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Abstract: This study presents a model for district-level electricity demand forecasting using a set
of Artificial Neural Networks (ANNs) (parallel ANNs) based on current energy loads and social
parameters such as occupancy. A comprehensive sensitivity analysis is conducted to select the
inputs of the ANN by considering external weather conditions, occupancy type, main income
providers’ employment status and related variables for the fuel poverty index. Moreover, a detailed
parameter tuning is conducted using various configurations for each individual ANN. The study
also demonstrates the strength of the parallel ANN models in different seasons of the years. In
the proposed district level energy forecasting model, the training and testing stages of parallel
ANNs utilise dataset of a group of six buildings. The aim of each individual ANN is to predict
electricity consumption and the aggregated demand in sub-hourly time-steps. The inputs of each
ANN are determined using Principal Component Analysis (PCA) and Multiple Regression Analysis
(MRA) methods. The accuracy and consistency of ANN predictions are evaluated using Pearson
coefficient and average percentage error, and against four seasons: winter, spring, summer, and
autumn. The lowest prediction error for the aggregated demand is about 4.51% for winter season and
the largest prediction error is found as 8.82% for spring season. The results demonstrate that peak
demand can be predicted successfully, and utilised to forecast and provide demand-side flexibility to
the aggregators for effective management of district energy systems.

Keywords: ANN; PCA; MRA; district energy management; smart grid; smart cities; demand
forecasting

1. Introduction

Sustainable generation and supply of energy has become one of the biggest challenges faced
by policy makers, scientists, and researchers [1], primarily because of both an increase in energy
demand and the technological (infrastructure) improvements required to respond effectively to
this growth in demand. In fact, the average electricity demand increased by about 37% between
1990 and 2008 in the European Union (27 EU countries) [2]. Hence, there is a need for concerted
innovative strategies to tackle this increasing demand, estimated at 1.4% per annum [3], through
effective energy policies. Moreover, EU heads of states and governments set three targets in
2007 to be met by 2020: (i) reduction of greenhouse gas emissions by at least 20% compared to
1990 levels; (ii) increase of the share of renewable energy to 20% of EU energy consumption; and
(iii) reduction of primary energy usage by 20% through improved energy efficiency [2]. To achieve
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these targets, the European Commission (EC) has initiated the European Strategic Energy Technology
Plan (SET-Plan), aimed at accelerating the development and deployment of low-carbon technologies
for transforming the European energy system to implement the fifth pillar of the Energy Union [4].
Further, the SET-Plan recommends the optimisation of the current energy- and electricity-grid with
federation-based approaches focusing on decentralised micro-grids [4]. While new decentralised
micro-grids are required to be part of the low-and-medium-voltage (LV/MV) electricity grids [5,6],
the centralised and federation-based grid management approach offers an efficient control of the
entire electricity grid [7]. Traditional electricity grids are static systems; they do not provide detailed
information about energy consumption on the demand side, making it difficult to address peak
consumptions [8]. Moreover, both consumer behaviour and electricity markets are evolving rapidly,
progressing towards a user-centric direction—transforming the centralised, uni-directional traditional
grid into a decentralised energy-sharing grid with a bi-directional flow of information and energy [6].
This change creates a new form of end users termed “prosumers”, who are both energy producers
within their micro-grid (renewable sources such as photovoltaic (PV) and wind, and combined heat
and power (CHP) technologies) and energy consumers [9–11]. Prosumers add complexity to the
management of the entire electricity grid, requiring advanced distributed solutions rather than
traditional approaches of centralised energy management [6]. With the Feed-in-tariffs (FiT), prosumers
prefer to maximise their gain from micro electricity grids.

Several smart district energy management models have been proposed in the literature to maximise
benefits for the entire grid [12–18]. Fonseca et al. [12] proposed an integrated framework to maximise
the utility of the micro-grid concept in the district level. Fanti et al. [13] proposed a district energy
management model to optimise the smart grid with a linear programming approach and to predict
negotiated results for the next day’s energy consumption and relevant cost, with a view to reducing the
total cost for the entire district. Van Pruissen et al. [14] compared the efficiency of a multi-agent based
energy market management system to traditional systems, and illustrated the benefits of the multi-agent
based solutions. One of the main problems to be tackled during the optimisation and control of such
large-scale systems is the prediction of loads. The optimisation and the determination of flexibility
in district and urban level electricity-grids suffer from a lack of detailed (temporally and spatially)
and prior knowledge about demand profiles [15,16]. Hence, Jing et al. [17] proposed a forecasting
model for district energy management using empirical models alongside an optimisation system to
reduce energy costs. However, empirical models require certain assumptions, which increase model
complexity. Further, district energy consumption has an uncertain energy consumption pattern, which
means that demand for the energy consumption may fluctuate during the days of years or hours of the
days. These fluctuations are mostly related to the seasonal effects and socio-economic factors such as
occupants’ behaviour and the changes in their economic circumstances. In addition, the existence of
fuel poverty at the household level affects energy demand which needs to be considered for district
level forecasting. Many households fail to ensure a warm home, especially during cold winter days,
because of low incomes, thermally inefficient homes and high energy prices [18,19]. To deal with these
types of complexities, advanced, adaptive and intelligent solutions are often required. Related smart
solutions provide promising means in the built environment to control and predict energy consumption.
These include artificial neural network [11,20], support vector machine [21], genetic algorithm [22], and
rule- [23], and ontology-based systems [24]. They have also been utilised in district energy management
problems. Powell et al. [15] proposed an ANN-based forecasting system prior to the optimisation and
control of the district-level energy grid, as well as large-scale systems.

