complex aspects emerging as the Reynolds number is increased, such as corner
eddies, laminar to turbulence regime transition, and even turbulence at high Reynolds number.
A recent comprehensive review of the literature on the subject can be found in [22], where the
work of several authors is presented and discussed [23–28]. Available benchmark results have
been tabulated to provide a comprehensive source of validation data [29].

(ii) Mixed convection flow in a vertical channel with asymmetric wall temperatures. In this mixed
convection heat transfer problem, an initially uniform flow develops in a slender vertical channel
whose walls are at different temperatures. The cold and hot wall temperatures may also differ
from the incoming flow temperature. As a result of the upward buoyancy force that appears near
the hot wall, the velocity increases in the near-wall region. As the fluid accelerates downstream,
the fluid near the cold wall may suffer flow reversal so as to maintain the imposed fixed flow rate.
One of the most interesting features exhibited by this flow is thus the possibility of flow reversal
at the cold wall as the flow develops. The occurrence (or not) of flow reversal depends on the
length of the vertical channel and the buoyancy effect induced by the temperature difference
between the hot and cold walls. Previous studies have shown that for the flow reversal to occur,
in high Reynolds number flows the ratio of the Grashof number to the Reynolds number must be
higher than a critical value that depends on the wall temperature difference ratio [30–43].

(iii) Unsteady incompressible flow past a circular cylinder. The flow of a constant density fluid
past a bluff body is another classical problem that has been widely studied in the literature.
Understanding the flow regimes past bluff bodies poses a daunting challenge, so that 2D and 3D
vortical structures in wakes of different bodies have been analyzed by scientists and engineers
for decades. The reason for this interest is the vast range of applications of external flow past
round bluff bodies: aerodynamics (planes, rockets, ground vehicles), hydrodynamics (ships,
submarines) or wind energy (wind turbines), to name the few. At very low Reynolds numbers
(creeping flow) the flow past a non-heated circular cylinder is symmetric in the streamwise
direction [44–47]. As the Reynolds number grows to values of order unity the symmetry is
lost, and when it exceeds a critical value the non-linear convective effects trigger the onset of
steady flow separation, accompanied by the appearance of steady recirculation bubbles behind
the cylinder. One important aspect of these flows is the so-called vortex shedding, which is
an oscillating flow pattern that emerges for even larger Reynolds numbers. This regime has
been thoroughly studied experimentally [48–52] and numerically [53–57]. The alternate shedding
of vortices in the wake leads to the well known Kármán vortex street, which originates large
fluctuating pressure forces in the direction transverse to the flow and may cause structural
vibrations, acoustic noise, or resonance, which in some cases may lead to structural damage or
even collapse.

(iv) Steady non-isothermal flow past a circular cylinder with negligible buoyancy effects. This case
is similar to the previous one but with the particularity that the temperature of the cylinder
differs from the temperature of the incoming fluid, which causes the flow past a circular
cylinder to exhibit interesting heat transfer features. This problem is of interest for the design of
cylinder-shaped sensors located in fluid streams, hot-wire anemometers, tube heat exchangers,
nuclear reactor fuel rods and chimneys. In this work, attention will be restricted to steady flow
with negligible buoyancy effects, with the aim of characterizing the local Nusselt number at the
cylinder wall for different Reynolds numbers [44,54,58,59].

2. Governing Equations

Let x = (x, y, z)T ∈ Ωt ⊂ R3 be the spatial domain at time t ∈ (0, T), with xi denoting the
i-th cartesian coordinate. Using the Einstein summation convention, the governing equations for
three-dimensional unsteady flow with variable density (due, e.g., to temperature variations) can be
written as follows
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∂ρ

∂t
+

∂(ρuj)

∂xj
= 0 (1)[

∂(ρui)

∂t
+

∂(ρujui)

∂xj

]
= − ∂p

∂xi
+

∂τij

∂xj
+ ρgi, i = {1, 2, 3} (2)[

∂(ρeT)

∂t
+

∂(ρujeT)

∂xj

]
= −∂(puj)

∂xj
+

∂(τijui)

∂xj
+ ρgjuj +

∂

∂xj

(
k

∂T
∂xj

)
, (3)

where ρ is the fluid density, ui the i-th component of the velocity vector u = (u, v, w)T , eT = e + uiui/2
the total energy per unit mass (with e = cvT the specific internal energy per unit mass, assuming
a calorically perfect fluid), p the pressure, T the absolute temperature, gi the i-th component of the
acceleration of gravity, and k the thermal conductivity. In the above equations τij represent the
deviatoric stress components

τij = µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

∂uk
∂xk

)
, (4)

where µ is the dynamic viscosity and δij the Kronecker delta.
In non-isothermal flows where the density variations are small but the flow is driven by buoyancy

forces, such as in natural or mixed convection problems, one may simplify the equations by means of
the Boussinesq approximation. This approximation assumes that variations in density have no effect
on the flow field other than to give rise to buoyancy forces. In this case, the continuity and momentum
equations take the simplified form

∂uj

∂xj
= 0 (5)

ρ∞

[
∂ui
∂t

+
∂(ujui)

∂xj

]
= − ∂p

∂xi
+

∂τij

∂xj
+ ρ∞(1− β(T − T∞))gi, i = {1, 2, 3} (6)

where ρ∞ is the reference fluid density, T∞ the reference temperature, and β = −ρ−1(∂ρ/∂T)p the
thermal expansion coefficient.

In the Boussinesq approximation, the energy equation is often simplified by also ignoring the
density variations. However, in this work, the energy equation will be kept in its general form, without
any further simplification. The reason for this approach is to minimize the approximation error when
computing the temperature field in a fluid that undergoes tiny variations of density, and to give
a unified treatment to the energy equation independently of the way density is computed. In the
range of Reynolds number considered here, the different treatments of the energy equation, and the
assumption of constant specific heats, do not make a significant difference. Leaving the general form
allows validating the implementation of the energy equation when the Boussinesq approximation is
used in the Navier–Stokes equations but not in the energy equation.

Let L∞ be the characteristic length, U∞ the characteristic velocity, L∞/U∞ the characteristic residence
time of the problem, ρ∞ the reference density, µ∞ the reference dynamic viscosity, and k∞ the reference
thermal conductivity. With these scales, the following dimensionless variables can be introduced

x∗i =
xi
L∞

, t∗ =
U∞t
L∞

, ρ∗ =
ρ

ρ∞
, u∗i =

ui
U∞

, p∗ =
p− p∞

ρ∞U2
∞

, τ∗ij =
τijL∞

µ∞U∞
,

g∗i =
gi
g

, µ∗ =
µ

µ∞
, e∗T =

eT

U2
∞

, T∗ =
cpT
U2

∞
, k∗ =

k
k∞

(7)

where p∞ represents a convenient pressure datum, and g ' 9.81 m/s2 is the acceleration of gravity.



