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Abstract: In this work, a neuro-fuzzy (NF) simulation study was conducted in order to screen
candidate reservoirs for enhanced oil recovery (EOR) projects in Angolan oilfields. First, a knowledge
pattern is extracted by combining both the searching potential of fuzzy-logic (FL) and the learning
capability of neural network (NN) to make a priori decisions. The extracted knowledge pattern
is validated against rock and fluid data trained from successful EOR projects around the world.
Then, data from Block K offshore Angolan oilfields are then mined and analysed using box-plot
technique for the investigation of the degree of suitability for EOR projects. The trained and validated
model is then tested on the Angolan field data (Block K) where EOR application is yet to be fully
established. The results from the NF simulation technique applied in this investigation show that
polymer, hydrocarbon gas, and combustion are the suitable EOR techniques.

Keywords: enhanced oil recovery (EOR); neuro-fuzzy (NF); artificial intelligence (AI); reservoir
screening; neural network (NN)

1. Introduction

The process of selecting potential candidates for enhanced oil recovery (EOR) operation is
a complex task involving integration of a set of rock and fluid parameters governing technical
and economic performance of a reservoir. It is understood that technical evaluation of EOR
techniques is crucial to the success of such projects. However, it is equally important to evaluate the
economic viability of an EOR project development including environmental, commercial, political
and governmental factors [1–3]. Currently, there is no fully established technique for identifying the
potential candidates for EOR operation. Operations are generally based on trial-and error; with reduced
chances of success. In order to increase the chances of success and to make an informed decision,
parameters obtained from either successful EOR field applications or from existing knowledge of the
EOR operation could be effectively utilised. Comparison between these criteria and the reservoir of
interest will provide an indication of the possibility of success for future EOR projects [4]. However,
matching the parameters from the worldwide successful EOR techniques is a challenge from data
mining and screening points of view. This is particularly the case since these parameters may not
necessarily be directly dependent on each other. Several methods have been developed and published
for screening oil reservoirs such as data analysis by using tables and graphs [5–8] and artificial
intelligence (AI) [3,9–13].
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AI in oil industry has long been studied and its development has been relatively mature.
Fuzzy-neural is an important approach in the area of reservoir characterisation in which knowledge
of reservoir performance forecast from well logs can be derived [9]. Chung et al. [10] developed a
fuzzy expert system for EOR risk analysis incorporating preliminary screening EOR methods, the
field performance estimation and economic analysis. The system reduces the requirements of massive
laboratory experiments and field data input. Kamari et al. [3] solved both problems of selecting
appropriate EOR method by using an artificial neutral network (ANN) and an economical EOR
screening model for prediction of cash flows.

A lot of work has been done on the application of artificial intelligence technique in EOR
projects [14–22]. Morel et al. [14] published the screening criteria of the EOR technologies using
347 successful EOR projects worldwide. The study was based on the established analysis through
fuzzy-logic (FL) membership functions (triangular, Z-shaped and S-shaped) and results are promising
compared to the existing commercial software (EORgui). An neuro-fuzzy (NF) approach to screening
reservoir candidates was published [15] by combining the strength of fuzzy technique in searching
data with the learning capability of neural network (NN) to deduce knowledge from analogous to
linguistic rules. 365 successful EOR data set were used to validate and determine the combination of
fluid and rock properties which could best characterise the key parameters that control EOR success.

Kamari et al. [16] presented an AI based on gene expression programming (GEP) for prediction
of CO2—oil minimum miscibility pressure (MMP) at different reservoir temperatures and oil
compositions for live oil. In their work, Chen et al. [17], proposed two types of ANN models;
back-propagation neural network (BPNN) and radial basic function neural network (RBFNN) for CO2

solubility prediction in all types of amine solutions. The models were evaluated by comparing the
results of experimental data with the predicted results of eight numerical models from the literature.
Furthermore, Saeid et al. [18] developed adaptive NF inference system (ANFIS) for the estimation of
solubility of hydrogen in heavy oil. To validate the model, both statistical and graphical methods were
used in the training and testing data sets for the developed model.

Least square support vector machine (LSSVM) technique has been developed to estimate the
interfacial tension (IFT) and MMP in paraffin—CO2 systems [19], permeability of heterogeneous
oil reservoirs [20], and surfactant—polymer flooding performance [21]. The proposed models were
validated by statistical and graphical error analysis. Abouzar et al. [22], presented an ANN by using
cuckoo optimisation algorithm (COA) and teaching learning based optimisation (TLBO) to predict the
pure and impure CO2 MMP.

As can be seen, most researchers on EOR screening have focused on single data point or use
of insufficient number of well data in the models; thereby ignoring the heterogeneity of the fields.
This usually leads to non-linearity of the data for the candidate reservoirs for EOR techniques. Hence,
a multi-layered genetic fuzzy perceptron approach based on ANFIS [23] is used in this study. It is
practical and easy to define constraints for the NF learning procedure, impose the rule of the fuzzy sets
intersection point and minimise and stabilise the error between the training and validation data set [15].