Load forecasting using machine learning (ML) algorithms has become very popular because of
the increasing need for cost-effective prediction of demand at a finer temporal resolution to operate
and manage the grid in cost- and energy-efficient manner. Several studies have proposed various
approaches for ML-based prediction. Kandananound [25] presented a forecasting process in Thailand
to predict the electricity demand using three approaches: Autoregressive Integrated Moving Average
(ARIMA) method, ANN and Multiple Linear Regression (MLR) on the annual electricity consumption
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data (1986–2010). ANN-based approach performed better than the remaining two in the study.
Hernandez et al. [26] proposed an ANN-based load forecasting system to predict hourly based
energy generation data using solar radiation information. They have found that the disaggregated
load forecasting increased the complexity of predicting electricity load for the next hour. Their best
performed ANN predicted short-term electricity load with 15.34% Mean Absolute Percentage Error
(MAPE). Similarly, Srinivasan [27] proposed an evolved ANN based forecasting system to predict the
weekdays and weekends electric loads using Genetic Algorithm (GA) as the optimisation engine. The
proposed model forecasts hourly electricity load. The results indicate that the ANN-GA predicts the
load better than the statistical approaches. However, this model utilises average hourly based electricity
load where the average energy consumption may differ from the actual hourly based load. Further, the
study does not demonstrate individual consumers’ demand (building level electricity consumption);
hence, the proposed ANN-GA based forecasting system is not a desired approach for the smart
microgrid applications. Further, Kalaitzakis et al. [28] proposed a Gaussian encoding backpropagation
based ANN model for short-term load forecasting using them in parallel (individual ANNs). The model
is tested on the forecasting of a power system in the island of the Crete with relative errors of
1.5–13.4%. However, authors did not mention about the selection of inputs variables for ANN. Since
the identification of input variables is very crucial and requires a systematic approach such as sensitivity
analysis. Rodrigues et al. [29] proposed a Levenberg-Marquardt algorithm based ANN for short-term
electricity consumption for 96 buildings. The proposed method predicted daily electricity consumption
with 18.1% means average percentage error. Authors used one single ANN for each building using
their appliance average daily energy consumption as input and aimed to forecast daily building
energy consumption. In this approach, authors did not consider the other sensitive variables which
had an impact on the daily energy consumption. Moreover, they tried to forecast each individual
building’s electricity consumption using all buildings information which affects the accuracy of the
forecast. As each building’s energy usage pattern is different than each other due to different occupants’
characteristics. Moreover, these authors did also not do any topology optimisations. Another study
is presented by Further, Chen et al. [30], they proposed a forecasting system for the substation’s
electricity load using ANN to support distribution system operation. The proposed method predicted
the electricity load with about 2% mean absolute percentage error.

In addition to ANN, several methods have been used to forecast electricity demand; e.g., Gaussian
Process Model [31], Support Vector Machine (SVM) [32], Mixed Lazy Learning (MLL) [33], Adaptive
Neuro Fuzzy Inference System (ANFIS) [34] and Fuzzy Logic (FL) [35].

Gaussian-based methods have two main limitations compared to other techniques: computational
complexities and restrictive modelling for large datasets. Their applications using big data in
demand-side electricity management are, therefore, challenging. On the other hand, computational
intelligence techniques such as SVM, MLL, ANFIS, FL and ANN have better responses for complex
problems, because of their autonomous and adaptive approximation methodologies. Among the
reviewed techniques, ANN is effective in tackling the forecasting of such complex problems. Hence,
this study adopted ANN-based methodology for district-level electricity management.

The main contribution of the proposed approach is to forecast sub-hourly electricity consumption
of both individual building and substation (aggregator) accurately. Moreover, the study aims to
demonstrate forecasting difficulties due to the different number of occupant and seasons. Further,
this research also presents a systematic ANN development process including input parameters
determination through a sensitivity analysis and topology optimisation for parallel ANNs where
there is a lack of detail explanation in the related domain. The proposed hierarchical and systematic
modelling approach is the main motivation of this research, which is also a necessity for the smart
grid domain to generate an accurate energy information flow from buildings level to distribution
operators level. As stated above, the previous studies did not consider a sensitivity analysis during
the ANN development process. Moreover, they did not consider the effect of the occupants, who are
under 15, on the forecasting of the electricity consumption. Further, the forecasting difficulties in the
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different season for individual building level has not been considered by literature which is considered
in detailed in the proposed study.

The proposed research involves the following steps to achieve these objectives: (a) the
determination of dependent and sensitive variables for the aggregated energy consumption using
Principal Component Analysis (PCA) and MRA, which are then used in the ANN-based forecasting
model; (b) ANN topology determination; (c) testing and validation; (d) prediction with best-performed
ANN-topology; (e) implementation of the best performed ANN models in parallel to predict sub-hourly
based electricity consumption; and (f) analysis the performance of each ANNs in each seasons with
the aggregated results.

2. Artificial Neural Network for District Energy Management

Artificial Neural Network (ANN) recently became highly popular for energy management in the
built environment, which is highly complex and nonlinear [20,36–38], primarily because of the strength
of ANN in modelling complex systems. ANN mimics the biological neural system to find correlations
for complex systems without having an explicit functional relationship [11]. These relations are defined
with artificial neurons and their artificial importance (weight) with transfer functions. This process
is performed as a non-linear computational process to find the complex relationship between inputs
and outputs. ANNs involve high performance, fast and non-linear analytics. The study presented
in [11] utilises ANN as a cost function engine for the optimisation system. One of the key elements to
highlight about the ANN is that each developed ANN is problem specific. Once a new dataset with a
specific number of inputs and outputs are modelled with an ANN, it cannot be applied on another
problem with different configurations. Therefore, ANN based forecasting systems are problem-specific
rather than domain-specific. Moreover, they are not generalised systems and cannot be replicable
due to the lack of commonality between different problems’ dataset. ANN models typically utilise
different number of variables in input and output layers, as well as different configurations. However,
the working principles are same, as every ANN model undergoes a training process, a topology
configuration, input variables, output variables, and an error target level. Once the training process is
in place, then the trained network can be utilised in the selected problem set. During the training stage
of an ANN model, it involves changing the weight of the links iteratively to direct the information
down the correct path to the correct output [11].

The generation of electricity to meet local demand is mostly governed by local consumers’ total
peak demand [39,40]. Idowu et al. [41] proposed a forecasting approach to predict the substations’
electricity demand in the district-level, which varies considerably because of households’ social and
financial circumstances. Therefore, predicting the household-level electricity consumption with higher
granularity can improve the prediction of substation-level demand by aggregating the demand of each
connected house. Thus, the determination of the consumer’s peak electricity demand at household
level becomes critical for district energy management. Like energy management, peak demand
determination is also highly complex and hard to solve numerically. Since ANN has been widely
implemented for load forecasting, they are also suitable for peak demand determination [42].

