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Abstract: This paper proposes a novel high-efficiency isolated three-port bidirectional DC/DC device
for photovoltaic (PV) systems. The device contains a high step-up converter for PV modules to
supply power to the DC bus, and a bidirectional charge/discharge control circuit for the battery with
an improved boost-flyback converter. When the PV modules supply sufficient energy, their output
can be stepped up and energy supply to the DC bus and charging of the battery can be achieved
simultaneously. However, when the energy supplied is insufficient, the battery provides energy to
the DC bus. When the proposed converter is operated in the step-down mode, the DC-blocking
capacitor on the high-voltage side is used to reduce the voltage on the transformer and achieve high
step-down performance. Moreover, to improve the overall efficiency of the system, the energy stored
in the leakage inductance is recycled and supplied to the DC-blocking capacitor during operation in
the step-up mode. Finally, to verify the feasibility and practicability of the proposed devices, a 500 W
three-port bidirectional DC/DC devices was implemented. The highest efficiencies achieved for
operation in different modes were as follows: high step-up mode for the PV modules, 95.2%; battery
step-up mode, 94.2%; and step-down mode, 97.6%.

Keywords: isolated type; three-port bidirectional converter; photovoltaic systems

1. Introduction

In recent years, greenhouse gas emissions have increased with advances in technology, leading
to global warming and climate change. The energy technology industry continues to be heavily
dependent on fossil fuels and is unable to handle this stringent environment [1,2]. Therefore, the use
of green energy has become the core of major economic strategies and is a key focus in world politics,
especially because reducing greenhouse gas emissions and conserving energy are the main global
concerns at present.

In general, because of the large difference between the output voltage of green energy apparatus
and the operating voltage of DC bus, a high step-up converter is always required for connecting
these two stages. A conventional boost converter should operate with an extremely high duty ratio
to provide high step-up voltage. In particular, its maximum step-up ratio is limited by the parasitic
elements of the circuit components. The existence of parasitic components [3] and the reverse recovery
time of diode [4] reduce the converter efficiency. Consequently, the use of conventional boost converters
in the field of green energy is limited. Recently, to achieve a high step-up ratio, the use of a series
boost converter, the voltage-lift technique, a coupled inductor, and a cascade circuit structure has
been proposed [5–11]. When the switch of the boost converter is open, a large current flows through
the power components, and therefore, power components with high current stress are required,
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which implies high cost and conduction energy loss. The conventional flyback converter and forward
converter have also been proposed for achieving high step-up voltages. However, because the leakage
inductance of the transformer in these ones can lead to high reverse voltage across the switch, a passive
snubber circuit or an active clamp is required to suppress such a reverse voltage. A passive snubber
circuit has a resistance that depletes the excess energy of the leakage inductance, thereby reducing
the circuit efficiency. By contrast, an active clamp results in many components being added to the
circuit, which not only increases cost but also renders inverter control difficult. In [12], a topology was
proposed for solving the leakage inductance problem; however, the remaining disadvantages—large
circuit size and high cost—persist.