It is our motivation to use NF as an AI tool to identify potential reservoir for EOR candidates.
The model was performed using an in-house code and is capable of generating an automatic rule-base
from successful worldwide database projects, optimising the variables of the fuzzy membership
functions and providing interpretation models. The NF algorithm uses a self-organising technique to
learn and initialise the membership functions of the input and output variables from a set of training
data [24]. This is similar to the work of Zhou and Quek [25] where pseudo outer-product (POP)
learning algorithm was used to identify the fuzzy rules instead of competitive learning [26] adopted
in this paper. The input variables for the NF model consist of training functions (Figure 1) where
the hidden layer nodes are varied in order to obtain the lowest root mean square error (RMSE) and
non-dimensional error index (NDEI). Further details about methods are provided in Section 2.3 below.
This is the first comprehensive study around the country and we believe the model can be used as an
important tool on a technical field and/or reservoir selection.
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Figure 1. Categorisation of the neuro-fuzzy (NF) technique showing combined artificial neutral
network (ANN) and fuzzy-logic (FL) underpinned by adaptive NF inference system (ANFIS).

With the declining production rate within Angolan oil fields, the EOR methods are the most
plausible means of increasing the recovery factor of hydrocarbon left in the ground after conventional
recovery methods. The application of EOR methods in Angola is very necessary but requires
an extensive research, development of a cheap and efficient techniques and more expertise involvement.

The data set used in this study is from 365 multiple successful thermal, miscible gas, chemical
and biological EOR projects worldwide. The field data set, consisting of 2994 Angolan oil field data are
mined and analysed using box-plot technique for Block K which is made up of four (4) areas, 13 fields,
40 reservoirs and 179 wells. The area grouping is based on production allocation associated with
the asset (Figure 2 and Table 1). The results of the NF model can be applied as a preliminary step in
technically evaluating the suitability of a particular EOR technique in Angola or elsewhere.

Figure 2. Schematic diagram of Block K (Angola) showing the areas, fields, reservoirs and wells.
See Table 1 for detailed breakdown of the distribution of the areas, fields, reservoirs and wells for the
Block K.
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Table 1. Detailed breakdown of the distribution of the areas, fields, reservoirs and wells of the
Block K—Angola (Courtesy: Sonangol EP).

Areas Fields Reservoirs Wells

Area 1
X1 7 43
X2 4 10
X3 3 4

Area 2 X4 6 30
X5 5 13

Area 3
X6 3 29
X7 1 13
X8 2 16

Area 4

X9 1 1
X10 1 3
X11 3 6
X12 3 5
X13 1 6

Total 13 40 179

2. The Methodology and Approach

The methodology employed in this study consists of three main steps: data mining, data analysis,
and technical screening of EOR methods by NF algorithm (Figure 3).

Figure 3. NF architecture.

2.1. Data Mining

The data for EOR screening comprises of two categories. The first category is training or validation
data: data derived from laboratories studies, data generated from oil reservoirs simulation, data from
successful worldwide projects. Data from successful worldwide projects are the most reliable category
by the fact that technical and economical capabilities are proved practically [3]. The second category is
the test data from the reservoirs under investigation.

2.2. Data Analysis

In this study, box-plots (Figure 4) were used to represent the distribution of EOR projects against
the oil and reservoir properties. These representations illustrate the distribution of oil property and
reservoir characteristics for the available EOR data set.
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Figure 4. Schematic of box-plot.

The upper limit of the whisker top, represents the maximum value and the lower limit of the
whisker bottom represents the minimum value of the data set. All values out of this range (max-min)
are considered as outliers. The extreme minimum and maximum values could have negative impact
on the EOR criterion; even when the averages are established [7]. The values of both successful EOR
data set and from reservoir of the variable under investigation are plotted in a graph. The following
expression can be used to effectively analyse the observed variables:

[a ∪ b] ∩ [c ∪ d] = f (1)

where a and b are the minimum and maximum of the training data set (e.g., successful EOR); c and d
are the minimum and maximum of the test data set (e.g., Angolan field), and f is the outcome data set
of the investigation. If f is an empty set, then the test variable will be considered unsuitable for the
application process under investigation, hence the Equation (1) becomes:

[a ∪ b] ∩ [c ∪ d] = {} (2)

In summary, the box-plots provide a quick and efficient way to analyse the data, providing basic
information about minimum, maximum, average and range in which the majority of the projects
or data set are concentrated. However, the caveat in the use of box-plot analysis is that, it does not
quantify the degree of uncertainty or consider the weight of each parameter, which requires a robust
system as NF or laboratory test for full investigation.