Given their robustness and comparatively higher accuracy, ANN-based forecasting models have
the potential to provide a perspective of the future electricity demand of each individual building at
the district level. Hence, an advanced and intelligent control and management system will provide a
holistic and adaptive control ability to the entire district. In addition, the intelligent controller can be
enhanced with optimisation algorithms to minimise energy consumption per household and maximise
the utility of the entire grid. A generalised smart grid energy management and control hierarchy is
illustrated in Figure 1, comprising three hierarchal stages and one negotiation and exchange stage.
The first stage is the device level stage, which involves the activation of each individual device in the
building. Buildings are at the second level, which is highly dependent on the building level energy
consumption. The third level is the district level energy management that addresses energy demand
of a specific district which is also sometimes called aggregator energy management system that
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organises negotiation, and exchange of information and money between other districts and connected
buildings. The final stage relates to the Distribution System Operator’s (DSO) energy management
system which organises the energy distribution between districts/aggregators. To optimise the entire
process, the prediction of the building level energy demand becomes highly critical in the entire value
chain. Therefore, an ANN-based forecasting system is proposed to predict the electricity demand of
the individual households for a selected district.

Figure 1. Topology of district management in the smart grid.

3. Methodology

The proposed method involves: (a) the determination of dependent and sensitive variables for the
aggregated energy consumption using Principal Component Analysis (PCA) and Multiple Regression
Analysis (MRA); (b) topology determination; (c) testing and validation; and (d) prediction with
best-performed topology. To implement the proposed methodology, a small district from Cork, Ireland
has been selected. The data come from a smart metering trial by the Irish Commission for Energy
Regulation (CER) where building energy consumption was logged on a thirty-minute interval [43].
These data are accessible from the Irish Social Science Data Archive (ISSDA) [43]. The selected dataset
consists of about 7000 residential buildings’ energy consumption for the year 2012 and rich data
(obtained through a questionnaire) about householders such as the number of occupants, number
of child under age of 15, household income, occupancy patterns (people staying in the house for
more than 5 h during the day) and so on. In addition, information on fuel poverty, i.e., the ratio
of the total fuel payment and net household income, are present in the data. However, the data
related to household financial information are not present. The employment status of the primary
earning member and whether the buildings were adequately warmed have been fetched to correlate
building energy consumption, alongside other variables. This work is an extended version of the
work presented at a conference in 2016 [44]. This paper contains further enhancements in terms
of the variables considered, the number of experiments conducted, and the tasks accomplished in
the pre-processing stage, as well as the detailed consideration of an extended number and scope of
social variables.

To validate the proposed concept, six domestic buildings in the same grid have been selected
which have different specifications: for example; the number of rooms in each building are 3, 4, 3, 3, 4,
and 3 for the Buildings 1–6, respectively. Moreover, Buildings 1, 2, 5, and 6 utilise natural gas for space
heating; the remaining two buildings use electricity for space heating. Moreover, Buildings 5 and 6
also use the available renewable resources installed on site. All buildings have one washing machine
on site. Further, Buildings 2 and 5 have tumble dryer in the building. Buildings 1–5 contain large-size
TV, and Building 6 has a smaller size TV. Building 2 has a game console on site. The next step is to link
this dataset with relevant variables such as occupancy types and outdoor weather conditions using
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factor analysis. Results from the factor analysis; i.e., the most sensitive variables for total district energy
consumption, are selected as Artificial Neural Network (ANN) inputs. Then, the best performing
ANN topology is determined by testing several combinations of ANN, followed by training and
validation. Finally, a district level aggregated electricity forecasting model is generated. This generated
aggregated model will provide information about the electricity demand for the selected pilot district.
The proposed forecasting model is illustrated in Figure 2.

Figure 2. Proposed methodology for the Artificial Neural Network (ANN) based-forecasting system.

As shown in Figure 2, the first step in the process is the collection of data, which are used to train and
test the proposed forecasting algorithm. The second step is the analysis of sensitivities, which is divided
into four sub-stages: (a) determine the required number of uncorrelated element, i; (b) apply MRA on
the given variables; (c) sort the absolute value of coefficients for each variable from high to low; and (d)
select the top i variables. The last stage is the development of ANN based forecasting system using the
selected i variables as input to the model. The ANN development comprises four sub-stages. First, the
topology (the optimum number of hidden layers, process elements and training functions) is determined.
Second, the ANN model is trained with the optimum configuration. Third, the trained network is tested
and validated. Finally, the tested and validated network is utilised in real-life predictions.

4. PCA and MRA Analysis Based Sensitive Variables Determination

To determine the highly correlated and sensitive variables for the aggregated electricity demand
for the pilot site, a PCA based dimension reduction approach [11] is utilised. PCA is a multivariate
orthogonal transformation approach that converts a set of observations of possibly correlated variables
into linearly uncorrelated variables set using the eigenvalues of the covariance matrix for the initial
set of variables [45]. The study focuses on determining the most important social and environmental
variables for predicting electricity consumption; hence, 23 variables of interest, including weather
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conditions and social variables are selected for PCA. Eight out 23 variables, as shown in Figure 3,
have been found as uncorrelated, indicating that these variables impact on the outputs independently
without sharing information among each other; i.e., they are uncorrelated.

Figure 3. Determination of the number of uncorrelated components with Principal Component Analysis
(PCA).

The next step is to determine the coefficients of the selected eight variables using a multi regression
analysis (MRA) as in Equation (1).

f (x) = Ax (1)

where A is coefficient vector AT = [a1 a2 . . . an ], x is variable vector XT = [x1 x2 . . . xn] and f (x) is the
total grid energy consumption for next 30 min.

According to the MRA, the eight highest coefficient values are found for variables: current
electricity consumption, outdoor air temperature, outdoor humidity, wind speed, outdoor air pressure,
visibility, wind direction and number of the occupant under the age of fifteen.