Processes 2019, 7, 777 5 of 27

The asterisk will be dropped in the following for simplicity, so that all variables will be assumed
to be non-dimensional. Thus, the general governing Equations (1)–(3) can be rewritten as follows

∂ρ

∂t
+

∂(ρuj)

∂xj
= 0 (8)[

∂(ρui)

∂t
+

∂(ρujui)

∂xj

]
= − ∂p

∂xi
+

1
Re

∂τij

∂xj
+

1
Fr

ρgi, i = {1, 2, 3} (9)[
∂(ρeT)

∂t
+

∂(ρujeT)

∂xj

]
= −∂(puj)

∂xj
+

1
Re

∂(τijuj)

∂xi
+

1
Fr

ρgjuj +
1

Re Pr
∂

∂xj

(
k

∂T
∂xj

)
, (10)

where Re = ρ∞U∞L∞/µ∞ is the Reynolds number, Fr = U2
∞/(L∞g) is the Froude number,

and Pr = µ∞cp/k∞ is the Prandtl number, defined in terms of the specific heat at constant pressure
cp, assumed here to be constant. Note that for liquids both specific heats are equal cp = cv, whereas for
gases cp = cv + Rg, where Rg = R◦/W is the gas constant, defined as the ratio between the universal
gas constant R◦ = 8.314 J/(mol ·K) and the molecular mass of the gas W that is constant for gases of
uniform composition.

Under the Boussinesq approximation, it is convenient to define the normalized dimensionless
temperature

Θ =
T − T∞

Tw − T∞
, (11)

in terms of the reference temperature T∞ and a characteristic temperature Tw (e.g., that of a hot or
cold wall, thereby the subscript w) that determines the characteristic temperature difference of the
problem, Tw − T∞. In this case, the momentum conservation Equation (6) and the energy conservation
Equation (3) can be rewritten as follows, where the asterisks are dropped again so that all variables are
non-dimensional

∂ui
∂t

+
∂(ujui)

∂xj
= − ∂p

∂xi
+

1
Re

∂τij

∂xj
+

1
Fr

gi −
Gr
Re2 giΘ, i = {1, 2, 3} (12)

ρ

[
∂eT

∂t
+

∂(ujeT)

∂xj

]
= −∂(puj)

∂xj
+

1
Re

∂(τijuj)

∂xi
+

1
Fr

ρgjuj +
1

Re Pr
∂

∂xj

(
k

∂T
∂xj

)
, (13)

while the continuity Equation (5) remains unchanged, implying the divergence-free nature of the
velocity field. The simplified form of the continuity equation has been used, in particular, to rewrite
the convective term in the energy Equation (13) including the velocity uj into the spatial derivative.
Note that, following standard practice, in the momentum conservation Equation (12) the dimensionless
density has been assumed to be constant (ρ = 1) except in the buoyancy term, which is written in
terms of the Grashof number

Gr =
βg(Tw − T∞)L3

∞
ν2

∞
, (14)

and the normalized dimensionless temperature Θ, given by (11) in terms of the dimensionless
temperature T computed from (13).

Finally, to be well posed, the mathematical problem also requires appropriate boundary conditions
and a set of initial conditions for all the variables to be solved.

3. Numerical Method

3.1. Temporal Discretization: The Characteristics-Based-Split Algorithm

Following Zienkiewicz’s et al. [60–64], the Navier-Stokes equations can be sampled in time using
a characteristic method, the so-called characteristic-based-split (CBS) scheme. To obtain the numerical
solution, the time interval will be divided into Nt subintervals In := (tn, tn+1] with constant time step
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size ∆t = tn+1− tn. Then, a variable φ at time n + θ can be approximated as φn+θ = (1− θ)φn + θφn+1,
where the superscript denotes the time at which the variable is evaluated. As a result, it can be written
that

φn+θ = (1− θ)φn + θφn+1 = φn + θ∆φ, (15)

with ∆φ = φn+1 − φn.
Consequently, the CBS scheme, proposed by Zienkiewicz and Codina [61], applied to the

governing Equations (1), (12) and (13) can be sampled in time as follows

un+1
i − un

i
∆t

=
∆ui
∆t

=

[
− ∂(ujui)

∂xj
+

1
Re

∂τij

∂xj
+

1
Fr

gi −
Gr
Re2 giΘ

]n

− ∂pn+θ2

∂xi
, i = {1, 2, 3} (16)

ρn+1 − ρn

∆t
=

∆ρ

∆t
=

(
1
a2

)n ∆p
∆t

= −
∂
(

ρun+θ1
j

)
∂xj

(17)

ρn en+1
T − en

T
∆t

= ρn ∆eT
∆t

=

[
−ρ

∂(ujeT)

∂xj
− ∂(puj)

∂xj
+

1
Re

∂(τijuj)

∂xi
+

1
Fr

ρgjuj +
1

RePr
∂

∂xj

(
k

∂T
∂xj

)]n

(18)

where the continuity equation for incompressible fluids has been substituted by an equation of
conservation of mass (17) that includes an artificial compressibility [65]. In that equation a represents
the speed of sound in the fluid, which in the incompressible limit tends to infinity. The principal asset of
this split algorithm is that it does not only apply to compressible flows, but also to incompressible flows,
which makes it suitable for a wide variety of applications. In the above equations, θ1 and θ2 represent,
respectively, the velocity and pressure relaxation factors. The explicit form of the algorithm is θ2 = 0,
whereas in the semi-implicit form θ2 ∈ [0.5, 1]. In both cases the value of θ1 ∈ [0.5, 1]. In the numerical
simulations presented in this paper we have considered the semi-implicit algorithm, setting the velocity
relaxation factor to θ1 = 1.0, and the pressure relaxation factor to θ2 = 1.0. For this parameter choice,
second-order accuracy in time is expected [61]. Moreover, the algorithm imposes a restriction to
the time step size ∆t and it is conditionally stable, as reported by [61]. In its semi-implicit form [66],
the time step size must be ∆t ≤ min{h/|ui|, h2/(2ν)}, whereas in the explicit form, ∆t ≤ h/|a|, leading
to a more stringent time step in incompressible fluids. That is the reason why, for incompressible fluids,
the semi-implicit form is cheaper in terms of computational cost, providing the required results in less
time.

Equation (16) is coupled to Equation (17) and for this reason it cannot be used explicitly.
To overcome this limitation, an auxiliary variable ∆u∗∗ is introduced, defined by

∆u∗∗i = u∗∗i − un
i = ∆t

[
−∂(ujui)

∂xj
+

1
Re

∂τij

∂xj
+

1
Fr

gi −
Gr
Re2 giΘ

+
∆t
2

uk
∂

∂xk

(
∂(ujui)

∂xj
− 1

Fr
gi +

Gr
Re2 giΘ

)]n

.
(19)

This equation does not contain the pressure term and the variable u∗∗i can thus be computed
explicitly. When the pressure term is available, the following correction is applied

∆ui = un+1
i − un

i = ∆u∗∗i − ∆t
∂pn+θ2

∂xi
− ∆t2

2
uk

∂

∂xk

(
−∂pn+θ2

∂xi

)
. (20)

Expressing ∆un+1
i as a function of ∆u∗∗i using (20) and substituting the result in (17) yields

∆ρ =

(
1
a2

)n
∆p = −∆t

[
∂un

i
∂xi

+ θ1
∂∆u∗∗i

∂xi
− ∆t θ1

(
∂2 pn

∂xi∂xi
+ θ2

∂2∆p
∂xi∂xi

)]
. (21)

Finally, expressing ∆eT as a function of eT
n gives



Processes 2019, 7, 777 7 of 27

ρ ∆eT = ∆t
[
−∂(uj(ρeT + p))

∂xj
+

1
Re

∂(τijuj)

∂xi
+

1
Fr

ρgjuj +
1

RePr
∂

∂xj

(
k

∂T
∂xj

)
+

∆t
2

uj
∂

∂xj

(
∂(−ui(ρeT + p))

∂xi

)]n

.
(22)

The way the variables of the problem are solved is summarized in the following step sequence:

Step 1. Calculate ∆u∗∗i from Equation (19).
Step 2. Calculate ∆ρ or ∆p from Equation (21).
Step 3. Calculate ∆ui from Equation (20), which yields the velocity at time tn+1.
Step 4. Calculate ∆e from Equation (22), which can be calculated in parallel with the other steps

since the right hand side of Equation (22) does not depend on the variables at time tn+1.
Step 4 allows obtaining the value of the energy at time tn+1.