2.3. Neuro-Fuzzy Technique

The structure of the model is based on five (5) layered feedforward - backpropagation NN
(Figure 5). This structure consists of input, hidden, and output layers. The input layer represents the
input variables, whilst the output layer (defuzzification) represents the output decision signals. For the
defuzzification, centre of gravity (COG) and min of max (MOM) were employed. In the hidden layers,
layer two (2) nodes are functioning as input and output membership functions, and layers three (3)
and four (4) nodes act as fuzzy logic rules AND, OR respectively [15,27,28].
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Figure 5. A typical 5 layer NF framework, Adapted from: [15].

The operation is done in many simple individual processors called neurons. On each layer,
each neuron is connected to the neurons in the proceeding layer by direct links which have their own
special weight [27–29]. Each neuron applies an activation function to its net input to produce its output
after receiving signal from the proceeding neurons, and x represents the input signal to a node [27–29].

The description of the membership functions (MFs) applied in this work is highlighted in
paper [15,30,31] where triangular, trapezoidal and Gaussian membership functions were all tested
and the leftmost and rightmost values were shouldered. The choice was based on specific MFs that
adequately matches the available successful EOR data using minimum error. Full details of the
development of these NF model applied in this work can be found in [15].

During the learning process, the knowledge extracted from the NF system can be expressed in the
form of fuzzy rules by computing weights, number of rules and fuzzy set parameters. These parameters
are computed by machine learning process from the EOR data with the input fuzzy sets determined by
the fuzzy clustering algorithm. The aforementioned parameters can also be determined by engineers
and experts in the field. The back-propagation algorithm developed by [32] is used to tune all
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parameters where the error is propagated from the output towards the input units. The mean square
error is expressed by the Equation (3) [15,27,28]:

E (x̄, d) =
1
2
[ȳ (x̄)− d]2 (3)

w (t + 1) = w (t)− α
∂E [ȳ (x̄) , d; t]

∂w (t)
(4)

where ȳ (x̄) is the desired output and d is the current actual output. α represents a learning rate
coefficient, set in simulations to 0.01 after error validation sensitivity. The (∂E/∂Ec) for the input and
output of the Layer five (5) and two (2) can be determined, respectively as [15]:

∂E
∂w

=
∂E
∂Ec

∂Ec

∂O5

∂O5

∂I5

∂I5

∂w
(5)

∂E
∂w

=
∂E
∂Ec

∂Ec

∂O5

∂O5

∂I5

∂I5

∂O4

∂O4

∂I4

∂I4

∂O3

∂O3

∂I3

∂I3

∂O2

∂O2

∂I2

∂I2

∂w
(6)

Hence, the updated value of w can be determined and the root mean square error (RMSE) and
non-dimensional error index (NDEI) is used to evaluate the predicted error defined as:

RMSE =

√√√√ 1
N

N

∑
i=1

[ȳ (x̄)− d]2 (7)

NDEI =
RMSE
σ (d)

(8)

where ȳ (x̄) is the predicted output, σ(d) is the standard deviation of the target series, i is the data point
that varies from 1 to N. If the NN is successfully trained, it can now be used to predict the suitability
of the test data for the respective EOR technique under investigation.

3. Application of the Techniques in Angolan Oilfields

Angola is producing approximately 1.7 Mbbls/day under primary or secondary recovery
mechanisms. The recovery factor from these mechanisms account for about 30% of the original oil
in place [29,33] and most of the reservoir fields are maturing with production and pressure declining
very rapidly as shown in Figures 6 and 7. Observation of the production and pressure patterns across
a single block (Block K) consisting of 13 major fields suggests that there is a significant decline in
performance. As an example, the reservoir drawdown; which is the primary force driving the fluids
into the wellbore, decreases with time with significant negative impact on the productivity index (PI)
of these wells. Figure 8 shows this trend for wells X6Y13W1 and X7Y29W4. PI for well X6Y13W1 is
61.84 stb/d/psi from 2005 and down to 10 stb/d/psi over a period of five years. Similarly, for well
X7Y29W4, PI decreases from 2.91 stb/d/psi to 1.29 stb/d/psi over a period of ten (10) months in 2011.
These observed trends suggest that there is a need for a mechanism for enhancement to be put in
place. Hence, improving the performance of these wells is a cost-effective way to reverse the negative
production decline trend, extend field life and improve oil recovery.