5. Determination of the Best-Performed ANN Topology

As highlighted in Section 3, the main objective of the topology determination process is to find the
best performing ANN architecture for each individual ANN model which contributes in parallel to the
aggregated district energy consumption. Each proposed ANN model has eight sensitive variables and
four-time information as ANN inputs and one output for the next thirty minutes’ energy consumption.
In the proposed forecasting system, six parallel ANN models have been proposed to predict the
aggregated energy demand. The cumulative forecasted energy demand provides the expected district
energy consumption for this building cluster. The proposed ANN architecture with inputs and outputs
is given in Figure 4.

Figure 4. Proposed ANN architecture for each building.
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According to Figure 4, each proposed ANN model has twelve inputs which are: month, day,
hour, minute, outdoor air temperature, outdoor humidity, outdoor air pressure, wind speed, wind
direction, visibility, number of occupants under the age of fifteen (e.g., zero, one, two, three, and so
on), and current energy consumption; and single output as next thirty minutes’ energy consumption.
In the proposed parallel ANN model, Buildings 1, 4 and 6 have 0 occupants under age of 15; Building
2 has three occupants who are under age of 15, who are also under age of 5 (they are staying in the
house more than 6 h during the day); Building 3 has two occupants under age of 15, who are also
above the age of 5 (they are not staying in the house more than 6 h during the day); and Building 5
has one occupant under age of 15, who is also under age of 5 (he/she is staying in the house more
than 6 h during the day). Although PCA-MRA based pre-processing did not correlate electricity
consumption and the opinion about the buildings’ temperature (i.e., if they were adequately warmed
up), the authors wanted to see if there was a relationship among them by investigating the household
budget, a proxy indicator for fuel poverty. As per rich data (i.e., questionnaire survey), respondents
from all households believed that their houses were adequately warmed up and the ratio of annual
fuel expenses and annual household income was less than 0.1 or 10%, the fuel poverty threshold.
The historical energy consumption data were for 18 months. The first year’s data were used for training,
while the remaining six months’ electricity consumption data were utilised for testing and validation.

The training process for each building started with the determination of the best-performed
training algorithm, as illustrated in in Table 1, while keeping the other variables constant;
e.g., maximum number of iteration as 5000; the learning rate as 0.01; and the momentum coefficient as
0.95. In addition, the number of hidden layers is kept as two, the numbers of the process elements in
each hidden layer are kept as 25 for both layers, and the transfer function types in both two hidden
layers and the output layer are selected as logarithmic sigmoid with maximum epoch number of 5000
with 10 repetitive runs. Further, the mean square error (MSE) for the parameter tuning during the
training stage is set to 0.001, to keep the training error as low as possible. In this case, this value is
found as 0.001 with empirical tests. Moreover, the dataset is normalised between 0 and 1.

Table 1. Training algorithms used for the experiments.

No Abbreviation Definition

1 trainbfg Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton backpropagation [46].
2 traincgb Conjugate gradient backpropagation with Powell-Beale restarts [47].
3 traincgf Conjugate gradient backpropagation with Fletcher-Reeves updates [47].
4 traincgp Conjugate gradient backpropagation with Polak–Ribiere updates
5 traingd Gradient descent backpropagation [46].
6 traingda Gradient descent with adaptive learning rate backpropagation [46].
7 traingdm Gradient descent with momentum backpropagation [46].
8 traingdx Gradient descent with momentum and adaptive learning rate [46].
9 trainlm Levenberg–Marquardt backpropagation [47].

10 trainscg Scaled conjugate gradient algorithm based on conjugate directions [46]

The average results of 10 runs for each ANN model are given in Table 2. The best performed
ANN was found for all six buildings with trainlm based algorithm (No. 9 in Table 1) [47]. Hereafter,
further experiments will be carried with this algorithm (determined value) using other parameters
(number of hidden layers, number of process elements in hidden layers and transfer function) where
the initialised values of other parameters will be updated one by one in further stages.

The next stage is to find the required number of the hidden layers for the best performed ANN.
To determine the optimum number of hidden layers, one, two, and three hidden layers are tested for
each building with ten repetitive runs. The average results of ten runs for each building are presented
in Table 3.

According to the testing results presented in Table 4, the best-performed topology has been found
with the combination of [Logsig-Logsig-Logsig] in both hidden layers and output layers. In some
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cases, some other combinations also provided desired target level but none of them performed better
than the [Logsig-Logsig-Logsig] combination. This combination satisfied the desired target level for all
six ANN models with lowest epoch numbers. In the following experiments, this combination will be
utilised alongside previous best-performed parameters. The last step of the topology determination
process is to find the best-performed number of process elements in the hidden layers. To perform this
experiment, several combinations of the process elements are utilised in hidden layers for each ANN
model. These combinations and the average results for the repetitive runs are given in Table 5.

Table 2. Training algorithm performance for each individual ANN model.

No
Training

Algorithm
Expected

MSE
ANN Performance (Error/Epoch)

ANN1 ANN2 ANN3 ANN4 ANN5 ANN6

1 trainbfg 0.001
0.004 0.201 0.121 0.094 0.329 0.088
5000 5000 5000 5000 5000 5000

2 traincgb 0.001
0.006 0.219 0.184 0.051 0.091 0.047
5000 5000 5000 5000 5000 5000

3 traincgf 0.001
0.004 0.192 0.106 0.037 0.101 0.014
5000 5000 5000 5000 5000 5000

4 traincgp 0.001
0.003 0.103 0.011 0.003 0.002 0.008
5000 5000 5000 5000 5000 5000

5 traingd 0.001
0.031 0.171 0.149 0.094 0.114 0.062
5000 5000 5000 5000 5000 5000

6 traingda 0.001
0.982 0.144 0.098 0.091 0.117 0.042
5000 5000 5000 5000 5000 5000

7 traingdm 0.001
0.727 0.083 0.020 0.026 0.112 0.013
5000 5000 5000 5000 5000 5000

8 traingdx 0.001
0.509 0.016 0.011 0.041 0.082 0.009
5000 5000 5000 5000 5000 5000

9 trainlm 0.001
0.001 0.001 0.001 0.001 0.001 0.001
200 4836 1601 985 460 309

10 trainscg 0.001
0.003 0.167 0.004 0.005 0.002 0.004
5000 5000 5000 5000 5000 5000

Table 3. Experiments for the number of hidden layer.