The reason for choosing the CBS algorithm instead of others is to achieve second order
convergence in both time and space using linear finite elements (TRIA and/or QUAD). Additionally,
since the right hand side of the different equations of the algorithm are treated explicitly, they are easy
to parallelize, as it has been done in the implementation of the algorithm.

3.2. Spatial Discretization

Following the characteristics-Galerkin approximation, Equations (19)–(22) are discretized in space
using the finite element method [67–69]. To this end, the spatial domain is divided into a regular,
unstructured triangulation Th of non-overlapping elements. Associated with that triangulation,
a conforming finite element space Vh is defined composed of continuous, piecewise polynomials
over each mesh element. The current implementation of the software uses only linear polynomials for
all fluid variables, so higher order elements are not considered. Therefore, the numerical method is
expected to be second order in space for smooth solutions in the L2-norm. The advantage of the finite
element method, as spatial discretization method, is that it allows to work with complex geometries,
and to use fine or coarse finite elements in different zones of the domain (local mesh refinement) [70].
Moreover, the implemented code supports both TRIA and QUAD finite elements.

Hence, if m is the number of mesh points (or nodal points) of the triangulation Th, the numerical
solution φh belonging to the finite element space Vh can be written as

φh =
m

∑
k=1

Nk
h φk, (23)

where the summation spans over the set of nodes comprising the sampled domain, being k the index
of the node, for 1 ≤ k ≤ m. φk is the unknown variable evaluated at node k, and {Nk

h}m
k=1 is the set

of basis functions of Vh satisfying Nk
h(xj) = δkj, with δkj the Kronecker delta. Moreover, Equation (23)

may be expressed in matricial form as
φh = Nh Œ (24)

with
Œ =

[
φ1, . . . , φk, . . . , φm

]T
and Nh =

[
N1

h , . . . , Nk
h , . . . , Nm

h

]
. (25)

In this problem the generic variable φh will be replaced by the unknown fluid variables: the
pressure, p, the velocity components, ui, the total energy, ρeT , and the temperature, T.

As a final step to apply the standard Galerkin approximation via the Finite Element method,
the weak formulation of Equations (19)–(22) must be obtained. Thus, equations can be weighted
and integrated over the sampled domain using the basis functions Nk

hφ ∈ Vφ
h0, where Vφ

h0 is the finite
element space of functions that take null values in the dirichlet boundary associated with the variable
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φh = {ui, p, T} (which means that it does not include the basis functions associated with the dirichlet
nodes, whose values for the variable φh are known).

The weak formulation of Equation (19) (Step 1 of the algorithm to compute ∆u∗∗i for i = {1, 2, 3})
in the standard Galerkin approximation is the following

∫
Ω

Nk
h ∆u∗∗i dΩ = ∆t

[
−
∫

Ω
Nk

h
∂(ujui)

∂xj
dΩ− 1

Re

∫
Ω

∂Nk
h

∂xj
τij dΩ−

∫
Ω

Nk
h

(
Gr
Re2 giΘ−

1
Fr

gi

)
dΩ

]n

+∆t
[

1
Re

∫
Γ

Nk
h τijnj dΓ

]n
−
[

∆t2

2

∫
Ω

∂

∂xj
(ujNk

h)

(
Gr
Re2 giΘ−

1
Fr

gi +
∂(ujui)

∂xj

)
dΩ

]n

,

(26)

where nj denotes the j-th component of the unit outward normal vector to the boundary surface and
Nk

h ∈ Vh, since it does not impose dirichlet boundary condition over ∆u∗∗i .
To obtain the weak formulation of Equation (21) (Step 2 of the algorithm to compute ∆p =

pn+1 − pn), the equation should be multiplied by the Nk
hp basis functions not associated with the

dirichlet boundary nodes where pressure is prescribed p = p̃n+1 at Γp. This gives

∫
Ω

Nk
hp∆ρ dΩ=

∫
Ω

Nk
hp

(
1
a2

)
∆p dΩ = ∆t

∫
Ω

∂Nk
hp

∂xj

[
un

j + θ1∆u∗∗j − θ1∆t
∂pn

∂xj
− θ1θ2∆t

∂∆p
∂xj

]
dΩ

−∆t
∫

Γp\Γ
Nk

hp

[
un

j + θ1∆u∗∗j − θ1∆t
∂pn

∂xj
− θ1θ2∆t

∂∆p
∂xj

]
nj dΓ

, (27)

where the boundary Γp \ Γ is the entire boundary of the domain minus the dirichlet pressure boundary.
In the computation of the boundary integral on Γp \ Γ, the Dirichlet condition for the velocity
component, ui, may also be specified, in which case, the integrand will match the prescribed velocity,
un

i + θ1∆u∗∗i − θ1∆t ∂pn/∂xi − θ1θ2∆t ∂∆p/∂xi = ũi, at Γu.
In the same way, to build the weak formulation of Equation (20) (Step 3 of the algorithm to

compute ∆ui = un+1
i − un

i for i = {1, 2, 3}), the basis functions Nk
hu not associated with the dirichlet

boundary nodes where velocity is prescribed, un+1
i = ũi at Γu, must be considered. This results in

∫
Ω

Nk
hu ∆ui dΩ =

∫
Ω

Nk
hu ∆u∗∗i dΩ− ∆t

∫
Ω

Nk
hu

∂pn+θ2

∂xi
dΩ− 1

2
∆t2

∫
Ω

∂(un
j Nk

hu)

∂xj

∂pn

∂xi
dΩ (28)

Finally, the weak formulation of the energy conservation Equation (22) (Step 4 of the algorithm to
compute Tn+1 through ∆eT = en+1

T − en
T) takes the form

∫
Ω

Nk
hT ρ ∆eT dΩ = ∆t

[
−
∫

Ω
Nk

hT
∂

∂xj

(
uj (ρeT + p)

)
dΩ− 1

Re

∫
Ω

∂Nk
hT

∂xj

(
τijuj +

1
Pr

k
∂T
∂xj

)
dΩ

+
∫

Ω
Nk

hT
1
Fr

ρgjuj dΩ
]n

+
∆t2

2

[∫
Ω

∂

∂xj

(
ujNk

hT

) ∂

∂xj

(
−uj (ρeT + p)

)
dΩ

]n

+∆t
1

Re

[∫
ΓT\Γ

Nk
hT

(
τijuj +

1
Pr

k
∂h
∂xi

)
ni dΓ

]n
,

(29)

where Nk
hT are the basis functions not associated with the dirichlet boundary nodes where temperature

(energy) is prescribed, Tn+1 = T̃ at ΓT . Moreover, in the computation of the boundary integral on
ΓT \ Γ, the value of the temperature gradient (heat flux) can be specified on some part of it (neumann
boundary) as boundary condition.