The term “easy oil” is vanishing in Angola due to the fact that more than 80% of oil production
is from offshore fields and the production is moving towards more remote areas like deepwater and
ultra-deepwater where the extraction of oil or field development is very costly. Angola can still produce
the remaining oil from existing fields by applying new EOR technologies capable of increasing the
recovery factor. Not much work has been published in the area of applied EOR technologies; an
area which requires more research is the identification of suitable techniques that could allow further
extraction of oil beyond primary and secondary recovery.
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Historically, only one deep offshore field case of EOR (i.e., polymer injection) in Dalia/Camelia
fields has been implemented in Angola [14,34–37]. Considering the large number of fields and start of
production activities dated as far back as 1955, Angola can be considered as a potential location for the
implementation of EOR techniques. By applying the EOR recovery techniques, millions of barrels of
oil will be extracted from the existing fields by increasing the recovery factor up to 60% of the oil in
the reservoir [33]. Therefore, screening oil reservoirs can be considered as the first step before an EOR
project implementation in Angola. However, before stating with confidence that the selected EOR
technique will likely be technically successful, additional evaluations such as core analysis, reservoir
simulation and field pilots are required [4].

(a) (b)

(c) (d)

(e) (f)

Figure 6. Pressure profile for wells (a) X6Y13W1; (b) X6Y16W2; (c) X5Y9W3; (d) X7Y29W4; (e) X8Y27W5;
and (f) X9Y38W6. In all cases X indicates the field, Y the reservoir and W the well and the associated
figures signifies the number of the field, reservoir or well in the Block K investigated (Courtesy:
Sonangol EP).
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Production profile for wells (a) X6Y13W1; (b) X6Y16W2; (c) X5Y9W3; (d) X7Y29W4;
(e) X8Y27W5; and (f) X9Y38W6. In all cases X indicates the field, Y the reservoir and W the well
and the associated figures signifies the number of the field, reservoir or well in the Block K investigated
(Courtesy: Sonangol EP).
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Productivity index for wells (a) X6Y13W1; (b) X7Y29W4; (c) X5Y10W17; (d) X5Y11W12;
(e) X5Y11W24; and (f) X7Y24W35. In all cases X indicates the field, Y the reservoir and W the well and
the associated figures signifies the number of the field, reservoir or well in the Block K investigated
(Courtesy: Sonangol EP).

3.1. Data Analysis

The successful EOR data set used in this model is from 365 worldwide successful EOR projects
(Figure 9); divided into ten (10) different EOR techniques such as steam, miscible CO2, miscible
hydrocarbon gas, polymer, combustion, surfactants, nitrates, microbial, hot water and miscible acid
gas. Some techniques from available data set present a number of successful projects that are considered
insufficient for performing advanced statistical test. These techniques which include miscible acid gas,
microbial, hot water, surfactant and nitrates will not be investigated in this current study.
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Figure 9. Successful worldwide enhanced oil recovery (EOR) projects. Successful EOR techniques with
number of projects less than 15 were not analysed and were excluded in training for training accuracy
and efficiency. Data source: [15,38].

Table 2 indicates that oil properties and reservoir characteristics were updated according to the
available data set from the worldwide successful EOR projects and is not intended to present threshold
limits since the range could be affected also by economic constraints and scientific development.

Angola data set was collected from 13 fields (X1, X2, ..., and X13) consisting of reservoir rock and
fluid properties including: reservoir depth, oil API gravity, oil viscosity, rock porosity, rock permeability,
oil saturation, net pay thickness, reservoir temperature, reservoir pressure, formation water salinity and
formation type. These data sets were collected from several reports including well test, geochemistry,
fluid sampling, final well, thermodynamic, geological, Drill stem test (DST) and log interpretation
reports. No carbonates formation type rock was found in the area under investigation. The area under
investigation is an offshore field with water depth greater than 3500 ft and sea bottom temperature
approximately 40 ◦F.

All the mined data are carefully checked for consistency and quality in order to minimise error.
The set of data which were not available are highlighted in Table 3. The box plots were used to identify
possible inconsistency and discrepancies in the data as the accuracy of the model in predicting the
output may be impaired with the presence of outliers [8,39]. Table 4 contains the summary of the
minimum, average and maximum values of the variables associated with the area under investigation
(Block K). Figure 10 shows a single box-plot for the data-set associated with the successfull EOR and
Angolan field for each variable. This is aimed at providing information about the distribution and
alignment of both data-sets.
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Table 2. Attributes of successful enhanced oil recovery (EOR) projects worldwide. Data source: [15,38].

Reservoir Characteristics Oil Properties

Type of EOR Number Formation Depth Porosity Permeability Oil Oil Oil Gravity EOR Prod.
of Projects Type (ft) % (mD) Saturation (%) * Viscosity, (cp) ◦ API (B/D)

Steam
113 sandstone 250–5740 15–39 100–10,000 20–90 18–500,000 8–22 62–86,000
13 unconsolidated sands 175–3150 25–40 300–15,000 48–90 175–200,000 9–25 500–190,000
6 carbonates 550–1500 20–65 1–2000 45–85 26–4000 10–29 25–21,200

Miscible CO2

50 sandstone 1600–11,950 10–28 9–2300 26–77 0.3–3.0 27–45 205–15,000
− unconsolidated sands − − − − − − −
83 carbonates 4000–11,100 4–24 0.1–5000 30–89 0.32–6.0 28–45 25–28,300