Number of
Hidden Layer

Expected
MSE

ANN Performance (Error/Epoch)

ANN1 ANN2 ANN3 ANN4 ANN5 ANN6

1 0.001
0.001 0.002 0.002 0.001 0.001 0.001
1002 5000 5000 3712 1941 2907

2 0.001
0.001 0.001 0.001 0.001 0.001 0.001
278 413 372 291 276 294

3 0.001
0.001 0.003 0.002 0.002 0.002 0.002
3073 5000 5000 5000 5000 5000

According to Table 3, some experiments achieved the targets with one and three hidden layers for
some buildings (coloured in grey), but the best performed ANNs were found with two hidden layers
for each building specific ANNs, with the lowest number of iterations. Moreover, ANN for Building
1 achieved the target MSE (0.001) with 278 epochs. Similarly, energy consumption for Buildings 2–6
has been found after 413, 372, 291, 276 and 294 epochs, respectively. Based on the experiments, the
topology optimisation will be carried out using two hidden layers.

The next stage of the experiments is the determination of the transfer function in both hidden and
output layers. Three types of transfer functions are being considered—hyperbolic tangent sigmoid
function (tansig), logarithmic sigmoid function (logsig) to include nonlinearity in the learning process,
and linear transfer function (purelin) to transform a linear mapping between inputs and outputs.
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The experiments were conducted with ten repetitive runs for each selected configuration, and the
average results are shown in Table 4.

Table 4. Experiments for the transfer functions in hidden layers and output layer.

Transfer Functions in
Hidden and Output Layers

Expected
MSE

ANN Performance (Error/Epoch)

ANN1 ANN2 ANN3 ANN4 ANN5 ANN6

(Tansig-Tangsig-Tansig) 0.0010
0.0378 0.0922 0.0474 0.0497 0.0398 0.0351
5000 5000 5000 5000 5000 5000

(Tansig-Tansig-Logsig) 0.0010
0.0009 0.0026 0.0012 0.0010 0.0032 0.0021

812 5000 5000 3864 5000 5000

(Tansig-Tansig-Purelin) 0.0010
0.1604 0.2441 0.1712 0.2099 0.1796 0.2104
5000 5000 5000 5000 5000 5000

(Tansig-Logsig-Tansig) 0.0010
0.0009 0.0010 0.0010 0.0009 0.0010 0.0010

377 511 701 292 643 665

(Tansig-Logsig-Logsig) 0.0010
0.0009 0.0010 0.0010 0.0010 0.0010 0.0009

278 339 517 415 1009 423

(Tansig-Logsig-Purelin) 0.0010
0.1039 0.1832 0.1591 0.1903 0.1505 0.0939
5000 5000 5000 5000 5000 5000

(Tansig-Purelin-Tansig) 0.0010
0.0159 0.0479 0.0270 0.0188 0.0252 0.0163
5000 5000 5000 5000 5000 5000

(Tansig-Purelin-Logsig) 0.0010
0.0174 0.1097 0.0053 0.0221 0.0036 0.0056
5000 5000 5000 5000 5000 5000

(Tansig-Purelin-Purelin) 0.0010
0.3571 0.3239 0.2962 0.3027 0.3308 0.2991
5000 5000 5000 5000 5000 5000

(Logsig-Tangsig-Tansig) 0.0010
0.0012 0.0027 0.0010 0.0010 0.0019 0.0011
5000 5000 4517 4882 5000 5000

(Logsig-Tansig-Logsig) 0.0010
0.0009 0.0010 0.0010 0.0009 0.0010 0.001

202 1022 633 711 490 318

(Logsig-Tansig-Purelin) 0.0010
0.3290 0.3782 0.3592 0.3882 0.3113 0.2977
5000 5000 5000 5000 5000 5000

(Logsig-Logsig-Tansig) 0.0010
0.0010 0.0011 0.0009 0.0010 0.0009 0.0015

298 5000 578 3049 2610 5000

(Logsig-Logsig-Logsig) 0.0010
0.001 0.001 0.001 0.001 0.001 0.001
181 247 214 197 243 252

(Logsig-Logsig-Purelin) 0.0010
0.2427 0.2917 0.2541 0.2351 0.3132 0.2669
5000 5000 5000 5000 5000 5000

(Logsig-Purelin-Tansig) 0.0010
0.1041 0.2044 0.1185 0.1670 0.1112 0.1070
5000 5000 5000 5000 5000 5000

(Logsig-Purelin-Logsig) 0.0010
0.0928 0.2029 0.1081 0.0956 0.0996 0.1126
5000 5000 5000 5000 5000 5000

(Logsig-Purelin-Purelin) 0.0010
0.2039 0.3017 0.3431 0.2982 0.3272 0.2778
5000 5000 5000 5000 5000 5000

(Purelin-Tangsig-Tansig) 0.0010
0.1652 0.2931 0.1982 0.1771 0.2028 0.1714
5000 5000 5000 5000 5000 5000

(Purelin-Tansig-Logsig) 0.0010
0.1038 0.1213 0.0942 0.1675 0.1119 0.1003
5000 5000 5000 5000 5000 5000

(Purelin-Tansig-Purelin) 0.0010
0.2611 0.3498 0.4192 0.3111 0.2991 0.3585
5000 5000 5000 5000 5000 5000

(Purelin-Logsig-Tansig) 0.0010
0.1779 0.0962 0.1137 0.1042 0.2783 0.1017
5000 5000 5000 5000 5000 5000

(Purelin-Logsig-Logsig) 0.0010
0.1399 0.1049 0.3288 0.1414 0.0973 0.1440
5000 5000 5000 5000 5000 5000

(Purelin-Logsig-Purelin) 0.0010
0.2862 0.4492 0.2961 0.3038 0.2977 0.3932
5000 5000 5000 5000 5000 5000

(Purelin-Purelin-Tansig) 0.0010
0.1291 0.3912 0.1193 0.3216 0.1973 0.1042
5000 5000 5000 5000 5000 5000

(Purelin-Purelin-Logsig) 0.0010
0.2357 0.2190 0.4971 0.2933 0.4349 0.3353
5000 5000 5000 5000 5000 5000

(Purelin-Purelin-Purelin) 0.0010
0.3422 0.4731 0.4491 0.3702 0.4944 0.3730
5000 5000 5000 5000 5000 5000
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Table 5. Experiments for the number of process elements in hidden layers.

