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Abstract: This study proposes an effective method to inspect inaccessible nuclear power reactor
head nozzles using interface waves that propagate along the shrink fit boundary of a reactor head.
The reactor head is relatively thick, which makes it difficult to inspect from the outside by conventional
ultrasonic testing. However, interface waves can propagate a long distance from a fixed transducer
position. The inside of the nuclear reactor has limited access due to the high radiation, so the
transducers are located outside the nuclear reactor head, and interface waves propagate into the
nuclear reactor to detect defects. A numerical simulation and experiments were carried out to validate
the method. Various defect cases that simulate field failures are also presented, and the proposed
technique shows satisfactory defect classification.

Keywords: nuclear facility; ultrasonic interface wave; defect detection; nondestructive testing; finite
element method; inaccessible nozzle

1. Introduction

For their safe operation it is very important to monitor the conditions of nuclear power plants
efficiently and to detect defects. Traditionally, to prevent failures schedule-based maintenance
was performed to inspect nuclear power facilities, however, inspection schemes are moving away
from schedule-based maintenance toward condition-based maintenance (CBM). Condition-based
maintenance is defined as maintenance when a need arises. The maintenance is performed
based on a structure’s condition in which defects are identified or grow beyond some standard.
Ideal condition-based maintenance allows minimizing the cost of storing spare parts, system downtime
and time spent on maintenance. For condition-based maintenance inspections, a proper diagnostic
method and real time data collection are needed for each component. Currently the nuclear power
system industry still relies on following schedule-based maintenance, but we anticipate that CBM will
be applied in nuclear power facilities sooner or later. The risk of failure due to defects has increased
due to the long-term use of nuclear power plants. Proper inspection methods for defect identification
and monitoring defect growth are needed for the safety diagnosis and life prediction for the main
equipment in nuclear power plants.

There are several ways of diagnosing plant conditions. First, diagnostic tests to classify candidate
anomalies are repeated until an anomaly is identified. Second, an assumption about the nature of
a detected anomaly is made, and confirmed by tests. Third, a standard set of diagnostic tests is applied,
and the anomaly is diagnosed [1]. Recently, nuclear power facility safety issues have become of
great concern to people. The sizes and shapes of nuclear power plant components usually do not
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follow standard commercial specifications. Standard pipes have suitable inspection methods such
as long range ultrasonic testing (LRUT), ultrasonic testing (UT) and phased array ultrasonic testing
(PAUT). Transducers and inspection systems based on those methods are commercialized for standard
sized pipelines. Therefore, unique inspection methods and systems are required to meet the high
safety demands of nuclear power plants. Currently nuclear power plant inspection is performed
using regular schedule-based maintenance systems. Ultrasonic non-destructive evaluation (NDE) is
employed periodically on nuclear reactors and nozzle welds to inspect any defects or defect growth
during periodic overhaul periods. The need for continuous online monitoring for stability safety checks
has increased. To accomplish online monitoring of a nuclear reactor, radiation hardened materials
and wireless communication under high temperature and radiation condition must be developed.
However, achieving the purpose of online monitoring for nuclear power plant components still has
a long way to go. Recently, PAUT was employed for precise defect detection and sizing [2]. Nuclear
power plant components inspection by LRUT such as nuclear power plant valves [3,4], pipes [5–10] and
steam generator tubes [11–14] has been reported. Control element driving mechanism (CEDM) nozzles
are attached to and penetrate through the reactor head. However, the reactor head is relatively thick,
which makes it difficult to inspect it from the outside of the reactor to monitor the weld conditions
inside the reactor by conventional UT due to the signal attenuation. Reactor head nozzles are generally
inspected by conventional UT during the in-service inspection (ISI) period from inside of the nuclear
reactor with a remote robot system due to the high radiation [15–20]. Remote robot systems are a good
solution for weld inspections on reactor nozzles, but this method is only possible during ISI, so an
alternative inspection method for condition-based maintenance is proposed in this paper.

The penetrated nozzle on the reactor head can be inspected using pseudo interface waves, which
propagate along the boundary between the nozzle and reactor head. Using this inspection technique,
the defects on the weld and its interface can be identified from outside the nuclear reactor head.
The characteristics of pseudo interface waves propagating in a nuclear reactor nozzle were presented in
a previous study [21,22]. Previous works are however limited to experimental studies of reactor nozzle
welds on simplified defect model samples using interface waves. This paper presents a numerical
model analysis for fault identification using pseudo−interface waves. The pseudo-interface wave
propagation characteristics and scattering from a defect and weld on a reactor nozzle were evaluated,
and the method was validated experimentally for various defect locations and sizes.