Miscible HC
17 sandstone 4000–13,750 8–26 20–1500 25–80 0.3–73 19–41 200–80,000
− unconsolidated sands − − − − − − −
20 carbonates 4040–9150 8–18 3–5000 30–90 0.14–0.83 37–48 10–8810

Polymer
24 sandstone 625–5540 15–34 7–5000 45–82 5–5000 13–34 14–55,000
− unconsolidated sands − − − − − − −
− carbonates − − − − − − −

Combustion
1 sandstone 400–2065 32 650 94 660 19 240
3 unconsolidated sands 3120–3450 28–30 8000–15,000 70–80 100–550 9.8–17 −

11 carbonates 8300–9500 17–20 10–15 50–85 1.4–2 31–38 100–12,733

Surfactants
2 sandstone 625–14,500 12–17 45–50 36–51 0.5–3 27–39 70–350
− unconsolidated sands − − − − − − −
1 carbonates 4800 14 20–60 50 2.6 34 −

Nitrates
1 sandstone 7500–8100 25–30 20–2500 − 0.14 33 8800
− unconsolidated sands − − − − − − −
1 carbonates 2000–3000 50 0.1–1 50 2 30 860

Micorbial
3 sandstone 200–1572 17–26 180–200 54 19–31 23–31.5 −
− unconsolidated sands − − − − − − −
− carbonates − − − − − − −

Hot water
2 sandstone 1350–2100 32–34 1500–2000 15–48 900–3350 12–14 226–1450
− unconsolidated sands − − − − − − −
− carbonates − − − − − − −

Miscible acid gas
− sandstone − − − − − − −
− unconsolidated sands − − − − − − −
1 carbonates 4900 8 10–100 40 0.6–1.5 32–40 1000

Total

213 sandstone − − − − − − −
29 unconsolidated sands − − − − − − −
123 carbonates − − − − − − −
365 − − − − − − − −

* Oil saturation at start-up.
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Table 3. Available data set by field. (Courtesy: Sonangol EP).

Field Depth Net Porosity Permeability Viscosity API Oil Temperature Pressure Water Formation
Thickness Saturation Salinity Type

X1 X X X X X X X X X × X
X2 X X X X X X X X X X X
X3 X X X X X X X X X × ×
X4 X X X X X X X X X × ×
X5 X X X X X X X X X × ×
X6 X X X X X X × X X × ×
X7 X X X X X X X X X × ×
X8 X X X X X X X X X × ×
X9 X × X X X X × X X × ×
X10 X X X X X X X X X × ×
X11 X X X X X X × X X × ×
X12 X X X X X X X X X × ×
X13 X X X X X X X X X × X
X14 X X X X X X X X X × ×
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Table 4. Rock and fluid properties for some of the Angolan oilfields. The area grouping is based on production allocation for the entire reservoir investigated Block K.
(Courtesy: Sonangol EP).

Variables Area 1 Area 2 Area 3 Area 4

Type Number Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Depth (ft) 1011 5510 8107 14,260 6318 7746 12,631 4385 7175 12,382 4370 8052 12,644
51% 37% 5% 7%

API 205 15.9 27.6 42.2 24.6 29.34 37 25.4 31.6 39.6 18.2 28.6 39.7
39% 9% 32% 20%

Viscosity (cp) 146 0.6 1.94 16 0.3 1.4 2.1 0.2 0.96 2.5 0.4 2.5 10.7
43% 11% 25% 21%

Porosity (%) 170 15 26.2 33 14 26.6 35.7 22 29.5 35 15 26.7 38
51% 36% 4% 9%

Permeability (mD) 148 43 1026 4875 1 1224 4870 383 1813.2 3350 108 1079 2100
65% 27% 3% 5%

Oil Saturation (%) 159 54 82 97 33 78 99 71 86.32 95 73 86.14 92
55.4% 35% 3% 6%

Net Thickness (ft) 118 4 58 245 6 121 472 39 133 246 7 79 171
58% 25% 6% 11%

Temperature (◦F) 106 140 168 213 137 157 207 132 184 266 127 157 195
35% 18% 25% 23%

Pressure (Psia) 928 2015 3706 5296 227 3418 4452 2202 3169 5358 2133 3435 5314
53% 37% 5% 5%

Salinity (ppm) 3 180,000 198,333 230,000 0 0 0 0 0 0 0 0 0
100% 0% 0% %0

Formation type ss, s s, ss, cst ss, s ss, s

ss = sandstone, s = sand, cst = claystone.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Reservoir properties distribution vs. EOR methods. (a) Depth; (b) porosity; (c) API;
(d) permeability; (e) viscosity; and (f) saturation. Data source of Worldwide successful EOR: [15,38];
Angolan oilfield data: Sonangol EP.