4. Software Validation

In order to validate the implementation of the CBS algorithm described above, four test cases have
been selected for study. Although the implementation of DynamFluid allows the integration of the
Navier–Stokes equations in their general form (1)–(3), it can also be applied to fluid dynamics problems
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within the Boussinesq approximation (5) and (6). This is the approach chosen for the validation with
the test cases presented in this section. All simulations are two-dimensional, hence we shall restrict
our attention to cases with xi = (x, y)T , ui = (u, v)T , and gi = (gx, gy)T . As discussed in the numerical
section, in all test cases the velocity and pressure relaxation factors θ1 and θ2 have been set to unity.

4.1. Lid-Driven Cavity Flow

The first step in the validation of a new CFD tool is to check if it is able to predict the flow
behaviour in confined domains with simple boundary conditions. The flow in a cavity with an upper
mobile lid, shown schematically in Figure 1, is considered as a standard software validation case for
steady incompressible flows in confined geometries. In the lid-driven cavity, the fluid is confined in
a 2D square cavity of side length L (≡ L∞), with a zero velocity enforced by the no-slip condition in
all the walls of the square cavity except in the top wall, where a uniform slip velocity U (≡ U∞) is
imposed. Additional parameters of the problem include the density, ρ (≡ ρ∞), and viscosity, µ (≡ µ∞),
of the fluid, assumed here to be constant. Under isothermal conditions, the only governing parameter
is the Reynolds number Re = UL/ν, based on the lid velocity, the side length of the squared cavity,
and the kinematic viscosity of the fluid, ν = µ/ρ (≡ ν∞).
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u = v = 0

Solid walls

Moving wall

ρ, µ L

L

u = U , v = 0

x

y

Figure 1. Schematic representation of the lid-driven cavity flow showing the coordinate system,
dimensional parameters, and boundary conditions.

4.1.1. Literature Review

The lid-driven cavity flow has been extensively addressed by many authors [23–28].
Erturk et al. [23] performed numerical calculations of the two-dimensional steady incompressible
lid-driven cavity flow for Reynolds number up to 21,000 with an extremely small residual error of
the steady solution, finding a fourth vortex at the bottom left corner and a third vortex at the top left
corner as the Reynolds number was increased, and obtaining a solution free of spurious oscillations
despite the high Reynolds number.

Erturk [24] studied in detail the two-dimensional lid-driven cavity flow considering all physical,
mathematical and numerical aspects, concluding that physically this flow is not two-dimensional but
three-dimensional above a certain Reynolds number when the two-dimensional solution becomes
unstable to small three-dimensional perturbations. Thus, while numerical solutions for the planar
lid-driven cavity flow for high Reynolds numbers can be obtained, this flow can be considered fictitious.
One important point for obtaining a solution at high Reynolds number is that a sufficiently fine mesh
is needed so as to rule out any spurious oscillatory solution provided by the numerical method that
prevents reaching the steady-state solution.
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Yapici et al. [25] managed to perform several simulations up to Reynolds number 65,000, obtaining
a steady solution with two new vortices in the bottom left and right corners of the square cavity for
Reynolds number larger than 25,000.

Erturk et al. [29] also studied the benchmark problem of a driven skewed cavity flow for skew
angles of 30◦ and 45◦. Using a very fine grid and highly accurate numerical solvers, they obtained
numerical results for Reynolds number varying from 100 to 1000.

4.1.2. Boundary and Initial Conditions

In dimensionless form, a unit horizontal velocity is imposed at the upper wall, u− 1 = v = 0,
whereas the non-slip condition is imposed at the left, bottom and right walls, u = v = 0. As an initial
condition, both components of the velocity are set to 0 in all the points of the domain, except at the
upper wall (lid) where the horizontal component is set to 1. The pressure is arbitrarily set to zero,
p = 0, at the lower-left corner of the cavity.

4.1.3. Convergence Analysis

In this section, we study the influence of the mesh in the numerical solution, which includes
analyzing the influence of the mesh space discretization and cell size in the convergence of the solution.
The method for estimating the convergence order of an algorithm requires to obtain a solution for
different meshes with different element sizes. The meshes used for the convergence analysis are three
uniform (i.e., equispaced) meshes using TRIA elements for the discretization of the domain with (mesh
#1) 20× 20, (mesh #2) 50× 50 and (mesh #3) 100× 100 points, respectively. The coarser mesh is shown
in Figure 2 for illustrative purposes.
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Figure 2. Convergence analysis for the horizontal velocity along the vertical mid line corresponding to
Re = 1000 (left) and triangular elements (TRIA) 20 × 20 element mesh used in the computations with
DynamFluid (right). The 50 × 50 and 100 × 100 meshes are finer meshes with the same topology.

The boundary conditions are applied to the mesh assuming the ramp condition: the velocity in
the top of the cavity (moving lid) grows from zero in the corners of the cavity (left and right) until the
non-dimensional value in the span of a cell/element. Alternatively, other researchers use the leaking
lid formulation, where the velocity in the top lid is constant and equal to the imposed velocity and
zero in the rest of the walls.

The Reynolds number used for showing the influence of the mesh element size in the accuracy of
the solution is Re = 1000. The variable chosen for the convergence analysis is the horizontal velocity
component u along the vertical line that goes through the center of the cavity. The steady-state solution
is obtained by means of a transient simulation. It is assumed that the steady-state is reached when
the relative value of the horizontal velocity in two successive time steps differ less than 10−9, that is,
∑N

k=1 |un+1
k − un

k |/|un
k | ≤ 10−9, the sum going through all N nodes in the mesh for the horizontal
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velocity component. Figure 2 shows that as the mesh is refined the solution tends to that obtained
by Erturk et al. [23]. There is no appreciable difference between the results obtained with the 50× 50
point and 100× 100 point meshes.

For a TRIA element mesh composed by two-dimensional elements, as the one shown in Figure 3,
an equivalent length for node k can be defined according to hk = min(2Aj/lj), where j spans from 1
to the number of adjacent elements connected to node k, Aj is the area of the j-th element adjacent to
node k, and li is the length of the opposite edge belonging to the j-th element adjacent to node k [71].

l5

l1

l4

l2

Node k

A4

A5

A1

A2

A3

l3

Figure 3. Two-dimensional finite elements adjacent to node k used to compute the equivalent element
size hk = min(2Aj/lj).

The convergence order of the algorithm has been estimated using the well-known grid
convergence index calculation. Following Roache [72], the order of convergence for the algorithm is
obtained solving the following equations iteratively for the three different meshes, starting from the
coarse mesh #1 (20× 20) to the more refined mesh #3 (100× 100)

p =
|ln |Er32/Er21|+ q(p)|

ln r21
(30)

q(p) = ln

(
rp

21 − s
rp

32 − s

)
(31)

s = sign(E32/E21), (32)

where Erij = ui − uj and rij = hi/hj, with ui the horizontal velocity at mesh i and uj the horizontal
velocity at mesh j, and hi the equivalent length for mesh i and hj the equivalent length for mesh j.
This is translated into Er32 being the difference in the estimating function between mesh #3 (100× 100)
and mesh #2 (50× 50), and Er21 between mesh #2 (50× 50) and mesh #1 (20× 20). Similarly, r32 is the
mesh ratio between mesh #3 and mesh #2, and r21 between mesh #2 and mesh #1.

