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Abstract: Lithium ion (Li-ion) batteries work as the basic energy storage components in modern
railway systems, hence estimating and improving battery efficiency is a critical issue in optimizing
the energy usage strategy. However, it is difficult to estimate the efficiency of lithium ion
batteries accurately since it varies continuously under working conditions and is unmeasurable via
experiments. This paper offers a learning-based simulation method that employs experimental data
to estimate the continuous-time energy efficiency and coulombic efficiency of lithium ion batteries,
taking lithium titanate batteries as an example. The state of charge (SOC) regions and discharge
current rates are considered as the main variables that may affect the efficiencies. Over eight million
empirical datasets are collected during a series of experiments performed to investigate the efficiency
variation. A back propagation (BP) neural network efficiency estimation and simulation model is
proposed to estimate the continuous-time energy efficiency and coulombic efficiency. The empirical
data collected in the experiments are used to train the BP network model, which reveals a test error of
10−4. With the input of continuous SOC regions and discharge currents, continuous-time efficiency
can be estimated by the trained BP network model. The estimated and simulated result is proven to
be consistent with the experimental results.

Keywords: lithium titanate battery; energy efficiency; coulombic efficiency; back propagation (BP)
neural network; continuous-time efficiency estimation

1. Introduction

Lithium ion (Li-ion) batteries exhibit better performance with regard to energy density [1,2],
power density [3], life cycle [4], operating temperature range [5], and safety [6,7] when compared with
other types of rechargeable batteries, such as lead-acid batteries [8], nickel-cadmium batteries [1,9],
and nickel-metal hydride (Ni-MH) batteries [2]. Due to these advantages, lithium ion batteries are
widely used as basic energy storage components in transportation applications [10–12]. Furthermore,
in modern railway applications, safety, high power density, and high efficiency are commonly
required [13–17] characteristics of energy storage components. Traditional lithium ion batteries
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with graphite anodes can be damaged, or even explode, due to thermal runaway caused by high
internal temperatures or short circuit [18]. However, the lithium titanate battery, a novel lithium-ion
battery that uses an alternative anode material (Li4Ti5O12 instead of graphite) [19], is proposed to
be highly safe, since its internal resistance rises sharply during thermal runaway, thus preventing
explosion. Lithium titanate batteries also present more significant advantages, including higher power
density and longer life cycles, compared with traditional graphite anode lithium batteries [10,20–22].
Due to these advantages, lithium titanate batteries are appropriate to serve as the basic energy storage
components in modern railway systems.

In modern railway applications, energy efficiency is also an important aspect used to estimate
the performance of lithium ion batteries in recent studies [23–26], since higher efficiency means
more energy savings and reduced costs. Determining how to optimize the battery usage strategy by
improving the energy efficiency during the working process is the key issue for managing energy
usage in modern railway applications. However, the efficiency varies in real-time according to various
working conditions and the continuous-time efficiency is unmeasurable via experiment. Hence, how
to estimate the continuous-time efficiency becomes a critical question in order to evaluate and improve
the battery’s performance during different working conditions.

Several existing studies have focused on battery efficiency. Energy efficiency is defined as the
ratio between discharged electrical energy and charged electrical energy, which is used to evaluate
the energy loss. Coulombic efficiency is defined as the ratio between discharge and charge capacity,
which is a critical parameter to evaluate the battery performance. An improved method to calculate
energy efficiency for rechargeable batteries was proposed in [25]. Liu et al. [27] used a theoretical
calculation method to provide a calculation result on energy conversion efficiency of lithium titanate
batteries with different discharge current rates. In practical applications, the energy efficiency of a
battery may vary compared to the theoretical assumptions because the energy efficiency of the battery
is also affected by its working conditions. Some scientists also studied the relationship between the
state of charge (SOC) and the battery efficiency. The function of SOC and charge efficiency was studied
in [28] and the correlation between SOC and coulombic efficiency was studied in [29]. Kang et al. [30]
established the quantitative relationship between open circuit voltage (OCV) and SOC of batteries
in order to calculate the energy efficiency of Ni-MH and Li-ion batteries, which provided effective
guidance for building basic testing procedures in the energy efficiency study of lithium ion batteries.