Number of
Hidden Layer

Expected
MSE

ANN Performance (Error/Epoch)

ANN1 ANN2 ANN3 ANN4 ANN5 ANN6

(5 5) 0.001
0.0010 0.0024 0.0027 0.0010 0.001 0.001
1002 5000 5000 3712 1941 2907

(5 15) 0.001
0.0010 0.001 0.0010 0.001 0.001 0.001

348 213 72 191 276 494

(5 25) 0.001
0.0010 0.0034 0.0029 0.0020 0.0021 0.0024
3073 5000 5000 5000 5000 5000

(5 30) 0.001
0.0011 0.0029 0.0023 0.0010 0.0010 0.0010
5000 5000 5000 3712 1941 2907

(15 5) 0.001
0.0011 0.0014 0.0011 0.0010 0.0011 0.0010
5000 5000 5000 4817 5000 4011

(15 15) 0.001
0.0010 0.0009 0.0009 0.001 0.001 0.002

278 112 96 114 203 161

(15 25) 0.001
0.0090 0.0010 0.0009 0.0010 0.001 0.001

172 19 4 82 119 107

(15 30) 0.001
0.001 0.0010 0.0010 0.0010 0.0010 0.0010
412 113 179 162 76 19

(25 5) 0.001
0.001 0.0021 0.0015 0.0012 0.0011 0.0010
3073 5000 5000 5000 5000 3218

(25 15) 0.001
0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

198 112 101 87 134 68

(25 25) 0.001
0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

221 49 31 109 92 54

(25 30) 0.001
0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

174 43 64 101 98 66

(30 5) 0.001
0.0010 0.0012 0.0010 0.0011 0.0010 0.0010

714 5000 3810 5000 2423 968

(30 15) 0.001
0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

403 1541 56 1009 118 86

(30 25) 0.001
0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

198 91 39 88 300 129

(30 30) 0.001
0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

203 42 101 96 1941 114

According to Table 5, the desired MSE was found in most cases; the best-performed ones are
coloured in blue and presented in bold font. The others that achieved the desired MSE level are
coloured grey. The best-performed ones are the ones that met the desired MSE with the lowest number
of the epochs. The selected topology for each ANN model is presented in Table 6.

Table 6. Final topology for each ANN model.

ANN No The Training
Function

The Number
Hidden Layer

Transfer Function Type in
Hidden and Output Layers

The Number of Process
Element in Hidden Layer

ANN for Building1 trainlm 2 (Logsig-Logsig-Logsig) (15 25)
ANN for Building2 trainlm 2 (Logsig-Logsig-Logsig) (15 25)
ANN for Building3 trainlm 2 (Logsig-Logsig-Logsig) (15 25)
ANN for Building4 trainlm 2 (Logsig-Logsig-Logsig) (15 25)
ANN for Building5 trainlm 2 (Logsig-Logsig-Logsig) (15 30)
ANN for Building6 trainlm 2 (Logsig-Logsig-Logsig) (15 30)

Since the ANN development is a data driven process, configurations presented in Tables 2–6
are dependent on the datasets. Configurations and MSEs are, therefore, not guaranteed for
different datasets. Moreover, this configuration cannot be generalised in some parameter. However,
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Yuce et al. [23] stated that trainlm based training function performs the best in electricity management
problems; and that other configurations do not seem to have similar performance.

6. Results and Discussion

The proposed ANN models are developed and tested in a computer with Intel TM Core i5 2.27
GHz processor and 4 GB memory. MATLAB 2016a was used as the software platform. As per Table 6,
the best-performed training algorithm is Levenberg-Marquart for every ANN model with two hidden
layers. The logarithmic sigmoid transfer function is used in both hidden and output layers. Finally, the
number of the process elements for each hidden layer are (15 20), (15 20), (15 20), (15 20), (15 30), and
(15 30) for the ANN of Buildings 1–6, respectively. Training performance of these best performed ANN
models is illustrated in Figures 5–10 by comparing with expected electricity consumption (expected
electricity consumption is the actual electricity consumption which is occurred after 30 min from the
corresponding prediction time frame) for a typical day of each season.

Figure 5. Comparison between the actual and predicted electricity consumption for the training results
of ANN1 for a typical day in four seasons: (a) winter; (b) spring; (c) summer; and (d) autumn.

Figure 6. Comparison between the actual and predicted electricity consumption for the training results
of ANN2 for a typical day in four seasons: (a) winter; (b) spring; (c) summer; and (d) autumn.
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Figure 7. Comparison between the actual and predicted electricity consumption for the training results
of ANN3 for a typical day in four seasons: (a) winter; (b) spring; (c) summer; and (d) autumn.

Figure 8. Comparison between the actual and predicted electricity consumption for the training results
of ANN4 for a typical day in four seasons: (a) winter; (b) spring; (c) summer; and (d) autumn.

Results presented in Figures 5–10 demonstrate the accuracy of the developed ANN for a typical
day, which is the middle day of each season, for each building. The error rate for this selected day is
found based on the average percentage error, computed based on the Equation (2).

Average Percentage Error = 100 ∗ |Expected Electricity Consumption −Predicted Electricity Consumption|
Expected Electricity Consumption (2)

Further, an error analysis is carried out to determine the accuracy of the training process
for each ANN using the average percentage error for the selected period (one year); the results
are presented in Table 7. Moreover, the correlation between the predicted demand and expected
electricity consumption (it is the actual electricity consumption which is occurred after 30 min from the
corresponding prediction time frame) are statistically analysed using Pearson correlation coefficient
and regression analysis.
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Figure 9. Comparison between the actual and predicted electricity consumption for the training results
of ANN5 for a typical day in four seasons: (a) winter; (b) spring; (c) summer; and (d) autumn.