2. Interface Wave Propagation Theory

Rayleigh waves are one of the interface waves that travel in solid-vacuum half space. In isotropic
solids, the particle motion is elliptical and retrograde for shallow depths with respect to the propagation
direction. Scholte waves exist under the interface condition of fluid-solid media [23]. Most of the energy
of a Scholte wave decays exponentially in solid and fluid media. Some studies using Scholte waves
and quasi-Scholte waves were presented to validate the propagation characteristics [24–28]. Stoneley
waves propagate at the interface between two solid media [29]. Some surface wave applications can be
found in earlier papers [30–34]. Surface waves propagate on half infinite media and Stoneley waves
propagate along the interface between to different solid materials.

The displacement of an interface wave on a plate is defined as follows [35,36]:

u = u(z)eikx, w = w(z)eikx (1)

where u and w is the displacement in the x and z directions. The term eiωt has been omitted hereafter.
The coordinate system is shown in Figure 1. The unknown amplitudes u(z) and w(z) can be defined as:

u(z) = [(Ae−kαz + Bekαz)− β(Ce−kβz − Dekβz)]eikx (2)

w(z) = i[α(Ae−kαz − Bekαz)− (Ce−kβz + Dekβz)]eikx (3)
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The stress components are:
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Figure 2 shows wave amplitude distributions in the thickness direction. The interface wave
amplitude distributions in the thickness direction are calculated by an analytic approach using the
wave equation in Figure 2a and the finite element numerical approach in Figure 2b. Displacement u(z)
is an in-plane displacement and w(z) is an out-of-plane displacement. The out-of-plane displacement
is highest at the interface and becomes zero further away from the interface. This study examines a
two layered structure made of 316 stainless steel.
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3. Nuclear Reactor Head Nozzle Model

In the small integrated nuclear reactor system illustrated in Figure 3, the control element drive
mechanism (CEDM) is installed through the nuclear reactor head. The reactor head and the nozzle
pipe are attached using shrink fit conditions and welded at the end of the shrink fit boundary.
The CEDM nozzle and reactor head are connected using a J-groove weld to prevent radiation leakage.
The proposed interface wave inspection method is applied for monitoring this weld.
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3.1. Finite Element Model Analyis for Reactor Nozzle

Finite element modeling was performed to verify the interface wave propagation pattern and
reflection signal analysis using ABAQUS/CAE 6.12 (DASSAULT SYSTEMES, Providence, RI, USA).
The detailed specifications of the CEDM nozzle model are shown in Figure 4, and the mesh information
is shown in Table 1. The material used for both the reactor head and nozzle is 316 stainless steel.
The excitation frequency is 1 MHz, and the wavelength of the interface wave is 0.0027 m. The mesh size
is set as 1/10 of the wavelength for proper wave propagation characteristics in the numerical model.
The edge of the nozzle and reactor head is set as an absorbing boundary to eliminate an unexpected
reflections from the boundary.
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Table 1. CEDM nozzle modeling specifications.

Frequency 1 MHz
Wavelength 0.0027 m
Mesh Size 0.00027 m

Element Type CPE4R (plane strain conditions)

The interface waves propagate with strong directivity and less distribution in the circumferential
direction [22]. Figure 5 shows the interface wave propagation and reflection from the finite element
model of the CEDM nozzle. The interface wave propagation pattern at different times is depicted in
Figure 5a–c. The excitation point is on the nozzle surface with the outside of the reactor head and the
weld on the reactor head inside the reactor is inspected. The interface wave energy is concentrated
at the interface and propagates along the axial direction. The propagation distance of the interface
wave is 430 mm from the excitation location, and it is reflected from the boundary of the weld and the
end of the reactor head. The interface wave propagation velocity in this study is 2.6 mm/µs.
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Figure 5. Interface wave propagation model of the CEDM nozzle model of finite element analysis at
(a) initial moment; (b) 100 µs and (c) 150 µs.

The finite element model of defects in the nozzle weld is depicted in Figure 6. The J-groove weld is
modeled at the end of the nozzle and attached to the reactor head. The interface wave propagates along
the boundary of the nozzle and the reactor head. Three different defects are modeled to investigate the
reflection from the boundary of the weld and the end of the structure. The defect locations are chosen
based on the possibility of defect initiation in the manufacturing process and during operation.

For analysis convenience, each part of the model components is set with a different mesh type.
This can help with the computation time and memory. The interface wave is generated on the outside
of the reactor head and it propagates along the interface and reflects from the weld and defects.
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The reflected signals from weld and defects are depicted on Figure 7, which shows the weld and defect
reflection signal at each location.Energies 2017, 10, 589 6 of 11 
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Because two-dimensional models are used, once the interface wave is reflected from the defect,
most of the wave energy is scattered. The defects in the weld area are the region of interest in this
study. Therefore, only the wave signal that is reflected from the weld area is taken into account for the
signal analysis. The first peak is the reflection wave from the boundary of the J-groove weld. Because
the boundary and material properties are discontinuous, a large reflection is measured in this area.
The transmitted interface wave over the weld is reflected from the boundary of defects and the free
end of the specimen.