The former studies have defined the energy efficiency and coulombic efficiency, as well as
established the relationship between the SOC and efficiency. However, continuous-time energy
efficiency estimation of the batteries during their working processes has not been studied, and this
issue is important and useful for monitoring the real-time performance of the batteries.

This research aims at building a simulation model to estimate continuous-time energy efficiency
and coulombic efficiency. An artificial neural network (ANN), a learning-based prediction model that
imitates the structure and function of human brain cells, is employed as the basic model. In previous
research, artificial neural networks have been widely used to estimate, evaluate, and predict results
based on input data [31]. In battery research, this method has been employed to estimate battery
SOC [32–38], state of health [39], and surface temperature [40].

In this paper, the effect of SOC regions and discharge current rates of lithium titanate batteries on
energy efficiency and coulombic efficiency are studied. Normally, charge current, discharge current,
and the SOC region are the basic variables that may be considered to affect efficiency, while in actual
applications in the field, the batteries are charged under standard mode (without considering the
energy recycle during working process). Thus, in this research, we consider the charge current as a
fixed variable; meanwhile, discharge current and the SOC region are the main variables that may be
considered to affect the efficiency. Ultimately, a data-driven, learning-based estimation and simulation
method is proposed to estimate continuous-time energy efficiency and coulombic efficiency of lithium
titanate batteries. The estimation and simulation model is developed by learning from experimental
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data, which can also be analogously used in applications involving other types of lithium ion batteries
and help to manage the batteries’ performance under high-efficiency conditions.

This paper is organized as follows: Section 2 presents the theoretical calculation method for the
energy efficiency and coulombic efficiency of lithium ion batteries; Section 3 offers basic information
about the experiments and lists the properties of the lithium titanate batteries used in this research;
Section 4 shows the experimental results of efficiency variation based on different SOC regions and
discharge current rates when batteries are fully charged and not fully discharged; in Section 5, the
experimental results of efficiency variation when the batteries are fully discharged and not fully
charged are presented; Section 6 shows the BP network continuous-time efficiency estimation model
and, in the final part of this section, the estimated efficiency is proven to be consistent with the
experimental results.

2. Efficiency of Lithium Titanate Battery

2.1. Energy Efficiency

Energy efficiency is an important parameter used to evaluate the performance of various
batteries [12]. In general, the definition of energy efficiency is the ratio between discharged electrical
energy and charged electrical energy, which can be expressed with the following equation [8]:

ηE =

∫
(UI)dischargedt∫
(UI)chargedt

(1)

where U and I refer to the battery voltage and current during discharge and charge, respectively.
Equation (1) expresses the efficiency of the whole process while, in order to distinguish the charge
efficiency and the discharge efficiency, a new method to calculate the energy efficiency of the two
distinct processes is proposed in [25]. In their research, SOC is utilized to calculate the energy. The
charge energy and discharge energy can be expressed, respectively, as follows:

Qcharge =
∫ SOC(t1)

SOC(t0)
UchargeCndSOC (2)

Qdischarge =
∫ SOC(t1)

SOC(t0)
UdischargeCndSOC (3)

Equations (2) and (3) refer to the charge and discharge energy, where Ucharge and Udischarge are the
voltage of the battery during charge and discharge; SOC(t0) and SOC(t1) are the initial and terminal
SOC of the battery, respectively. Cn is the nominal capacity of the battery which is distinguished
between battery cells. In this research, Cn is the recorded charge capacity when a fully discharged
battery cell is charged at 1C current rate following the constant voltage of 2.8 V until the charge current
rate is less than 0.1C. The definition of SOC [41] is presented in Appendix A.