Besides box-plots, Equations (1) and (2) can also be used for data analysis. As an example,
considering steam as an EOR technique (Tables 2–4 and Figure 10a), the lower and upper limit
of the variable depth for successful projects are 250 and 5740 and for Area 2 are 6318 and 12,631;
[250∪ 5, 740] ∩ [6, 318∪ 12, 631] = {}, which is an empty set. This implies that the depth range
under investigation may not be suitable for steam. On the other hand, for steam as a technique and
oil saturation as a variable for Area 1 (Tables 2–4 and Figure 10f), [20∪ 90] ∩ [54∪ 97] = [54∪ 90],
which means the values within the range of 20 and 90 may be suitable.

3.2. Neuro-Fuzzy Technique

The modelling process consists of three main stages: training, validation and testing. Data was
grouped by variables from each EOR technique (Table 5). The set of options which generates the least
RMSE and NDEI 80% (4/5) of the data set were selected at random for the training and the remaining
20% as the validation (prediction) set. This set of data 20% (1/5); which generates the least RMSE and
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NDEI is used as validation data set for the testing process. 45 runs for each variable and totaling more
than 1350 runs for the six variables of five EOR techniques were generated. Figures A1–A5 summarise
the best selected simulation results. Figure 11 illustrates five options run out of forty five runs of Depth
for steam.

(a) (b)

(c) (d)

(e)

Figure 11. Plots of depth for the weighted training data, prediction data and associated error versus
number of patterns for steam: (a) option 1; (b) option 2; (c) option 3l (d) option 4; and (e) option 5.
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Table 5. Worldwide successful EOR data base by variables. Data source: [15,38].

◦ API Depth (ft) Permeability (md) Porosity (%) Saturation (%) Viscosity (cp)

Steam 145 145 134 145 138 141
CO2 131 130 129 130 107 128

Miscible Gas 37 37 36 37 33 36
Polymer 24 24 24 24 18 21

Combustion 16 16 14 15 15 15
Surfactants * 3 3 3 3 3 3

Nitrates * 2 2 2 2 2 2
Microbial * 3 3 3 3 3 2
Hot water * 2 2 2 2 2 2
Acid gas * 1 1 1 1 1 1

Total 364 363 348 362 321 352

* Techniques not investigated due to insufficient number of successful EOR projects data set.

The test data set (Angolan oilfield data), we used random selection and tested with the already
validated data set from the training process. The results of simulation determines the EOR techniques
suitable for Angolan oilfield according to the methods and variables investigated. Figures A6–A8
summarise the results of the simulation using the Angolan oilfield data set. The sample testing
simulation results for steam are illustrated in Figure 12. However, this is not binary decision operation
and hence the engineering expertise and knowledge from the previous operations in the area will be
invaluable in evaluating the sensitivity of each variable for decision making.

(a) (b)

(c) (d)

Figure 12. Cont.
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(e) (f)

Figure 12. Plots of the weighted testing data, prediction data and associated error versus number of
patterns for steam (Area 1): (a) API; (b) depth; (c) permeability; (d) porosity; (e) saturation; and (f) viscosity.

4. Results and Discussion

The data base from the worldwide successful EOR projects was maximised by tuning the
parameters (number of patterns, epochs, mean and standard deviation) of each variables associated
with each five (5) different EOR techniques; steam, CO2, miscible hydrocarbon gas, polymer and
combustion. Based on the identified patterns reinforced by the available data set, five unique values of
mean and standard deviation were computed. The weight values were added to the results and then
used to predict the degree of success of different EOR projects. The sample size of the available data
becomes crucial to minimise the error and optimise simulation outcome.

In this study, the values of the NDEI and overall RMSE associated with the investigated successful
EOR projects of the training process with corresponding oil and reservoir properties were computed.
Figure A1 shows the NF model for steam matches the predicted depth data with NDEI ranging between
0.04 and 1.8, respectively. The RMSE varies from 40 (minimum) and 1183 (maximum). The best match
(RMSE = 40, NDEI = 0.04) corresponds to option 2 (see Figure 11 and Figure A1). The predicted
or validated data set of this option is then used as predicted set on testing process of the steam
for the depth.

The training process was performed for the other parameters and EOR techniques. The best
results of each training process are summarised in Figures A1–A5. The error computation is critical
to ensure that the NF technique is suitable for the EOR process or technique under investigation.
The developed model performed satisfactorily when run with enough training, verification and testing
data sets. Each of the groups must have equal number of data sets. The degree of suitability of a typical
EOR project obtained from the model prior to full field implementation as well as permits to segregate
more oil properties and reservoir characteristics that could impact on EOR projects. The formation
type is not included the in model. However, this can be determined by screening criteria from the
successful EOR worldwide field data set (Table 2).