Figure 10. Comparison between the actual and predicted electricity consumption for the training
results of ANN6 for a typical day in four seasons: (a) winter; (b) spring; (c) summer; and (d) autumn.

Table 7. Training error analysis of each proposed ANN models.

ANN Average
Percentage Error

Pearson Correlation
Coefficient R2 Constant

Coefficient (a)
Variable

Coefficient (b)

ANN1 4.03 0.999 0.997 1.85 × 10−5 0.998
ANN2 15.81 0.973 0.946 0.000 0.907
ANN3 9.03 0.998 0.996 −2.44 × 10−5 1.090
ANN4 5.51 0.999 0.998 0.001 1.053
ANN5 7.05 0.999 0.997 0.000 1.070
ANN6 4.07 0.998 0.997 0.001 0.990

According to Table 7, all Pearson correlation coefficients are found greater than 0.90 for the
predicted and the expected results, demonstrating a high correlation between the predicted and
expected values. Further, the best performing ANN results are found with Building 1 with 4.03%
average percentage error. The high accuracy of ANN for the Building 1 can also be seen based on the
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linear regressions coefficient as shown in Table 7. In this paper, the linear regression model for this
problem is presented as in Equation (3).

Expected Energy Consumption = a + b(Predicted Energy Consumption) (3)

Based on Equation (3), the expected energy consumption for Building 1 almost equals to the
predicted energy consumption by including “a” as 1.85 × 10−5 and “b” as 0.998. Moreover, coefficients
for Building 2 are also verified that the performance of ANN for Building 2 is the least accurate
one, which has three children under the age of fifteen who are also under the age of five. Moreover,
according to the comparison between buildings based on the number of children occupant, Building 2
consists of three children under the age of five (who are staying at home more than 6 h during the day)
with the average percentage error of 15.81%, which is 6.78% higher than the average percentage error
found in Building 3 that consists of two children who are under age of fifteen and not staying at home
more than 6 h during the day (age > 5 years). According to the comparison between Buildings 3 and
5 (one child, who does not stay at home more than 6 h during the day), the error difference is found
as 1.98%. Based on this result, the difference between the error of Buildings 2 and 3 is about three
times greater than the error of the difference between Buildings 3 and 5. It was challenging to achieve
prediction results for the buildings with irregular energy consumption patterns. This expectation
is confirmed with both average percentage error and linear regression analysis. The building with
no children under age fifteen has a regular energy consumption pattern compared to the buildings
with children under age of fifteen. However, the prediction error is lower in the aggregated energy
consumption. The aggregated energy consumption prediction error for these six buildings is found
as 4.33%. This result shows that the error level in the building level can vary under different scales.
However, this variation is much lower in the aggregated electricity compared to the building level.
Prediction in some time stamp can be higher for one building while potentially lower in another. Hence,
the effect of the prediction variation stays lower during the aggregation, as illustrated in Figure 11.

In Figure 11, the red and blue coloured lines denote the expected total (i.e., aggregated)
energy consumption and the total predicted energy consumption for six buildings, respectively.
The aggregation is accomplished by adding together all buildings’ electricity consumption. The training
stage’s aggregated forecast accurately traces the aggregated expected electricity consumption.

Further analysis is carried out for the testing stage of the developed ANN models for each
building. The average percentage error, Pearson correlation coefficient and regression analysis based
comparison are illustrated in Table 8.

Figure 11. Comparison between the results of the aggregated actual and the aggregated predicted
electricity demand for the training stage.
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Table 8. Testing error analysis of each ANNs.

ANN No Average
Percentage Error

Pearson Correlation
Coefficient R2 Value

Constant
Coefficient

Variable
Coefficient

ANN1 6.51 0.999 0.998 0.000 1.065
ANN2 22.64 0.992 0.984 −0.001 1.227
ANN3 14.45 0.996 0.992 0.002 1.135
ANN4 9.95 0.997 0.994 0.002 1.095
ANN5 14.17 0.995 0.990 0.001 1.138
ANN6 12.07 0.997 0.994 −0.002 1.124

As illustrated Table 8, the testing results for Building 1 is found best compared to other building
results. As Building 1 does not have any children under age of 15, the better prediction is obtained
compared to other buildings. Hence, the results are expected to be lowest. However, this result is
expected for Buildings 4 and 6 too. However, their prediction results slightly worse compare to the
Building 1. In addition, they have also better accuracy rate compare to buildings than the Buildings
3 and 5. This result is also verify based on the linear regression coefficients. The results for the
Building 2 are still found the worst results in Table 8 (red font). This is also expected since this
building consists of occupants which are 3 children under age of 15 and adults. According to the linear
regression coefficients, the best prediction results during the testing stage are found with the Building
1. This result shows that an expected result is equal to 1.065 times of the predicted result. Finally, the
aggregated results for the testing stage are also illustrated in Figure 12.

According to the error analysis between the aggregated expected electricity and the aggregated
predicted results, it has been found that the average percentage error is 13.41% which is the average of
the errors presented in Column 2 of Table 8. Although this result is slightly higher than the average
errors of the Building 1 and 6, the results are still lower than the rest of the buildings’ results. This
output also verifies that the aggregated prediction results are still less affected compared to individual
buildings (apart from Buildings 1 and 6). The worst average percentage was found for Building 2 as
22.64%, computed based on the average percentage differences between expected and predicted values.
A detailed analysis of existing literature and proposed study is presented in Table 9 to demonstrate the
main contribution.

Finally, an analysis is carried out on the average error for each building in different seasons.
The entire period’s (1.5 year, including training and testing time periods) predicted and expected
consumption are considered in this analysis. The results are illustrated for winter, spring, summer
and autumn seasons in Figures 13–16, respectively. Spring season has the highest average percentage
error, compared to other seasons, for every building and the aggregation, while the results for autumn
season have the lowest average percentage error for every building and the aggregation. The electricity
consumption during winter season appears to have a consistent profile. On the other hand, the
consumption profiles are intermittent during spring, regardless of the occupancy type.

Figure 12. Comparison between the results of the aggregated actual and the aggregated predicted
electricity demand for the testing stage.
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Figure 13. Average percentage error results for winter season.