An application block diagram of a typical green energy system is shown in Figure 1. Achieving
low cost, a small circuit size, and high efficiency will always be R&D objectives. Furthermore,
energy storage systems are a major research subject related to the use of green energy. In the green
energy system, because of the large difference between the battery voltage and the DC bus voltage,
a high step-up converter is required to transfer energy from the battery to the DC bus. Recently,
many studies have conducted research on bidirectional converters [13–25]. They have attempted
to develop a topology that can provide both step-up and step-down operations; which has the
potential to reduce the number of components, cost, and size of the system. The commonly used
non-isolated bidirectional devices, including the buck/boost bidirectional devices [13], bidirectional
Cuk devices [14], and bidirectional single-ended primary inductance devices (SEPIC) [15], have few
components, low cost, and high controllability; moreover, they are easy to design. However, all of
them have low efficiency and can become unstable when operating at a high voltage conversion
rate [3]. Furthermore, these non-isolated circuits are susceptible to interference and cannot be used to
achieve electricity isolation, factors that considerably limit their use. While the commonly used isolated
bidirectional converters are full-bridge bidirectional converters [17,26,27], half-bridge bidirectional
converters [19], and bidirectional flyback converters [18]. Both full-bridge and half-bridge bidirectional
converters can perform soft switching by controlling the phase shift, resulting in high efficiency, but
their transformer design is such that achieving inductance–inductance–capacitance (IIC) resonance
is difficult. Furthermore, bidirectional flyback converters have the same advantages as non-isolated
bidirectional converters: few components, low cost, and ease of design. When its switch is OFF,
the leakage inductor of the transformer and the parasitic capacitor in the switch produce resonance,
resulting in a voltage spike at the switch; therefore, a switch with high voltage stress is required. The
aforementioned isolated bidirectional converters always have a large transformer because a high turns
ratio is necessary for operation at a high voltage conversion rate. Recently, many modified bidirectional
converters have been proposed. For example, Reference [21] shows a bidirectional converter that can
recycle the energy of the leakage inductor of the transformer and perform synchronous rectification;
thus, the converter shows high efficiency while meeting the requirement of electricity isolation.
However, the converter topology involves two inductors, and the transformer is considered an ideal
transformer despite having a low turns ratio; moreover, the energy release problem associated with
the magnetizing inductor leads to low efficiency for high-power operations. Reference [22] proposed
that the battery, which is the auxiliary power source, should be charged and used for providing energy
to the DC bus during circuit operation in the step-up mode. The leakage inductance of the coupled
inductor can recycle the energy and release it to the battery auxiliary power circuit and DC bus on the
high-voltage side. However, the circuit control procedure is complicated, and the battery auxiliary
power cannot supply energy to the DC bus.

Although a bidirectional converter provides both step-up and step-down voltages, when it is
used in a photovoltaic (PV) system, energy generated by the PV system is required to pass through
two converter stages for charging the battery, resulting in a reduction in the overall efficiency of the
system. To overcome this problem, a three-port DC/DC converter topology has been proposed [23–34]
for the PV system. When the energy supplied by the PV modules is sufficient, supply of energy to the
DC bus and charging of the battery are simultaneously performed. However, in the absence of energy
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supply from the PV modules, the battery can provide energy to the DC bus. The three-port DC/DC
converter can operate in different modes, thereby reducing the cost and size of the system [26–33].
However, it has a larger size, higher cost, and lower efficiency compared with the converter proposed
in the current study. In general, a three-port DC/DC converter is not involved in the charging of
the battery by the DC bus. This implies that the converter lacks the step-down mode, similar to
bidirectional converters. If a topology could combine the advantages of both bidirectional converters
and the three-port converter, the size and cost of the system could be further reduced.
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Figure 1. Application block diagram of a green energy system.

For the reasons mentioned above, in this paper we propose a novel isolated three-port bidirectional
DC/DC converter whose block diagram is shown in Figure 2. When the energy supplied by the PV
modules is sufficient, the converter can not only step up the output of the PV modules, but also provide
energy to the DC bus and charge the battery simultaneously. However, when the energy supplied is
insufficient, the converter can step up the output of the battery and provide energy to the DC bus.
Any excess energy in the DC bus is used to charge the battery, implying that the proposed topology can
perform both high step-up and high step-down functions. The topology proposed is isolated, and the
DC -blocking capacitor on the high-voltage side can reduce the voltage on the transformer, facilitating
the operation of the system in the high step-down mode. An improved boost-flyback converter is used
on the low-voltage side of the PV modules to step up the output of the PV modules for charging the
battery and providing energy to the DC bus. The auxiliary inductor on the battery side can modify the
output step-up voltage and provide a continuous current for battery charging, which can extend the
battery lifetime. Additional switches and diodes are added to prevent the energy generated by the PV
system from directly flowing to the battery and to control the step-up process for providing energy
to the DC bus in the absence of energy supply from the PV system. The proposed topology consists
of three operational modes, which reduce the cost and size of the system considerably. Furthermore,
the converter can perform synchronous rectification and recycle energy from the leakage inductor
simultaneously, and these functions increase the overall efficiency of the system considerably.Energies 2017, 10, 434 4 of 24 
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2. Operating Principles of the Main Circuit