In order to distinguish the charge efficiency and the discharge efficiency, net energy is introduced
into the calculation, which is defined as the energy accumulated inside the battery [25]. To avoid the
effect of polarization resulting from the charging/discharging process, in the definition of net energy,
Ucharge/Udischarge is replaced by the open circuit voltage (UOCV):

∆Qn =
∫ SOC(t1)

SOC(t0)
UOCVCndSOC (4)

In Equation (4), ∆Qn refers to the net energy; UOCV refers to the open circuit voltage. The definition
of charge efficiency and discharge efficiency are presented in Appendix A. In this paper, the method
proposed by [25] is introduced to calculate the energy efficiency with the following equations:
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ηbattery = ηcharge × ηdischarge =
Qdischarge

Qcharge
(5)

Equation (5) shows that the battery efficiency is the ratio of the discharge energy and the charge
energy, where ηcharge and ηdischarge are the charge and discharge energy efficiency, respectively, which
are presented in Appendix B.

2.2. Coulombic Efficiency

High coulombic efficiency results in a highly available capacity, long cycle life, and high energy
efficiency of the battery [3,4]. The most common definition of the coulombic efficiency is the ratio
between the number of electrons when discharged and charged for a particular cycle [5], which is
presented in the following form [6,7]:

ηcoulombic =
Cdischarge

Ccharge
(6)

where Cdischarge and Ccharge represent the discharge and charge capacity, respectively.
During a charge-discharge cycle, the capacity can be expressed as the integral the of

discharge/charge current curve when a specific charge and discharge current are applied. Thus,
the coulombic efficiency can be calculated as follows:

ηcoulombic =

∫
Idischargedt∫
Ichargedt

(7)

3. Basic Information about the Experiment

As shown in Figure 1, the experimental platform consists of the lithium titanate battery test
samples, a constant climate chamber which can balance the temperature at 25 ± 2 ◦C, an Arbin BT2000
battery test system (Arbin Instrument, lush Brazos Valley, TX, USA) to charge and discharge the battery,
and a PC with Arbin software (Arbin Instrument) to monitor the testing procedure and store data.
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Figure 1. Experimental platform of the lithium titanate batteries.

The test samples used in this research are the lithium titanate batteries whose alternative anode
material is Li4Ti5O12. The nominal voltage of the test samples is 2.3 V and the nominal capacity is
8.5 Ah. The main properties of the batteries are listed in Table 1.
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Table 1. Properties of the 8.5 Ah lithium titanate batteries.

Property Parameter

Nominal voltage 2.3 V
Nominal capacity 8.5 Ah

Mass energy density 75 Wh/kg
AC internal resistance ≤0.6.mΩ

Life cycle ≥10,000 times
Power density ≥2000 W/kg

Max charge voltage 2.8 V
Min discharge voltage 1.5 V
Working temperature −20–60 ◦C

Li4Ti5O12 material has no structural change during the charge/discharge process, and as such, it
is also called a zero-strain insertion material [42,43]. It offers a flat operating voltage around 2 V [42,44].
Figure 2a shows the activation process of the batteries. During the whole testing process, the batteries
were put inside a constant climate chamber under a constant temperature of 25 ◦C. The working
voltage of the lithium titanate batteries was between 1.5 V and 2.8 V. During the process, the batteries
were fully charged with a constant current of 1C (1C equals 8.5 A) following the constant voltage
of 2.8 V. Then, an hour of rest time between the charge process and discharge process enabled the
batteries to reach chemical equilibrium. After that, the batteries were discharged with a constant
current of 1C to 0% SOC. Figure 2b zooms in on the discharge process, with the discharge from 100%
to 10% SOC, the voltage slightly drops down from 2.6 V to 2.3 V, and when the SOC is below 10%, the
voltage reaches a catastrophic point and drops dramatically to 1.5 V.
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4. Efficiency Test When Fully Charged and Not Fully Discharged

Considering the sharp drop in voltage when the SOC was extremely low, the batteries were
initially tested under a moderately stable condition, in which the minimum SOC of the batteries was
over 10%. Two main variables, the SOC region and the discharge current, were taken into consideration.
The SOC regions of the testing cycle were [100%, 10%], [100%, 20%], [100%, 30%], and [100%, 40%],
respectively. For each SOC region, the batteries were discharged under different discharge current
rates from 1C to 11C, which covered the majority of the required discharge current rates of the power
system in electric vehicles.