The iterative process starts with an initial guess for q(p), e.g., q(p) = 0 in this case. Using the
value of q at a given iteration step, the value of p is calculated at the next iteration step. After a few
iterations, the convergence order p is obtained. Table 1 shows the maximum norm of the error
ErL∞ = max|ui− uj| (p = 2.71), and the mean norm of the error ErL1 = (1/N)∑N

i=1 |ui − uj| (p = 1.98)
for the implementation of the CBS algorithm discussed here applied to the lid-driven cavity flow.

Table 1. Mean and max error for the horizontal velocity.

Grid Comparison ErL1 ErL∞
rij

50× 50 vs. 20× 20 0.00176 0.00748 2.0
100× 100 vs. 50× 50 0.0138 0.0969 2.5
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4.1.4. Results for Re up to 10,000

Figure 4 compares numerical integrations of the lid-driven cavity flow carried out with
DynamFluid with those obtained by Erturk [24] and Ghia et al. [26] for Reynolds number up to
10,000. Erturk et al. [23] reported that a 257× 257 mesh is needed in order to get a steady solution for
Reynolds number up to 10,000, thus a refined mesh of 257× 257 elements was used for the simulations.
As it can be seen, the agreement with previous results is excellent for Re ≤ 10,000, showing a slightly
better agreement at low Reynolds number than at high Reynolds number.
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Figure 4. Horizontal velocity along the vertical mid line (left) and vertical velocity along the
horizontal mid line (right) as predicted by DynamFluid (solid lines) and reported by Erturk [24]
(�) and Ghia et al. [26] (+) for Re = {400, 1000, 25,000, 5000, 10,000}.

4.2. Mixed Convection Flow in a Vertical Channel with Asymmetric Wall Temperatures

This is a mixed convection heat transfer problem in which an initially uniform flow develops in
a slender vertical channel whose walls are at different temperatures. The flow is assumed to be two
dimensional. The cold wall temperature, Tc, and hot wall temperature, Th (≡ Tw), are also different
from the incoming flow temperature, T∞, as illustrated in Figure 5. The parameters characterizing
the flow are the channel width H (≡ L∞) and length L � H, the cold and hot wall temperature
differences, Tc − T∞ and Th − T∞, and the uniform velocity of the fluid entering the rectangular
channel, U (≡ U∞). Additional parameters include the density, ρ (≡ ρ∞), viscosity, µ (≡ µ∞),
and thermal conductivity, k (≡ k∞), of the fluid. The non-dimensional numbers that emerge in this
problem are the Reynolds number, Re = UH/ν, based on the inlet velocity and the channel width,
the Grashof number, Gr = gβ(Th − T∞)H3/ν2, defined in terms of the channel width and the hot
wall temperature difference, and the wall temperature difference ratio Θc = (Tc − T∞)/(Th − T∞).
The Prandtl number is assumed to be constant, Pr = 0.72. As shown in Figure 5, the acceleration of
gravity is assumed to point opposite to the direction of the incoming flow. When the height of the
channel is large compared to the channel width, the flow becomes fully developed far downstream,
where the streamlines are parallel to each other and point vertically upwards.

4.2.1. Literature Review

The mixed convection flow in a vertical channel has been investigated by several authors.
In a series of papers, Aung and Worku [30–32] studied the effects of buoyancy on the laminar vertical
upward flow between parallel plates subject to two types of boundary conditions: (i) uniform wall
temperatures, where the vertical walls may be at equal or different temperatures, and (ii) uniform heat
fluxes, where the vertical walls may be subject to the same or different heat fluxes. They used the
boundary layer approximation for their analysis when the dimensionless buoyancy parameter becomes
Gr/Re instead of Gr/Re2. As a result, the controlling parameters are Gr/Re, the wall temperature
difference ratio Θc, and the Prandtl number, Pr = 0.72, assumed to be constant. Aung and Worku [30]
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considered a set of values of Gr/Re in the range 0, 25, 50, 100 and 250, founding that buoyancy
extends the hydrodynamic entry length whereas it reduces the thermal entry length. As a general
rule, no flow reversal was observed for sufficiently small values of Gr/Re, while it appeared for small
values of Θc and large values of Gr/Re (the larger value of Gr/Re, the larger the downwards velocity
in the flow reversal region). Aung and Worku [31] predicted that with constant heat fluxes the ratio
Gr/Re for flow reversal to happen is higher than with constant wall temperatures. In particular, for
values of Gr/Re up to 500 no flow reversal was observed when uniform heat flux boundary conditions
are used. Flow reversal did not occur either for symmetrically heated walls. As part of their study,
they developed an analytical theory [32] for fully developed mixed convection flow including flow
reversal, obtaining analytical expressions for the velocity profile and the temperature profile that will
be used below for validation purposes.
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Figure 5. Schematic representation of the non-isothermal flow in a vertical channel with asymmetric
wall temperatures showing the coordinate system, dimensional parameters, and boundary conditions.

Ingham et al. [40] found that infinite duct walls also bring about flow reversal in the vicinity
of the cold wall, while Ingham et al. [41] obtained numerical solutions of the problem for a steady
laminar mixed convection flow in a vertical duct with parallel plates. They compared this flow with
the case of pure forced convection finding that large values of Gr/Re cause reverse flow in the channel
(similar to Aung and Worku [30,32]). Kim et al. [43] used an implicit finite difference scheme to solve
the governing equations in the conjugate heat transfer flow established between two vertical plates
subject to asymmetric wall temperatures. They found that the independent parameters are the Grashof
number, the Prandtl number, the solid to fluid thermal conductivity ratio, the wall thickness to channel
width ratio, the channel height to channel width ratio and the asymmetric heating parameter.

Gau et al. [38] studied experimentally the heat transfer process in a vertical channel comprised
of two parallel plates (one heated uniformly and the opposite wall insulated), having a very large
buoyancy parameter Gr/Re2. From flow visualizations, they concluded that the reversal of the flow
happened to be a V-shaped recirculating flow near the channel exit when Gr/Re2 is greater than
a critical value, although the reversal occurs initially downstream, but advances gradually downwards
when Gr/Re2 increases. El-Din [37], studied the flow development between two vertical plates
with uniform heat and mass fluxes studying the effect of the thermal and mass transfer buoyancies.
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Cheng et al. [36] also studied this type of flow taking into account different boundary conditions (walls
with constant temperature or with constant heat flux). Hamadah and Wirtz [39] investigated the effect
of thermal buoyancy opposing the flow between two vertical plates with different boundary conditions
(uniform asymmetric temperatures, uniform asymmetric heat fluxes, and the case of one wall at a
uniform temperature and the other with uniform heat flux). Boulama and Galanis [35] provided
analytical solutions for the fully-developed steady-state mixed convection flow past two vertical plates
at constant temperatures and at constant heat flux (the two walls with the same type of boundary
conditions or one with uniform temperature and the other with uniform heat flux).