The detailed scheme of our proposed device is shown in Figure 3 and briefly discussed in this
section. The DC-blocking capacitor Cm on the high-voltage side facilitates the operation of the system
in the high step-down mode by reducing the voltage on the transformer. It can also recycle the energy
of the leakage inductor on the secondary side of the transformer and increase the efficiency of the
system. An improved boost-flyback converter is used on the low-voltage side of the PV modules to
step up the output of the PV modules for charging the battery and providing energy to the DC bus.
The auxiliary inductor Lb on the battery side can modify the stepped-up output voltage for providing
a continuous current for charging the battery. Switch S2 and diode D2 not only prevent the energy
generated by the PV system from directly charging the battery, but also control the step-up process for
providing energy to the DC bus and charging the battery when the energy supplied by the PV modules
is sufficient. In the absence of energy supply from the PV modules, the battery output is stepped up
and energy is provided to the DC bus. Any excess energy in the DC bus is used to charge the battery.
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The proposed topology was studied and analyzed by considering three operation stages.
In Stage 1, the output of PV modules is stepped up for charging the battery and providing energy to
the DC bus when the energy supplied by the PV modules is sufficient. In Stage 2, the output of the
battery is stepped up to provide energy to the DC bus when the energy supplied by the PV modules is
insufficient. In Stage 3, the output of the DC bus is stepped down and the battery is charged when there
is excess energy in the DC bus. To simplify the analysis of the converter, the following assumptions
were made:

(1) Capacitors Ci and Co have very high capacitance and can be considered as current sources.
(2) Switches S1, S2, S3, and S4 and diodes D1 and D2 are considered as ideal components.
(3) The magnetizing inductances of the transformer are larger than the leakage inductances of

the transformer.

2.1. Stage 1: Stepping up the PV Output for Providing Energy to The DC Bus and Charging the Battery

The output voltage of the PV modules is stepped up before being supplied to the DC bus and
battery. The waveforms of the main components operating in Stage 1 are shown in Figure 4, and the
operating principle is as shown in Table 1.
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Table 1. Operating principle of Stage 1.

Mode Comments Mode Comments

Mode I
(t0 ≤ t < t1)

As shown in Figure 5a, when t = t0, S1 and D1
turn ON, S2, S4 and D2 turn OFF; and the
parasitic diode of switch S3 is also ON. The PV
source stores energy in Lm, and Lb releases
energy for battery charging. Simultaneously,
the Cm is charged by the current induced by
the transformer. In this interval, Vo is provided
by the output capacitor Co.

Mode II
(t1 ≤ t < t2)

When t = t1, S1 and D1 continue to be in the
ON state, S2, S4, and D2 remain OFF. S3 is
turned ON for synchronous rectification,
and the direction of current flow is as
shown in Figure 5b. Other operations are
the same as those in Mode I.

Mode III
(t2 ≤ t < t3)

When t = t2, S1 and D1 remain ON, S2, S4, and
D2 remain OFF. The parasitic diode on S3 is
turned ON, and the direction of current flow is
as shown in Figure 5c. The other operations in
this mode are the same as those in Mode I.

Mode IV
(t3 ≤ t < t4)

When t = t3, S1 is turned OFF, D1 and the
parasitic diode on S3 remain ON, and S2, S4,
and D2 continue to be OFF. The direction of
current flow in this mode is shown in
Figure 5d. Current flows through the LLk1,
and charges the parasitic capacitor on S1.
However, this charging process is stopped
when the voltage of the parasitic capacitor
on S1 exceeds the sum of the Vb and VLb.
In addition, current flowing through the
LLk2 charges Cm, and Lb continues to
release energy for battery charging.
The Vo continues to be provided by Co.

Mode V
(t4 ≤ t < t5)

When t = t4, S1, S2, S3, and D2 are OFF, D1
remains ON. S4 is turned ON for synchronous
rectification, and the direction of current flow is
shown in Figure 5e. Energy stored in Lm is
transferred to the Vo, and Co is charged by the
current induced by the transformer. The Cm
also releases energy to the Vo, and Lm and Lb
release energy for battery charging.

Mode VI
(t5 ≤ t < t6)

When t = t5, S1, S2, S3, and D2 remain OFF
and D1 continues to be ON. In this mode,
the direction of current flow is as shown in
Figure 5f; moreover, the parasitic diode on
S4 is turned ON; synchronous rectification
is stopped. Other operations are the same
as those in Mode V.
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2.2. Stage 2: Stepping up the Battery Output

In Stage 2, the output voltage of the battery is stepped up to provide energy for the DC bus.
Figure 6 shows the key waveforms of the main components operating in this stage, and the operating
principle is as shown in Table 2.

Table 2. Operating principle of Stage 2.