Figure 14. Average percentage error results for spring season.

Figure 15. Average percentage error results for summer season.

Figure 16. Average percentage error results for autumn season.
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Table 9. ANN parameter comparison between the proposed work and existing literature.

Proposed Study ANN Type
Input

Selection
Method

Weather
Input

Time
Input

Social
Variables

Parameter
Tuning

Building
Level

Grid
Level

Seasonal
Analysis

Proposed Study MLP Sensitivity
Analysis Yes Yes Yes Yes Yes Yes Yes

Yuce et al. [11] MLP Sensitivity
Analysis Yes Yes No Yes Yes No No

Mocanu et al. [21] MLP Empirical No No No Yes Yes No No

Yuce et al. [23] MLP Sensitivity
Analysis Yes Yes No Yes Yes No No

Hernandez et al. [26] MLP Empirical No No No No No Yes No

Srinivasan, [27] MLP Empirical Yes No No No No Yes No

Kalaitzakis et al. [28] MLP, RBF, ARNN
and RAWN Empirical No No No No No Yes No

Rodrigues et al. [29] MLP Empirical No No No No Yes No No

Chen et al. [30] MLP Empirical No No No No No Yes No

As shown in Table 9, the proposed study has demonstrated a systematic approach for ANN
development and implementation for the smart grid domain both using a sensitivity analysis for the
input parameter selection, social variables involvement and analysis in seasonal levels (coloured as blue
in the above table). Further, the proposed study also presents the usage of the parallel ANN process
in the grid level which is assumed as single ANN model in the other literature studies. The detailed
conclusion is presented in Section 7.

7. Conclusions and Limitations

The main objective of this study is to develop an accurate and robust ANN-based forecasting
models (in parallel performing ANNs) for the sub-hourly prediction of the electricity consumption
in district-level which consists of multiple building based consumers; moreover, this information
is then aimed to utilise in the smart grid domain. Further, the average accuracy of forecasting
system will also be used to adjust the demand’s flexibility at Aggregator and DSO levels; hence, the
high accuracy of the forecasting systems is the key approach. To achieve high accuracy with the
forecasting, the objective of the study was enhanced with the accuracy analysis in different seasons,
and varying occupant types. Moreover, the study was also aimed to demonstrate a systematic
approach to the development parallel ANNs including a sensitivity approach to determine the
inputs of ANN and implementing an experimental design to optimise the topology among multiple
configuration types. Using a systematic approach during the ANN development stage and stating the
accuracy differences in different seasons will provide the aggregator and DSO operators to update
their demand flexibility and adjust their loads during the pick hours based the provided limits. Further,
results for buildings with different occupancy types provide the Aggregator and DSO operators to
have adaptive demand flexibilities. Hence, the proposed model is implemented on six buildings,
with different characteristics and occupancy type. The development of the ANN-based electricity
demand forecasting model started with the topology determination; i.e., the identification of the
most appropriate ANN inputs. Sensitivities of electricity consumption and environmental variables
are conducted using Principal Component Analysis (PCA) and Multi-Regression Analysis (MRA).
The remaining topology parameters such as the number of hidden layers, number of processes in
hidden layers, transfer function types and the training algorithm are found through several parametric
experiments. The topology analysis is carried out for each individual ANN model, followed by model
training and testing. The model is developed and tested on the Irish Smart Grid dataset comprising
monitored electricity consumption data for 18 months.

Results indicate that the prediction of electricity consumption of residential buildings with
children aged up to fifteen is harder than the buildings occupied only by adults. However,
the aggregated electricity demand prediction has a lower prediction average percentage error
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(i.e., less sensitive) compared to the individual buildings. With regards to seasonal predictions, the
average percentage error is lower during winter, while autumn season has the highest average
percentage error. Irregular demand for electricity during autumn may be attributed as the reason.
Since peak demand prediction is critical for the district-level electricity management, greater accuracy
of prediction is important if the district is to incorporate flexibility in management. The accuracy of
the prediction is, therefore, investigated in detail, including the effects of occupancy type and season.
The worst average prediction average percentage error is found as 19.18% during spring for buildings
occupied by children under age of 15. The lowest average percentage error is found as 4.06% with the
building with no children under age of 15 for winter. Further, the lowest average percentage error for
the aggregated electricity consumption is found for winter (4.51%) and the highest average percentage
error (8.82%) is found for spring. The accuracy of the proposed model is highly depending on the
consistency of the data: if the existing data are not very representative, than the accuracy will be lower
than the accuracy of a well-correlated dataset. Since the ANN-based forecasting system is also problem
specific, the scenario changes, which means changes in the dataset, will affect the ANN topology and
configuration even if the inputs and outputs will remain the same. Hence, the generalisation of the
data with ANN is not possible unless the training process with the new problem is conducted with the
proposed methodology.

Research reported in this paper is one of the very few on the importance of social and/or
demographical characteristics on forecasting electricity consumption in the distribution grid. With the
increased penetration of variable renewable energy resources, having an accurate forecasting of
demand at the substation level and below becomes important. The effectiveness of social variables in
predicting average and peak demand is successfully highlighted here; however, the main limitation
is related to the lack of detailed information about fuel poverty. Although the householders’ general
opinion was that the indoor temperature was adequate, it was not clear how and whether fuel
poverty affected their consumption signature. Details on energy expenses, household budgets,
and home level appliances can provide a better estimation, which needs to be explored in future
research. The other challenge was related to the correlation of householders’ opinion with electricity
consumption. Quantitative estimates or measurements of indoor environmental conditions may
ameliorate some of the related limitations. Furthermore, the measurement through the Irish Smart Grid
trial was carried out in 2012; hence, further information about the households’ energy consumption
and relevant social characteristics could not be gathered.

Finally, it is found that ANN-based forecasting solution is performing very well for the district
level energy prediction. This approach is very sensitive with irregular patterns; hence, the selection of
data or pre-processing of the data is the key to reducing estimation errors. However, this approach
may still not be enough to achieve a better solution with ANN on irregular datasets. It may be required
to utilise statistical or other data mining solution to tackle these types of datasets such as predictive
classification algorithms or high-order time series techniques.
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