4.1. Test Cycle

Before the test procedure began, the batteries were fully charged/discharged over 10 cycles for
activation as presented in Figure 2. In the testing cycle, every test cycle was repeated three times for
each battery. In order to reduce the testing error, the average efficiencies obtained by the same test
cycles were used to train the final model.
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A procedure to minimize the polarization was needed at the beginning of each test cycle, which
repeated the process of activation. After this procedure, the batteries were prepared for the following
testing process. In the testing process, the batteries were fully charged with a constant 1C current rate
to 2.8 V following the constant voltage of 2.8 V. Then, an hour of resting time was needed to ensure
that the batteries return to chemical equilibrium. After that, the batteries were discharged with the
chosen constant current rate to the specific SOC according to each testing SOC regions, followed by
another one hour of resting time. In order to make sure the battery cells were fully discharged before
the next step, another 1C-rate discharge to 0% SOC was needed, and after one hour-resting time to
minimize the polarization effect, the next test cycle was ready to be launched.

4.2. Result Analysis

Figure 3 shows the efficiency results under different SOC regions and discharge current rates.
Figure 3a,b compares the energy and coulombic efficiency of the batteries for the non-fully discharged
cycles with one full discharge cycle (a cycle works between 100% and 0% SOC). From Figure 3a,b,
obvious differences can be observed for the [100%, 0%] SOC cycle, which shows a large decrease both
in energy efficiency and coulombic efficiency when compared to the non-fully discharged curves.
Considering the relationship between SOC and the battery’s internal resistance, when the battery is
nearly fully discharged, only a small trace of electrochemical reactions occur inside the battery, and the
internal resistance rises sharply in an extremely low SOC. According to the results shown in Figure 3a,b,
this phenomenon results in a 5%, or greater, loss of the energy efficiency and coulombic efficiency.
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Figure 3c,d zoom in the efficiency results when the batteries were not fully discharged, which
cycles in the [100%, 10%], [100%, 20%], [100%, 30%], and [100%, 40%] SOC regions. All of these cycles
were launched over 10% SOC where the batteries were operating around 2.45 V, according to Figure 2.
The results in Figure 3c demonstrate that the energy efficiency-discharge current rate curve varies
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linearly. Most of the energy loss is caused by thermal consumption of internal resistance. Due to
the stable internal resistance with improved current rates, the energy efficiency drops linearly from
97–98% to 90–91% when the discharge current rates increase from 1C to 11C. In comparison with the
cycles in different SOC regions, there is only a slight increase in the internal resistance when the cut-off
SOC declines, so the energy efficiency decreases when the cut-off discharge SOC is lower, while the
variation of efficiency is limited to less than 1%. Figure 3d reveals that the coulombic efficiencies of
these tests are all over 99%, indicating that the batteries are working well under test conditions in
which they are not fully discharged.

5. Efficiency Test When Fully Discharged and Not Fully Charged

Next, the situation when the charge time is limited and the batteries are not being fully charged
before coming into service was considered. In this part of experiment, the batteries were tested when
not fully charged to 100% SOC and fully discharged to the cut-off voltage of 1.5 V. The SOC regions
of the testing cycle were [100%, 0%], [95%, 0%], [90%, 0%], [85%, 0%], and [80%, 0%], respectively.
For each SOC region, the batteries were discharged under different discharge current rates from 1C
to 11C.

5.1. Test Cycle

Similar to the test cycle in Section 4.1, activation and minimum polarization procedures were
also needed. During the testing process, the batteries were charged with a constant 1C current rate
to the maximum SOC of each test. Then, an hour of resting time was needed to make sure that the
batteries return to chemical equilibrium. After that, the batteries were fully discharged to 0% SOC
with the chosen constant current rate followed by one hour of resting time. In order to minimize the
polarization effect for the next step, another 1C-rate discharge to 0% SOC was needed. After one hour
of resting time, another test cycle was able to be launched.