Mode Comments Mode Comments

Mode I
(t0 ≤ t < t1)

When t = t0, S1 and S2 and D2 turn ON, S4 and
D1 turn OFF, the direction of current flow is as
shown in Figure 7a, and the parasitic diode on
S3 is ON; the battery provides energy to Lm.
The current induced by the transformer charges
the Cm, and Co provides energy to Vo.

Mode II
(t1 ≤ t < t2)

When t = t1, S1, S2, and D2 continue to be ON,
and S4 and D1 remain OFF. S3 is turned ON for
synchronous rectification, and the direction of
current flow is as shown in Figure 7b. The other
operations are the same as Mode I.

Mode III
(t2 ≤ t < t3)

When t = t2, S1, S2, and D2 remain ON and S4
and D1 continue to be in the OFF state.
Synchronous rectification is stopped, and the
parasitic diode on S3 is turned ON.
The direction of current flow is as shown in
Figure 7c. The other operations in this mode
are the same as Mode I.

Mode IV
(t3 ≤ t < t4)

When t = t3, S4 and D2 remain OFF, D1 and the
parasitic diode on S3 are turned ON, and S1 and
S2 are turned OFF. The direction of current flow
is as shown in Figure 7d. Current flowing
through the LLk1 charges the parasitic capacitor
on S1. When the voltage of the parasitic
capacitor exceeds the sum of the Vb and VLb,
this charging process is stopped. Furthermore,
current flowing through the LLk2 charges Cm.
Lb starts releasing energy to the battery for
energy recycling, and Co provides energy to Vo.

Mode V
(t4 ≤ t < t5)

When t = t4, S1, S2, S3, and D2 continue to be in
the OFF state, and D1 remains ON. S4 is turned
ON for synchronous rectification. The direction
of current flow is as shown in Figure 7e, and
the transformer induces energy from Lm to Vo
and charges Co simultaneously. The energy
stored in Cm is also released to Vo, and the
energy stored in Lm and Lb is recycled and
supplied to the battery.

Mode VI
(t5 ≤ t < t6)

When t = t5, S1, S2, S3, and D2 continue to be in
the OFF state and D1 remains ON. Synchronous
rectification is stopped because the parasitic
diode on S4 is turned ON, and the direction of
current flow in this mode is as shown in
Figure 7f. Other operations in this mode are the
same as Mode V.
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2.3. Stage 3: Stepping Down the Output of the DC Bus

When the energy supplied by the PV modules is insufficient, the system steps down the output
voltage of the DC bus for battery charging. The key waveforms of the proposed converter topology in
this stage are shown in Figure 8, and the operating principle is as shown in Table 3.
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Table 3. Operating principle of Stage 3.

Mode Comments Mode Comments

Mode I
(t0 ≤ t < t1)

When t = t0, S4 and D1 are turned ON, S1, S2, S3,
and diode D2 are turned OFF. Furthermore, the
parasitic diode on switch S1 is turned ON. The
direction of current flow is shown in Figure 9a.
The energy stored in the Cm and LLk2 is recycled
and provided to Vo, and the LLk1 transfers its
energy to the Ci. Simultaneously, Lb releases
energy for battery charging.

Mode II
(t1 ≤ t < t2)

When t = t1, S4 and D1 continue in the ON state,
S1, S2, S3, and D2 remain OFF. The direction of
current flow is shown in Figure 9b. The PV
source starts storing energy in the Lm after the
energy stored in Cm and LLk2 is completely
recycled. Furthermore, the current induced by
the transformer starts storing energy in Lb and
charging the battery simultaneously.

Mode III
(t2 ≤ t < t3)

When t = t2, S1, S2, and D2 continue to be in the
OFF state and D1 remains ON. In addition, S4 is
turned OFF and the parasitic diode on S3 is
turned ON. The direction of current flow is as
shown in Figure 9c. Current flowing through the
LLk2 charges Cm. The current induced by the
transformer stores energy in Lb and charges the
battery simultaneously.

Mode IV
(t3 ≤ t < t4)

When t = t3, S2, S4, and D2 remain OFF and D1
continues to be in the ON state. Both S1 and S3
are turned ON for synchronous rectification.
The direction of current flow in this mode is as
shown in Figure 9d. The energy stored in Lm is
induced by the transformer to charge Ci and Cm
through S1 and S3, respectively. Furthermore,
Lb starts releasing energy through S1 and
charging the battery.