Barletta et al. [34] studied the problem of a fully developed mixed convection flow with frictional
heat generation in a vertical channel bounded by isothermal plane walls having the same temperature.
Barletta [33] carried out an study of a laminar and fully developed flow with mixed convection
in a rectangular and vertical duct where at least one of the two walls was isothermal, providing
an analytical solution for the velocity and temperature fields. Desrayaud and Lauriat [73] investigated
the flow reversal phenomena in a vertical channel with two parallel plates at symmetrically uniform
heated walls when air is used as the fluid, for a laminar, mixed-convection flow with Reynolds number
in the range 300 ≤ Re ≤ 1300. The velocity and temperature profiles caused by the buoyancy forces
were analyzed. Finally, Jeng et al. [42] investigated the mixed convection flow in a vertical channel
with parallel walls at different temperatures: Θc was in the range of 0 ≤ Θc ≤ 1, the Reynolds number
was in the range of 1 ≤ Re ≤ 1000, and the ratio Gr/Re in the range of 0 ≤ Gr/Re ≤ 500. They found
that when the streamwise coordinate was scaled out using the Reynolds number, the velocity and the
temperature profile were independent of the Reynolds number for Re ≥ 50.

4.2.2. Boundary and Initial Conditions

In the simulations presented below, the right wall is assumed to be at a higher temperature than
the left wall, Th > Tc. Two cases are considered in the study. In the first one the cold wall is at the same
temperature than the incoming fluid, Tc = T∞, or Θc = 0, and in the second case the cold wall is at
a temperature halfway between the incoming fluid and the hot wall, Tc − T∞ = 0.5(Th − T∞), or Θc = 0.5.
The dimensionless boundary condition for the velocity, pressure and normalized temperature are

• Left, cold non-slip wall: u = v = Θ−Θc = 0.
• Right, hot non-slip wall: u = v = Θ− 1 = 0.
• Bottom side, incoming flow: u = v− 1 = Θ = 0.
• Top side, outgoing flow: p = u = ∂v/∂y = ∂θ/∂y = 0.

Since the channel width is taken as length scale, the dimensionless width of the channel is one.
By contrast, the dimensionless length of the channel is set to H/L = 80� 1, which is long enough to
ensure that the flow is fully developed in the outflow boundary (see Figure 5 for details; note that the
height and width are not to scale).

4.2.3. Discussion of Results

As previously discussed, Aung and Worku [32] obtained analytical expressions for the velocity
profile and the temperature profile in the fully developed mixed convection flow established far
downstream the channel, namely

v(x) =
Gr
Re

(1−Θc)

(
− x3

6
+

x2

4
− x

12

)
− 6x2 + 6x

Θ(x) = x

 0 < x < 1 (33)
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the later corresponding to a linear temperature profile (i.e., a purely conductive heat flux) between
the hot and cold walls. It is interesting to note that the analytical problem solved by Aung and
Worku [30–32] included a simplified form of the energy equation that accounted only for thermal
energy convection and heat conduction. As a consequence, the numerical results obtained with
DynamFluid, which incorporates the general form of the energy Equation (10) or (13), can not be
expected to match exactly the fully developed profiles given above.

Figure 6 shows the comparison between the fully developed profiles (33) with the numerical
profiles predicted by DynamFluid in the outflow boundary corresponding to Re = 100, Gr = 25,000,
and two values of Θc = {0, 0.5}. In both cases the flow reversed near the cold wall (x = 0)
with higher downward velocities for Θc = 0, and the temperature profiles are very close to
linear. The minor differences observed between the numerical and analytical predictions can be
attributed to the differences in the treatment of the energy equation. In summary, the figure shows
an excellent agreement between the numerical profiles and the analytical solution for both values of
Θc. This indicates that DynamFluid is able to predict accurately the velocity and temperature profiles
in mixed convection problems under different conditions.
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Figure 6. Comparison between the fully developed velocity (left) and temperature (right) profiles as
predicted by DynamFluid (solid lines) and by the fully developed theory of Aung and Worku [32]
(symbols) corresponding to Re = 100, Gr = 25,000, and Θc = {0, 0.5}.

4.3. Isothermal Flow Past a Circular Cylinder

The flow past a circular cylinder is the prototypical benchmark case for the validation of external
flows: either steady (the flow does not vary with time) or unsteady (the flow varies with time exhibiting
either a transient or oscillatory behavior). Figure 7 shows an schematic representation of the flow:
a circular cylinder of diameter D (≡ L∞) surrounded by an unbounded fluid of density ρ (≡ ρ∞) and
viscosity µ (≡ µ∞) with an uniform incoming velocity U (≡ U∞). In the non-isothermal flow past
a circular cylinder, to be considered in the next section, the cylinder is assumed to be at a uniform
temperature Tw different from that of the incoming stream T∞. In both cases, the only non-dimensional
parameter that appears in the limit of non-buoyant flows (Ri = Gr/Re2 → 0) to be considered here is
the Reynolds number, Re = UD/ν, based on the incoming flow velocity, the diameter of the cylinder,
and the kinematic viscosity of the fluid.
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Figure 7. Schematic representation of the flow past a circular cylinder showing the coordinate system,
dimensional parameters, and boundary conditions. The size of the computational domain is determined
by the parameters L, Lφ and H.

4.3.1. Literature Review

The flow past a non-heated circular cylinder at moderate Reynolds numbers exhibits
flow separation and vortex shedding and has been studied numerically by many authors.
De Sampaio et al. [56] obtained the solution of the incompressible Navier-Stokes equations with
a Petrov-Galerkin method using an adaptive remeshing strategy applied to transient viscous flows.
Ding et al. [54] used a mesh-free least square-based finite difference method to study the steady and
unsteady viscous flow past a circular cylinder up to Re = 200. Park et al. [55] computed several
flow properties such as the Strouhal number, the drag and lift coefficients, the pressure and vorticity
distributions, the separation angle and the bubble separation length as a function of the Reynolds
number up to Re = 160.

Nithiarasu [74] used the CBS algorithm in its fully explicit form and with artificial compressibility
to predict the flow past a circular cylinder for a wide range of Reynolds numbers. Massarotti et al. [75]
performed a comparison between the explicit and semi-implicit form of the CBS algorithm using benchmark
test cases for both steady and unsteady flows, founding only slightly differences between both schemes for
transient flows and identical results for steady flows. They concluded that the fully explicit version of the
algorithm was an interesting option. Selvam [76] used an implicit CBS scheme with large eddy simulation
in a 2D domain to compute the Strouhal number for high Reynolds numbers Re = {104, 105, 5× 105,
106} and compared his results with the available experimental and numerical data. He reported that the
measured reduction in the drag coefficient with the Reynolds number was not appropriately captured
numerically and needed to be double-checked using a 3D model.

Qu et al. [77] performed several simulations using a FVM-based code for a wide range of Reynolds
numbers (Re = 50–200) and studied the effect of the blockage ratio and the grid density in the vicinity of
the cylinder wall, concluding that at lower Reynolds numbers the simulation requires a more uniform
grid whereas at higher Reynolds number a finer grid near the vicinity of the cylinder wall is needed to
resolve the thin viscous boundary layer that develops around the cylinder and eventually separates
from it. Subhankar et al. [57] studied the critical Reynolds number that first causes flow separation
from the cylinder wall, founding that for non-confined flows the value is Re = 6.29. Other authors
that have addresses this problem include Sahin and Owens [78], Posdziech and Grundmann [79],
Mittal and Raghuvanshi [80], Mittal and Kumar [81], Kieft et al. [82], and Jordan and Ragab [83].