5.2. Result Analysis

Figure 4 represents the energy and coulombic efficiency of the cycles in the [100%, 0%], [95%, 0%],
[90%, 0%], [85%, 0%], and [80%, 0%] SOC regions. In Figure 4a, due to the effect of internal resistance,
energy efficiency drops when discharge current rates increase while, in comparison with the non-fully
discharged condition, the energy efficiency drops from 97–98% to 80–87% (the non-fully discharged
curves are all over 90%). The energy loss of each cycle is much lower when the cut-off charge SOC is
higher. As for the coulombic efficiency in Figure 4b, they decrease to 93–96%, which are much lower
than the non-fully discharged conditions in Figure 4b. The 100–0% SOC cycle presents the minimum
coulombic efficiency among all of the SOC region cycles. In contrast to the energy efficiency, when the
cut-off SOC region decreases, the coulombic efficiency rises.

Energies 2017, 10, 597 7 of 15 

 

5. Efficiency Test When Fully Discharged and Not Fully Charged 

Next, the situation when the charge time is limited and the batteries are not being fully charged 
before coming into service was considered. In this part of experiment, the batteries were tested when 
not fully charged to 100% SOC and fully discharged to the cut-off voltage of 1.5 V. The SOC regions 
of the testing cycle were [100%, 0%], [95%, 0%], [90%, 0%], [85%, 0%], and [80%, 0%], respectively. 
For each SOC region, the batteries were discharged under different discharge current rates from 1C 
to 11C. 

5.1. Test Cycle 

Similar to the test cycle in Section 4.1, activation and minimum polarization procedures were 
also needed. During the testing process, the batteries were charged with a constant 1C current rate to 
the maximum SOC of each test. Then, an hour of resting time was needed to make sure that the 
batteries return to chemical equilibrium. After that, the batteries were fully discharged to 0% SOC 
with the chosen constant current rate followed by one hour of resting time. In order to minimize the 
polarization effect for the next step, another 1C-rate discharge to 0% SOC was needed. After one hour 
of resting time, another test cycle was able to be launched. 

5.2. Result Analysis 

Figure 4 represents the energy and coulombic efficiency of the cycles in the [100%, 0%], [95%, 
0%], [90%, 0%], [85%, 0%], and [80%, 0%] SOC regions. In Figure 4a, due to the effect of internal 
resistance, energy efficiency drops when discharge current rates increase while, in comparison with 
the non-fully discharged condition, the energy efficiency drops from 97–98% to 80–87% (the non-fully 
discharged curves are all over 90%). The energy loss of each cycle is much lower when the cut-off 
charge SOC is higher. As for the coulombic efficiency in Figure 4b, they decrease to 93–96%, which 
are much lower than the non-fully discharged conditions in Figure 4b. The 100–0% SOC cycle 
presents the minimum coulombic efficiency among all of the SOC region cycles. In contrast to the 
energy efficiency, when the cut-off SOC region decreases, the coulombic efficiency rises. 

 

(a) (b) 

Figure 4. Energy and coulombic efficiency results of fully discharge/non-fully charge cycle: (a) energy 
efficiency and (b) coulombic efficiency in the SOC regions of 100–0%, 95–0%, 90–0%, 85–0%, and 80–
0%. 

6. BP Network Continuous-Time Efficiency Estimation Model 

From the definition of efficiency in the Section 2, efficiency can be tested only when the charge 
process and the discharge process are applied within the same SOC region. In order to measure and 
compare the efficiency under different conditions, in each test cycle of Sections 4 and 5, 
charge/discharge current rates were fixed to make sure that all the variables are fixed during each 
testing process. In real applications the discharge current may vary in continuous time which makes 
it such that the efficiency is unable to be tested by the experimental method presented in Sections 4 
and 5. Since monitoring the efficiency in continuous time can be helpful for managing battery 

Figure 4. Energy and coulombic efficiency results of fully discharge/non-fully charge cycle: (a) energy
efficiency and (b) coulombic efficiency in the SOC regions of 100–0%, 95–0%, 90–0%, 85–0%, and 80–0%.