Data from Angola reservoir fields was tested against this trained and validated data. Table 4
presents the data of some of the Angolan oil reservoir fields which consists mainly of sandstones
formations. No carbonates reservoir was encountered in the area investigated. Six variables such
as depth, API, viscosity, porosity, permeability, and oil saturation were investigated. EOR methods
such as surfactants, microbial, nitrates, hot water, miscible acid gas (Table 2) were not investigated
due to the reduced number of the sample size. Figure 12 presents a testing process for steam process
resulting from Area 1 of Block K. There is a good matching results for saturation (RMSE = 0.29,
NDEI = 0.018), porosity (RMSE = 0.16, NDEI = 0.053). API matches with RMSE and NDEI of 0.42 and
0.08 whilst , depth (RMSE = 363, NDEI = 0.38), viscosity (RMSE = 1875, NDEI = 0.322), and permeability
(RMSE = 2.25, NDEI = 0.0007). This procedure was performed for the four areas of the Block K (Area 1,
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Area 2, Area 3, Area 4) of the six variables investigated (API, depth, porosity, saturation, permeability
and viscosity) for five EOR techniques (miscible gas, steam, CO2, polymer and combustion) and results
are summarised in Table 6.

Table 6. Simulation results from NF model with the least root mean square error (RMSE) and
non-dimensional error index (NDEI).

Block Area Steam Misc. Gas CO2 Polymer Combustion

Area 1 × X X X X
Scenario 1 Area 2 × X × X X

20 < NDEI ≤ 30% Area 3 X × X X X
Area 4 × X X X X

Area 1 × X × X X
Scenario 2 Area 2 × X × X X

10 < NDEI ≤ 20% Area 3 × × × X X
Area 4 × X × X X

Area 1 × X × X X
Scenario 3 Area 2 × X × X X

NDEI ≤ 10% Area 3 × × × X X
Area 4 × X × X X

X= suitable; × = not suitable.

In order to determine the suitability of a particular technique in EOR project, variables are
considered based on their degree of variance. It is understood that variables such as permeability
can vary by up to 3 or 4 orders of magnitude in a geological formation [40]. Three scenarios were
investigated: (1) the least RMSE combined with 20 < NDEI ≤ 30%; (2) the least RMSE combined
with 10 < NDEI ≤ 20%; (3) the least RMSE combined with NDEI ≤ 10% (Table 6). As this is not
a binary decision operation, engineering knowledge of the process is required in decision making.
As an example, variables like viscosity and depth for thermal process (steam and hot water), pressure
for gas and steam injection, temperature for chemical and hot water are very sensitive and critical [13].
Permeability is not a critical variable for gas injection [5,6]. Based on the available data and the
screening results, the summary of the main results for the investigated techniques are presented in
Table 6 and Figures A6–A8.

Scenario 1, polymer is the most suitable EOR methods for the areas investigated. Combustion is
also suitable, however, due to the reduced number of the successful EOR projects, the results obtained
may need further laboratory test for confirmation before execution. Miscible gas and CO2 are suitable
in three out of four areas, whilst steam is suitable in one out of four areas investigated(Table 6).

Scenarios 2 and 3, the results of polymer, miscible hydrocarbon gas, and combustion remains the
same except for steam and CO2 that are not good candidates, because most of the parameters investigated
present more than 50% NDEI that is not within the range of the investigated variables. However, more
study is recommended for CO2 technique due to its importance in CO2 sequestration (Table 6).

Comparison of Simulation RMSE and NDEI Output with Analytical Method

Figures A10 and A11 show the comparison of the RMSE (Equation (7)) and NDEI (Equation (8)) for
the variables investigated (depth, porosity, API, permeability, viscosity, and saturation). The computed
values for the simulated and analytical calculation are conducted for non-regression and five different
regression methods: linear, exponential, logarithmic, polynomial, and power. The same set of
equations (Equations (7) and (8)) that was used for the model simulation was used to verify
the code analytically. Expectedly, the simulated and analytical calculations matched very well
(Figures A10 and A11).

5. Conclusions

A NF model provides a powerful technical screening tool for reservoir fields within Angola or
around the world. The data set of 365 successful EOR projects from 10 different EOR technologies
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in which five were investigated. Sixteen major oil producing countries were used in the developed
model based on six different reservoir parameters and could be extended to other reservoir parameters.
The model was tested using oil reservoir fields from Angola and can be used to test any data worldwide.

Box plots were used as data analysis and a quick look of technique suitability. However, use of
box-plots do not reflect the degree of suitability or the behaviour of given parameter within the
investigated range. The trained and validated data were used for comparison of simulation RMSE
and NDEI output with five different regression methods; linear, exponential, logarithmic, polynomial,
and power law. The regression models matched the simulation output to varying degrees. The caveat
in the use of regression techniques is that some data points could be potentially excluded during the
fitting process. The non-regression simulation approach adopted in this study, however, allows for
automated error decay with the defined tolerance limit.