4.3.2. Computational Domain, Boundary and Initial Conditions and Mesh Generation

The domain used for the simulations is shown in Figure 7. The cylinder is located a distance Lφ

from the inlet. The total length in the streamwise direction, L > Lφ, must be large enough so that the
perturbations introduced by the cylinder become sufficiently small at the right limit of the domain
for an outflow boundary condition to be used. In the simulations, the domain had a dimensionless
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size of L/D = 64 with Lφ/D = 16. Behr et al. [84] studied the influence of the distance of the lateral
boundaries on the computation of two-dimensional unsteady incompressible flow past a circular
cylinder. They concluded that the distance between the center of the cylinder and the lateral boundaries
has a significant effect on the Strouhal number and other flow properties. In particular, they found that
the minimum distance at which this influence vanishes for Re = 100 is 32 cylinder diameters. For this
reason, in our simulations we chose also H/D = 64 in order to rule out any influence of the boundary
conditions in the solution obtained. The Reynolds numbers chosen for the validation campaign are
100 [56,85,86] and 200 [54,77], so that the lateral boundaries are expected not to perturb the results in
either case.

The boundary conditions are schematized in dimensional form in Figure 7 for non-isothermal flow
past a circular cylinder at uniform temperature, to be considered in the next section. For the isothermal
flow considered here, the dimensionless boundary condition for the velocity and pressure are

• Left boundary, uniform incoming flow: u− 1 = v = 0.
• Right boundary, outflow boundary condition: p = ∂u/∂x = v = 0.
• Top and bottom boundaries, symmetry boundary condition: ∂u/∂y = v = 0.
• Cylinder wall, non-slip condition: u = v = 0.

As initial condition, the components of the velocity are set to 0 in all the points of the domain,
except at the inflow boundary, where u is set to 1. The non-dimensional vertical velocity component v
is set to 0 everywhere.

The strategy followed for the generation of the mesh was to use small elements in the vicinity
of the cylinder and in the cylinder wake, whereas a coarser mesh was used in the rest of the domain,
with the size of the elements varying gradually from the finest to the coarser regions as shown
schematically in Figure 8. Several grids have been tested, from coarse to fine grids. The final grid
used for the computations did not provide significantly different results than the previous coarser
grid, but it was selected in order to get better estimates. In the final grid, the number of nodes was
77,011 and the number of TRIA elements was 153 318. Being D the cylinder diameter, the mesh size in
the vicinity of the cylinder up to a concentric cylinder of diameter 1.1D was 0.01D. The mesh size in
the vicinity of the previous inner cylinder up to a concentric cylinder of radius 2D was less than 0.05D.
In a rectangular region with height 2D, continuous to the outer concentric cylinder, the mesh size was
less than 0.05D. In the rest of the domain, the mesh size was less than 0.5D.

Y

XZ

Figure 8. Close-up view of the mesh in the vicinity of the cylinder and in the wake.

4.3.3. Discussion of Results

The flow past a circular cylinder is periodic for Re = 100. Figure 9 shows the long-term variation
of the vertical velocity v in a point located at the wake of the cylinder just in the middle of the outflow
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boundary (x = 64, y = 32). As can be seen, after an initial transient the flow becomes periodic with
a given frequency f . As can be seen in Figure 10, counter rotating eddies are shed periodically with
period T = 1/ f , giving rise to the well-known Karman vortex street in the cylinder wake.

0 25 50 75 100 125 150 175 200

-0.2

-0.1

0

0.1

0.2

Figure 9. Vertical velocity v in the mid plane far downstream the cylinder for Re = 100.

0

T/4

T/2

3T/4

Figure 10. Vorticity field of the flow past a circular cylinder for Re = 100 at four successive instants
during the vortex shedding cycle.

Table 2 shows the variation of the Strouhal number (St = f D/U∞) associated with the
vortex shedding process corresponding to Re = 100 and different blockage ratios (D/H).
For the smallest blockage ratio, the predicted Strouhal number perfectly matches that obtained by
De Sampaio [56] (0.165), while it deviates only 0.01% from the value obtained by Ding et al. [54]
and by Rahman et al. [85] (0.164). As the Reynolds number increases the influence of the blockage
ratio becomes less important, hence the mesh with blockage ratio equal to 1/64 has been used in
the computations presented below for both Re = 100 and 200. For Re = 200 the computed Strouhal
number is 0.1954, which deviates only −0.18% from the value obtained by Qu et al. [77] (0.1958) and
−0.3% from the value obtained by Ding et al. [54] (0.196).

Table 3 compares the results obtained with DynamFluid with those of previous references. As can
be seen, the Strouhal number obtained for the two Reynolds numbers considered in the study show
very good agreement with the existing literature, which validates the performance of DynamFluid for
the prediction of unsteady flows.
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Table 2. Strouhal number as a function of the blockage ratio for Re = 100.

D/H St

1/16 0.1792
1/32 0.1703
1/64 0.1650

Table 3. Comparison between the Strouhal number for Re = {100, 200} as predicted by DynamFluid
and reported by previous authors.

Re [56] [77] [86] [85] [54] Present Work

100 0.165 0.1649 0.1569 0.164 0.164 0.165
200 − 0.1958 0.1957 − 0.196 0.1954

4.4. Flow Past a Heated Circular Cylinder with Forced Convection

The non-isothermal flow past a heated circular cylinder is similar to that past a non-heated cylinder
with the particularity that the temperature of the cylinder, Tw, is now different from the temperature of
the bulk fluid, T∞. In the presence of buoyancy forces, the temperature variations that cause the flow to
exhibit additional features due to the effects of aiding or opposing buoyancy, but for simplicity attention
will be restricted here to the case where the effects of buoyancy can be neglected. As the main difference
with the mixed convection problem in a vertical channel, the Prandtl number is assumed here to be
Pr = 0.71 (instead of 0.72) in order to match the value used in previous works used here for validation.

4.4.1. Literature Review

Flow and heat transfer in forced convection past a circular cilinder has been studied by Apelt and
Ledwich [87], Dennis et al. [46] and Rashid and Ahmad [88] up to Re = 40. Bitwas et al. [58] showed
that in the absence of thermal buoyancy, the separation angle and the length of the recirculation bubble
increase with the Reynolds number. They also showed that the average Nusselt number increases
with increasing Reynolds number and the predicted results were in accordance with well-known
experimental observations. Badr [89] studied numerically the influence of the flow direction, vertically
upwards (parallel flow) vs. vertically downwards (opposing flow), accounting for buoyancy effects.

4.4.2. Computational Domain and Boundary Conditions

The computational domain used for the simulations is similar to that used in previous section,
but in this case the length of the domain was reduced to L/D = 25 cylinder diameters, and the height
of the domain was reduced to H/D = 20 cylinder diameters, which gives a blockage ratio of 0.05.
The center of the cylinder is located at Lφ/D = 10 diameters from the inlet. As a result, the outflow
boundary is located 15 diameters downstream the center of the cylinder. The boundary conditions
imposed to the velocity and pressure fields are the same as in the previous section, with additional
Dirichlet boundary conditions for the temperature (Θ = 0) at the inlet and at the cylinder wall (Θ = 1),
zero heat flux boundary conditions at the upper and lower boundaries (∂Θ/∂y = 0) as well as the
outflow boundary (∂Θ/∂x = 0).