Energies 2017, 10, 597 8 of 15

6. BP Network Continuous-Time Efficiency Estimation Model

From the definition of efficiency in the Section 2, efficiency can be tested only when the
charge process and the discharge process are applied within the same SOC region. In order to
measure and compare the efficiency under different conditions, in each test cycle of Sections 4 and 5,
charge/discharge current rates were fixed to make sure that all the variables are fixed during each
testing process. In real applications the discharge current may vary in continuous time which makes it
such that the efficiency is unable to be tested by the experimental method presented in Sections 4 and 5.
Since monitoring the efficiency in continuous time can be helpful for managing battery performance,
an estimation method is necessary to simulate the battery efficiency in continuous time. This part
presents a back propagation neural network model to estimate the continuous-time lithium ion battery
efficiency based on the data collected in the aforementioned experiments.

6.1. BP Network

An artificial neural network is a learning-based prediction system which imitates the structure
and function of human brain cells. It has been applied to study technologies in biology, physics,
electronics, mathematics and computers. Due to its excellent capability for non-linear mapping and
self-learning [45], it has a very broad application prospects.

A common feed-forward type of ANN usually consists of three types of layers: the input layer,
the hidden layers and the output layer. The units of each layer perform a biased weighted sum of their
inputs and transfer this activation through a transfer function to create outputs. In the network, units
are arranged in a layered feed-forward topology [46].

In 1986, Rumelart [47] proposed an algorithm called the back-propagation network, as shown in
Figure 5, in which the training data are propagated backwards minimizing the error by tuning the
parameters of the ANN [47]. Due to the limitations of calculation technology when the BP algorithm
was developed, it was not widely used. In recent years, with rapid developments in computer science,
the BP network has been widely employed for training multilayer connectionist learning systems with
nonlinear activation functions, where such systems include a forward-propagating data stream and
error signal anti-propagation [48].
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Based on the data collected in the experiment, a BP neural network is proposed to estimate and
simulate the battery efficiency under continuous-time working conditions with given discharge current
rates and SOC regions. During the testing process, as a constant climate chamber is used to balance
the temperature at 25 ± 2 ◦C. In this research, we consider temperature as a fixed variable.
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In the simulation study, a BP network was established to predict the efficiency under different
working conditions. Figure 6 shows the structure of the BP network used for simulation. In the BP
network, three properties including the discharge current rate, the maximum SOC, and the minimum
SOC of each SOC region, are required. Energy efficiency and coulombic efficiency are the two outputs
of the system.Energies 2017, 10, 597 9 of 15 
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6.2. A Data-Driven Learning-Based System

6.2.1. Collecting Data

Figure 7 shows the experimental results of Sections 4 and 5, which shows the comprehensive
relationship among discharge current rate, SOC region, and efficiency. During the test procedure of
Sections 4 and 5, in order to limit testing error, the data collected from three 8.5 Ah lithium titanate
batteries were used as the control group. For each different testing cycle, three of the same cycles were
tested for each battery to ensure reliability of the results. The data were collected every second at a 1C
rate and every 0.1 s if the discharge current rate was greater than 1C. During the whole process, over
eight million datasets were collected which were in turn used to train the BP network.
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6.2.2. Learning-Based System Training

In the training process, a maximum of 2000 training iterations with an error tolerance of less
than 10−4 were required. Figure 8a shows that at the 1757th iteration of the training procedure,
the mean squared error reached the error tolerance of 10−4. Figure 8b shows the linear regression
relationship between the output value and the target, which has an R-squared value of 0.972, further
demonstrating the reliability of the training procedure. Figure 8c shows that the gradient of the error
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function decreases to approximately zero during the training process, which demonstrates that the
error remains in an extremely low level after 100 iterations of training.
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6.3. Continuous-Time Efficiency Estimation

To estimate the continuous-time efficiency, two basic assumptions are proposed to define a real
working process. First, the entire real-time working process is divided into small-sized continuous SOC
regions which can have different lengths. Second, the discharge current rates remain constant within
each SOC region. With the defined working process, we used the trained BP network to estimate the
efficiency of each SOC region. If the length of each SOC region is much smaller, more precise results
can be obtained.