Mode V
(t4 ≤ t < t5)

When t = t4, S2, S4, and D2 remain OFF, S1, S3,
and D1 continue to be in the ON state. The
direction of current flow is shown in Figure 9e.
Both S1 and S3 continue to perform synchronous
rectification, and the entire energy stored in Lm
is released. Simultaneously, Cm starts
transferring energy to Lm and LLk2 and induces
energy by the transformer to charge Ci. Lb
continues to charge the battery through S1.

Mode VI
(t5 ≤ t < t6)

When t = t5, D1 remains ON, S3, S4, and D2
continue to be OFF. The direction of current flow
is shown in Figure 9f. In this mode,
synchronous rectification is stopped as S1 and
S4 are turned OFF and their parasitic diodes are
ON. Current flows through Cm and LLk2, and
energy stored in Cm and LLk2 is recycled to Vo.
Furthermore, the energy stored in Lb is released
for battery charging.



Energies 2017, 10, 434 11 of 24

Energies 2017, 10, 434 11 of 24 

 

Mode V  
(t4 ≤ t < t5) 

When t = t4, S2, S4, and D2 remain OFF, S1, S3, 
and D1 continue to be in the ON state. The 
direction of current flow is shown in Figure 9e. 
Both S1 and S3 continue to perform 
synchronous rectification, and the entire energy 
stored in Lm is released. Simultaneously, Cm 
starts transferring energy to Lm and LLk2 and 
induces energy by the transformer to charge Ci. 
Lb continues to charge the battery through S1. 

Mode VI 
(t5 ≤ t < t6) 

When t = t5, D1 remains ON, S3, S4, and D2 
continue to be OFF. The direction of current flow 
is shown in Figure 9f. In this mode, synchronous 
rectification is stopped as S1 and S4 are turned 
OFF and their parasitic diodes are ON. Current 
flows through Cm and LLk2, and energy stored in 
Cm and LLk2 is recycled to Vo. Furthermore, the 
energy stored in Lb is released for battery 
charging. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

 

 

 

Figure 9. Cont.



Energies 2017, 10, 434 12 of 24Energies 2017, 10, 434 12 of 24 

 

 
(e) 

 
(f) 

Figure 9. Operating diagram of each mode in Stage 3: (a) Mode I; (b) Mode II; (c) Mode III; (d) Mode 
IV; (e) Mode V; and (f) Mode VI. 

3. Steady-State Analysis 

This section focuses on the mathematical derivation of the voltage conversion ratio and the 
voltage stress of components. The following assumptions were made to simplify the analysis: 

(1) Capacitors Ci and Co have very high capacitance and can be considered as current sources; 
(2) Switches S1, S2, S3, and S4 and diodes D1 and D2 are considered as ideal components; 
(3) The leakage inductances of the transformer are smaller than the magnetizing inductances, and 

therefore, they can be neglected; 
(4) The system operates in the continuous conduction mode. 

3.1. Voltage Conversion Ratio 

When the energy supplied by the PV modules is sufficient, switch S1 is turned ON and the 
voltage difference across the magnetizing inductor is equal to the input voltage of the PV modules. 
In the absence of energy supplied by the PV modules, switches S1 and S2 are turned ON and the 
voltage across the magnetizing inductor is equal to the battery voltage. Because the input voltage of 
the PV modules and the battery voltage are almost the same in a three-port converter, both step-up 
from the PV modules to the DC bus and that from the battery to the DC bus have the same step-up 
ratio. To simplify the derivation of the voltage conversion ratio, first, we neglect part of the battery 
circuit. 

(1) Step-up voltage conversion ratio GVo 

When switch S1 is turned on: 

VLm = Lm  = Vi (1) ∆i  = DTs (2) 

VCm = Vi  (3) 

 

Figure 9. Operating diagram of each mode in Stage 3: (a) Mode I; (b) Mode II; (c) Mode III; (d) Mode IV;
(e) Mode V; and (f) Mode VI.

3. Steady-State Analysis

This section focuses on the mathematical derivation of the voltage conversion ratio and the voltage
stress of components. The following assumptions were made to simplify the analysis:

(1) Capacitors Ci and Co have very high capacitance and can be considered as current sources;
(2) Switches S1, S2, S3, and S4 and diodes D1 and D2 are considered as ideal components;
(3) The leakage inductances of the transformer are smaller than the magnetizing inductances, and

therefore, they can be neglected;
(4) The system operates in the continuous conduction mode.