The second and third peaks are from the defect and free end. The large reflection at the defect
and free end is based on the transition of the interface boundary conditions. The numerical model is
designed with shrink fit conditions at the interface. However, the boundary of the weld and defects
shifts from shrink fit conditions to traction-free boundary conditions. This model analysis indicates
the existence and the location of defects.

3.2. Experimental Setup and Specimen

The experimental setup is illustrated in Figure 8. The excitation frequency is 1 MHz, and there are
four cycles of tone burst wave signals. The high-voltage tone burst signal is generated by a RPR-4000
(RITEC Inc., Warwick, RI, USA). A commercial 1 MHz Piezoeletric (PZT) transducer from Panamatrics
(Waltham, MA, USA) was also used. A single transducer works as a transmitter and a receiver.
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Figure 8. CEDM nozzle inspection system.

The specifications of the CEDM nozzle specimen are marked in Figure 8. The thickness of
the reactor head is 430 mm and the outer radius of nozzle is 170 mm and its thickness is 20 mm.
The material of this specimen is 316 SS. The interface on the reactor head and CEDM nozzle is
connected using shrink fit conditions as part of nuclear reactor. One side of the boundary is J-groove
welded and the other side is open. Figure 9 shows a picture of a CEDM nozzle specimen with a J-groove
weld. The outside of the welded part is ground for surface treatment. The specimen is simplified for
the purpose of this study. A real nuclear reactor has s water cooling path inner layer in the nozzle.
The complicated inner structures are excluded due to the interface wave propagation characteristics.
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To verify the interface wave propagation, a defect was manufactured at the interface of the nozzle
and the reactor head. Detailed information about the defects is listed in Table 2. The defect location
and size are shown in Figure 10. There are four different defects located at varying locations on the
specimen. Two defects are on the same axial line and are used to check the interface wave resolution.
The dashed line in Figure 10 indicates the boundary of the J-groove weld.

Table 2. The defect information of the CEDM nozzle specimen.

Defect Axial Size (mm) Circumferential Size (mm) Radius Size (mm)

#1 20 20 1
#2 20 20 1

#3-1 3 5 1
#3-2 15 10 1
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The results of the interface wave inspection experiment are shown in Figure 11. The excited
interface wave is propagated along the interface between the reactor head and nozzle. The peaks below
100 µs are from the banging signal from the transducer itself and the near field reflection of complicated
geometry. However, the region of interest is not the near the excitation location. The purpose of this
approach is inspection on the weld area distant from the transducer position. Therefore, the reflection
signal below 250 µs can be ignored in this study. For the purpose of near field inspection, however,
the reflections before approaching the weld area should be considered. The total wave propagation
signal is depicted in Figure 11a. The reflection signal of the time of flight of interest is 290 µs to 350 µs.
The reflection from the boundary of the weld and the end of the reactor head is included in this
time zone.

In Figure 11b, the signals from the weld and end of structure are clearly marked. The reflection
from the defects appear at the location of the defect. The extracted peak value shows the defect location.
In the case of Defect #1 it shows a clear reflection signal of the weld boundary and the defect due to
the simple geometry. A large amount wave energy is reflected from the first discontinuous boundary
at 298 µs and a similar amount energy is echoed at the end of the defect boundary at 315 µs. The finite
element model analysis results in Figure 7 and experimental results in Figure 11 show good agreement
with each other. Both of Finite Element Method (FEM) and experimental results have two peaks from
the boundary of the weld and the end of reactor head. From each defect the reflection ratio between
the first and second peaks are very different comparing the defective cases and the intact case.
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Figure 11. CEDM weld specimen inspection signal. (a) Wave propagation signal of reflection from
the weld and edge; (b) Enlarged wave signal from 270 µs to 350 µs of interesting region; (c) Wave
envelop of reflection from the weld and defects; (d) Peaks at wave envelop of reflection from the weld
and defects.

4. Discussion

Defect investigation was performed for the J-groove weld in a nuclear reactor nozzle by the finite
element method and an experimental approach based on interface waves. The interface boundary
was modeled by the finite element method, and the wave propagation characteristics of the reflection
signal were analyzed. The interface wave propagates along the interface and is reflected from the
welds and defects. The experimental and numerical results show a flight time difference in the axial
direction propagation. The defect location can be estimated by calculating this time of flight difference.
The reflected signal pattern shows good agreement between the numerical analysis and experimental
validation. It is expected that the present technique can become a promising alternative for inaccessible
areas such as the shrink fit weld nozzles in a nuclear reactor.
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