6.3.1. An Example of Efficiency Estimation

Figure 9 shows an example of a given working process. As presented in Figure 9a, the real-time
working cycle was divided into 20 continuous SOC regions; within each region, the current was
assumed to be constant. A continuously discharge working cycle without recharging process was
designed to testify the result. The working cycle contains discharge current rates from 1C to 11C,
which covers the cases in the experiments, and the discharge SOC region is [100%, 10%], within which
the battery works at high coulombic efficiency. Figure 9b demonstrates the estimated result of energy
efficiency and coulombic efficiency of the working condition in Figure 9a using the given BP network.
The simulation results reveal that during the working process, the coulombic efficiency is high and
exceeds 98%, and the energy efficiency varies from 90% to 98%, which shows consistent results with
the previous tests.
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working conditions.

6.3.2. Model Verification

In order to test the accuracy of the BP network continuous-time efficiency estimation model, an
experimental test with the same discharge process as shown in Figure 9a was conducted in order to
obtain the experimental efficiencies. The charge process and discharge process of the test are presented
in Figure 10. During the testing process, initially, the batteries were fully charged with a constant 1C
current rate following the constant voltage of 2.8 V; they were then discharged as shown in Figure 9a.
When calculating the efficiencies, the energy/capacity growth within each SOC region during the
charge process was used as the denominator, and the decrease in energy/capacity within each SOC
region was used as the numerator.
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Figure 11 shows the comparison between experimental and simulation results. Figure 11a directly
displays the differences between the estimated efficiencies and the experimental efficiencies. Figure 11b
illustrates that the relative error of the estimated coulombic efficiency is less than 0.8% and the relative
error of the estimated energy efficiency is between −0.7% and 0.8%. Therefore, in this case, the
proposed model can be used to help estimate and simulate the energy and coulombic efficiency within
1% accuracy.
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In order to overcome the difficulties of measuring the continuous-time efficiency of batteries in
experiments, especially when the working current changes continuously, the minimum size of SOC
regions with constant currents should be applied to approximately describe a continuously changing
discharge process. Thus, this method is able to estimate the continuously changing curves of energy
efficiency and coulombic efficiency during a varying working process.

7. Conclusions

In this research, the continuous-time energy efficiency and coulombic efficiency of lithium titanate
batteries were studied based on different SOC regions and discharge current rates. The experimental
results showed the energy efficiency and coulombic efficiency variation in different SOC regions
and varying discharge rates. Based on the empirical data, a BP network continuous-time efficiency
estimation and simulation model was proposed to evaluate the energy efficiency and coulombic
efficiency of the lithium titanate battery. The estimation model revealed an error of 10−4 during the
training process and further showed limited error with the verification test.

This continuous-time efficiency estimation method enables insight into valuable information about
efficiency variation during continuously-changing working conditions, which is conducive to enable
comparison of efficiency curves under different working processes. The results can further be used to
help manage and improve battery usage strategies. The efficiency test and prediction method proposed
in this paper can also be used to simulate the efficiency of other types of batteries. The effect of external
temperature on the battery efficiency, as well as effects of many other variables, needs to be considered
to enhance the accuracy of the estimation model. In modern railway applications, this research can be
used to optimize energy usage strategies by evaluating and improving battery efficiency.
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Appendix A

State of charge (SOC):

SOC(t) = SOC(0)−
∫

Idt
Cn

(A1)
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The Equation (A1) presents the method to calculate the state of charge, where I refers to the
discharge current and Cn is the nominal capacity of the battery [41,49,50].

Appendix B

Charge efficiency:

ηcharge =
∆Qn

Qcharge
(A2)

Discharge efficiency:

ηdischarge =
Qdischarge

∆Qn
(A3)

Battery efficiency:

ηbattery = ηcharge × ηdischarge =
∆Qn

Qcharge
×

Qdischarge

∆Qn
=

Qdischarge

Qcharge
(A4)

The Equations (A2) and (A3) show that the charge efficiency is the rate of net energy and charge
energy, and the discharge efficiency equals to the rate of discharge energy and net energy. The net
energy is defined in Equation (2) as ∆Qn =

∫ SOC(t1)
SOC(t0)

UOCVCndSOC. Equation (A4) reveals the battery
efficiency is the ratio of the discharge efficiency and the charge efficiency [9,25].
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