The Angolan field reservoirs from Block K under investigation are good candidates for polymer
and combustion, followed by the miscible hydrocarbon gas. The screening methods are simply used to
determine the suitability or chance of success of an EOR technique. Before stating with confidence that
the selected EOR technique will likely be technically successful, additional evaluations such as core
analysis, reservoir simulation and field pilots are required.
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The following abbreviations are used in this manuscript:

NNs Neural Networks
MFs Membership Functions
ANFIS Adaptive-Network-Based Fuzzy Inference System
DST Drill Stem Test
PI Productivity Index
Mbbls/day Millions of barrels per day
POP Pseudo outer-product
HC Hydrocarbon
NDEI Non-dimensional error index
RMSE Root mean square
TSK Takagi and Sugeno
FL Fuzzy-Logic
NF Neuro-Fuzzy
MMP Minimum miscibility pressure
GEP Gene expression programming
BPNN Back-propagation neural network
RBFNN Radial basic function neural network
LSSVM Least square support vector machine
IFT Interfacial tension
COA Cuckoo optimization algorithm
TLBO Teaching learning based optimisation

Appendix A

Appendix A.1. SI Metric Conversion Factor

g/cm3 = ◦ API 141.5/(131.5 + ◦ API)
cp = mPa.s
m = ft × 0.3048
g/L = 1000 ppm
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◦C = ◦F (◦F − 32) × 9/5
KPa = Psi × 6.894757
µm2 = md ×9.869233× 10−4

D = 9.869233 × 10−13 m2

1.E(x) = 1 × 10x

Appendix A.2. Statistical Data of Worldwide Successful EOR Projects

(a) (b)

(c) (d)

(e) (f)

Figure A1. Statistical data plots of worldwide successful steam injection EOR projects for the variables:
(a) API; (b) depth; (c) permeability; (d) porosity; (e) saturation; and (f) viscosity.
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(a) (b)

(c) (d)

(e) (f)

Figure A2. Statistical data plots of worldwide successful CO2 injection EOR projects for the variables:
(a) API; (b) depth; (c) permeability; (d) porosity; (e) saturation; and (f) viscosity.
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(a) (b)

(c) (d)

(e) (f)

Figure A3. Statistical data plots of worldwide successful gas injection EOR projects for the variables:
(a) API; (b) depth; (c) permeability; (d) porosity; (e) saturation; and (f) viscosity.
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(a) (b)

(c) (d)

(e) (f)

Figure A4. Statistical data plots of worldwide successful combustion injection EOR projects: (a) API;
(b) depth; (c) permeability; (d) porosity; (e) saturation; and (f) viscosity.
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(a) (b)

(c) (d)

(e) (f)

Figure A5. Statistical data plots of worldwide successful polymer injection EOR projects: (a) API;
(b) depth; (c) permeability; (d) porosity; (e) saturation; and (f) viscosity.
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Appendix A.3. Statistical of Angolan Oilfields of Block K

(a) (b)

(c) (d)

(e) (f)

Figure A6. Statistical data plots of steam, CO2, combustion, miscible gas and polymer injection for
Area 1 of the Angolan oilfield (See Table 4 for the area clarification). Variables include: (a) API; (b) depth;
(c) permeability; (d) porosity; (e) saturation; and (f) viscosity.
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(a) (b)

(c) (d)

(e) (f)

Figure A7. Statistical data plots of steam, CO2, combustion, miscible gas and polymer injection for Area
2 of the Angolan oilfield (See Table 4 for the area clarification). Variables include: (a) API; (b) depth;
(c) permeability; (d) porosity; (e) saturation; and (f) viscosity.
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(a) (b)

(c) (d)

(e) (f)

Figure A8. Statistical data plots of steam, CO2, combustion, miscible gas and polymer injection for
Area 3 of the Angolan oilfield (See Table 4 for the area clarification). Variables include: (a) API; (b) depth;
(c) permeability; (d) porosity; (e) saturation; and (f) viscosity.
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(a) (b)

(c) (d)

(e) (f)

Figure A9. Statistical data plots of steam, CO2, combustion, miscible gas and polymer injection for
Area 4 of the Angolan oilfield (See Table 4 for the area clarification). Variables include: (a) API; (b) depth;
(c) permeability; (d) porosity; (e) saturation; and (f) viscosity.
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Appendix A.4. RMSE and NDEI Comparison between the Results from Simulation and Analytical
Calculated Values

(a) (b)

(c) (d)

(e) (f)

Figure A10. RMSE comparison between the results from simulation and analytically calculated values
for steam (Area 1): (a) API; (b) depth; (c) permeability; (d) porosity; (e) saturation; and (f) viscosity.
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(a) (b)

(c) (d)

(e) (f)

Figure A11. NDEI comparison between the results from simulation and analytically calculated values
for steam (Area 1): (a) API; (b) depth; (c) permeability; (d) porosity; (e) saturation; and (f) viscosity.
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