4.4.3. Discussion of Results

Several simulations were carried out for increasing Reynolds numbers ranging from Re = 10 to 40 in
the limit of non-buoyant flows (Ri = Gr/Re2 → 0). Figure 11 shows the steady-state solution reached in
each simulation, including the streamlines and temperature contours obtained for the different Reynolds
numbers under study. As previously reported by Williamson [90], for low Reynolds numbers (Re < 49)
a vertically symmetric steady wake is formed with the structure shown schematically in Figure 12.
The nomenclature used to describe the flow behind the cylinder is: A is the front stagnation point, B
the rear stagnation point, C the stagnation point in the cylinder wake, E and F the upper and lower
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separation points, Ls the eddy length of the recirculation region E-C-F-B-E and φs the angle with respect
to the horizontal line where the fluid detaches from the cylinder. The plots in the left panels of Figure 11
show a perfect symmetry with respect to the horizontal mid-line which passes through the center of the
cylinder as previously reported by Williamson [90]. The temperature gradient at the front stagnation
point, the eddy length, and the separation angle all increase monotonically with the Reynolds number.
For reference purposes, Table 4 shows the variation with the Reynolds number of the non-dimensional
eddy length and the separation angle. Note that the eddy length is made non-dimensional with the
cylinder radius (D/2) to be consistent with previous references, and that the angles are measured
from the rear stagnation point. As can be seen, the results obtained with DynamFluid show excellent
agreement with the values obtained by other authors [44,54,58,59] for all Reynolds numbers under study.

Streamlines

(a)

Temperature

(b)

(c)

(d)

(e)

Figure 11. Streamlines and temperature contours of the steady state solution for several Reynolds
numbers and Ri = 0: (a) Re = 10, (b) Re = 15, (c) Re = 20, (d) Re = 25, and (e) Re = 40. The color map
in the left plots represents the modulus of the velocity vector.
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Table 4. Comparison between the eddy length (Ls) and the separation angle (θs) for several Reynolds
numbers as predicted by DynamFluid and reported by previous authors.

Variable Re [44] [59] [58] [54] [55] DynamFluid

10 0.504 0.498 0.52 0.504 0.51 0.512
15 − 1.162 1.189 − − 1.227

2Ls/D 20 1.88 1.844 1.865 1.86 1.87 1.866
25 − − 2.517 − − 2.548
40 4.69 4.65 4.424 4.4 4.59 4.480

Variable Re [44] [59] [58] [54] [55] DynamFluid

10 29.6 29.3 29.12 30.0 − 28.57
15 − 38.6 38.57 − − 38.57

θs (◦) 20 43.7 43.65 43.64 44.1 − 43.58
25 − − 46.89 − − 47.14
40 53.8 53.55 53.1 53.5 − 51.43

D Ls

A

E

C

F

B
2θs

Figure 12. Schematic description of the recirculation region showing the dimensionless eddy length
(Ls) and the separation angle (θs).

The local heat lost from the cylinder by heat conduction to the fluid is given by the local
Nusselt number

Nu = −∂Θ
∂n

, (34)

where n denotes the outward normal to the cylinder surface. The local value of Nu along the cylinder
surface was computed and compared with previous results taken from the literature [46,58,89], as can
be seen in Figure 13. The Nusselt number computed with DynamFluid shows good agreement with
the results by Biswas et al. [58] for all Reynolds number under study, showing also good agreement
in the rear stagnation point with other authors [46,89]. However, it deviates slightly in the front
stagnation point from the value computed by Bard [89] and Dennis et al. [46]. The results shown
in Figure 13 indicate that Badr [89] overstimated the value of the Nusselt number in the range
Re = 20–40, while Dennis et al. [46] overestimated the value of the Nusselt number in the range
Re = 10–40. Note that the works by Dennis et al. [46] and Bard [89] were published in 1968 and 1984,

when the precision of numerical computations was still far from that of today. These results indicate
that DynamFluid is able to reproduce with good agreement results of forced convection heat transfer
problems, particularly those published more recently, exhibiting only local small variations that can be
attributed to the imprecision of the numerical results reported decades ago.
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Figure 13. Variationof the local Nusselt number on the surface of the cylinder at different Reynolds
number as predicted by DynamFluid (solid lines) and by previous authors.

5. Conclusions

A new CFD software tool (DynamFluid) based on the finite element method and the
characteristic-based-split algorithm has been presented and validated against four benchmark
constant-density and Boussinesq-type non-isothermal two-dimensional flows, showing excellent
agreement with previous results taken from the literature. The test cases have comprised both
stationary problems, such as the lid-driven cavity flow, mixed convection in a vertical channel, or flow
past a heated circular cylinder at low Reynolds numbers, as well as unsteady problems, such as
isothermal flow past a circular cylinder at moderate Reynolds numbers, covering a wide range of
Reynolds, Grashof and Richardson numbers. The results provide the prospect users high confidence
for the application of this software to other 2D fluid dynamic problems of interest, particularly those
involving isothermal and non-isothermal incompressible flows under the Boussinesq approximation.
In the near future, DynamFluid is expected to cover a broader scope of flow regimes, including fully
compressible three-dimensional flows, non-constant density flows, and general non-isothermal flows.
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Nomenclature

a Speed of sound
B Blockage ratio (D/H)
cp Specific heat at constant pressure
cv Specific heat at constant volume
D Cylinder diameter
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e Internal energy per unit mass, e = cvT
eT Total energy per unit mass, eT = e + uiui/2
E Energy tensor containing the values of ρeT in every node of the mesh
Erij Difference in the estimating function between mesh #i and mesh #j
f Frequency
g Acceleration of gravity
Gr Grashof number
h element size
H Characteristic height of the problem
Iij Identity tensor
k Thermal conductivity
L Characteristic length of the problem
Lφ Distance from the inlet to the center of the cylinder
Ls Eddy length
n outward normal coordinate
N Shape functions
Nu Local Nusselt number
p Pressure
p Pressure tensor containing the values of p in every node of the mesh
Pr Prandtl number, ν/α

Re Reynolds number
Ri Richardson number, Gr/Re2

St Strouhal number
t Time
t̃i i-th component of the prescribed stress
T Temperature
T̃ Prescribed Temperature
T Temperature tensor containing the values of T in every node of the mesh
∇̃Ti i-th component of the prescribed temperature gradient
ui i-th component of the velocity vector, (u, v, w)T

ui Velocity tensor containing the i-th component of the velocity vector in every node of the mesh
ũi i-th component of the prescribed velocity
xi i-th Cartesian coordinate, (x, y, z)T

Greek letters

α Thermal diffusivity, k/(ρcp)

β Thermal expansion coefficient, −ρ−1(∂ρ/∂T)p

µ Dynamic viscosity
φ Variable to approximate using the finite element method
φs Angle of detachment
ρ Density
ν Kinematic viscosity, µ/ρ

τij deviatoric viscous stress tensor
θ1 velocity relaxation factor
θ2 pressure relaxation factor
Θc the wall temperature difference ratio, (Tc − T∞)/(Th − T∞)

Th unstructured triangulation composed by non-overlapping elements

Subscripts

c Cold boundary
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h Hot boundary
w Wall
∞ Reference value
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