3.1. Voltage Conversion Ratio

When the energy supplied by the PV modules is sufficient, switch S1 is turned ON and the voltage
difference across the magnetizing inductor is equal to the input voltage of the PV modules. In the
absence of energy supplied by the PV modules, switches S1 and S2 are turned ON and the voltage
across the magnetizing inductor is equal to the battery voltage. Because the input voltage of the PV
modules and the battery voltage are almost the same in a three-port converter, both step-up from
the PV modules to the DC bus and that from the battery to the DC bus have the same step-up ratio.
To simplify the derivation of the voltage conversion ratio, first, we neglect part of the battery circuit.

(1) Step-up voltage conversion ratio GVo

When switch S1 is turned on:
VLm = Lm

diL

dt
= Vi (1)



Energies 2017, 10, 434 13 of 24

∆iLm
+ =

Vi

Lm
DTs (2)

VCm = Vi
N2

N1
(3)

where it is assumed that N = N2
N1

and the total turn-on time Ton = DTs.
When switch S1 is turned OFF:

VLm = Lm
diL

dt
= (Vo − VCm)

N2

N1
(4)

Substituting (3) into (4) gives:

VLm = Lm
diL

dt
= Vo

N1

N2
− Vi (5)

∆iL− =
VO

N1
N2

− Vi

Lm
(1 − D)Ts (6)

The total turn-off time Toff is given by (1 − D)Ts.
According to the principle of voltage-second balance:

∆iL+ = ∆iL− (7)

GVo =
VO

Vi
=

N2

N1

1
1 − D

=
N

1 − D
(8)

Assuming that all the energy of the magnetizing inductors is transferred to the battery and that
the maximum current is equal to the current of the magnetizing inductors, we can design the battery
charging current:

iLb(max) =
Vi

Lm
DTs =

Vb
Lb

DTs (9)

(2) Step-down voltage conversion ratio GVb

For deriving the step-down voltage conversion ratio of the DC bus, which charges the battery,
switch S2 and diode D2 should first be turned OFF, and subsequently, switch S4 is turned ON and
switch S3 is turned OFF:

VLm = (Vo − VCm) (10)

V1 = −VLm
N1

N2
= −(Vo − VCm)

N1

N2
(11)

VLb = VCi − V1 − VB = Lb
diL

dt
(12)

∆iLm
+ =

VLb
Lb

DTs (13)

When switch S4 is turned OFF and switch S3 is turned ON, we have:

V1 = VLm
N1

N2
= VCi. (14)

Substituting (11) into (14) gives:

VLm =
VO

2
(15)

VLb = VB = Lb
diL

dt
(16)
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∆iL− =
VLb
Lb

(1 − D)Ts. (17)

According to the principle of voltage-second balance:

∆iL+ = ∆iL− (18)

GVb =
Vb
VO

=
N1

N2
D =

D
N

. (19)

3.2. Voltage Stress of Components

The voltage stress of each component can be derived by analyzing its operation in the ON and
OFF states. The voltage stress of switch S1 in the ON state can be determined using Figure 5a:

Vi − VLm = 0 (20)

On the basis of voltage-second balance, VLmDTS + VLm(1 − D)TS = 0. Therefore, we can derive
the voltage stress of switch S1 to be:

VS1 =
1

1 − D
Vi (21)

Because diode D2 is considered ideal, the voltage of switch S2 is equal to the difference between
the battery voltage and the voltage across the input capacitor:

VS2 = VB − VCi (22)

In the step-down mode, when switch S4 is turned ON, switch S3 is turned OFF, as shown in
Figure 9e, and the voltage across S3 is equal to the output voltage:

VS3 = Vo (23)

In the step-down mode, when switch S3 is turned ON, switch S4 is turned OFF, as shown in
Figure 9b, and the voltage across S4 is equal to the output voltage:

VS4 = Vo (24)

When the entire energy stored in Lb is released and switch S1 is turned ON, diode D1 is turned
OFF, and the voltage difference across the diode equals the battery voltage:

VD1 = VB (25)

Diode D2 has the same voltage stress as switch S2 does:

VD2 = VB − VCi (26)

When switch S3 is turned ON in the step-down mode, the voltage stress on the input capacitor
Ci is:

VCi =
VO

2
N1

N2
(27)

The voltage stress of output capacitor Co is equal to Vo:

VCo = Vo. (28)
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The voltage stress of voltage-doubling capacitor Cm can be expressed as:

VCm = Vo/2 (29)

4. Experimental Results and Analysis

In this section, a comparison between the proposed converter and two groups of converters is
presented. First, we compare the proposed converter with the bidirectional converters presented
in [21,22]. As shown in Table 4, the converters presented in [21,22] can be used only as traditional
bidirectional converters, whereas the proposed three-port bidirectional converter can operate in
three stages and perform different functions. Apart from regular bidirectional step-up/step-down
operations, the proposed converter can be used in a PV system as a three-port converter. Although the
converter presented in [21] does not require a diode and has a lower turns ratio of the transformer,
it has one more inductor, resulting in a larger system size. Furthermore, the efficiency of the converter
presented in [21] decreases during high-power operations, and the maximum power at which the
converter can be operated is 200 W. Although the converter presented in [22] can operate at 1 kW,
its efficiency does not reach even 90% for operation above 500 W. In addition, controlling the switches
is considerably complicated.

Table 5 presents a comparison between the proposed converter and the converters proposed
in [24,25]; all of them are three-port converters. In the table, the highest conversion efficiency is the
calculated efficiency of energy conversion from the PV modules to the DC bus, and the proposed
converter is superior in conversion efficiency. In addition, the proposed converter has a higher step-up
ratio, fewer components, and lower cost. The converter proposed in [24] requires two transformers
and an inductor on the output side, and therefore, it is a larger and costlier system; moreover, it cannot
achieve high efficiency in high-power operations, and its maximum efficiency is approximately 90.9%.
Although the converter proposed in [25] has lower cost compared with that presented in [24], it is not
superior in efficiency and system size. Moreover, its step-up ratio cannot be increased by a factor of
ten despite the turns ratio of the transformer being identical to that of the proposed converter topology.
Additionally, because there is no inductor on the output side, the converter proposed in [25] has
low efficiency in high-power operations. Typically, a three-port converter cannot charge a battery by
using energy from the DC bus, but the proposed converter has this capability; therefore, the proposed
converter is more suitable for PV systems.

Table 4. Comparison of the Proposed Converter with Existing Bidirectional Converters.

Aspect Proposed
Converter

Converter
Proposed in [21]

Converter
Proposed in [22]

Topology Isolated Isolated Isolated
Input voltage 24 V 24 V 24 V

Output voltage 200 V 200 V 200 V
Output power 500 W 200 W 1 kW

Number of switches 4 4 4
Number of diodes 2 0 2

Number of inductors 1 2 1
Number of capacitors 3 3 5

Turns ratio N = 3 N = 1.5 N = 3
Number of output terminals 2 1 2

Maximum conversion efficiency (step up/step down) 95.2%/97.6% 94%/97% 95.6%/96.3%
Cost Low High Moderate

Number of operating modes 3 2 2

To verify the operation of the proposed isolated bidirectional three-port DC/DC converter,
a 500 W hardware prototype was designed and implemented (Figure 10). The microcontroller unit
dsPIC30F4011 was used as the control unit for the proposed converter topology, and the performance
was measured for a light load of 50 W, half load of 250 W, and full load of 500 W. The measured



Energies 2017, 10, 434 16 of 24

waveforms of all components confirmed the feasibility and practicability of the proposed converter
topology. The specifications and component parameters are presented in Table 6.

Table 5. Comparison of the Proposed Converter with Other Three-Port Converter.

Aspect Proposed
Converter

Converter
Proposed in [24]

Converter
Proposed in [25]

Topology Isolated Isolated Isolated
Input voltage 24 V 300–400 V 18 V

Battery voltage 24 V 160 V 12 V
Output voltage 200 V 48 V 80 V
Output power 500 W 1 kW 200 W

Number of switches 4 4 4
Number of diodes 2 4 2

Number of transformers 1 2 2
Number of inductors 1 1 0
Number of capacitors 3 2 3

Turns ratio N = 3 N = 0.5 N = 2
Number of output terminals 2 2 2

Maximum conversion efficiency (step up) 95.2% 90.9% 91.3%
Operating modes 3 2 2
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Figure 10. Photographs of the proposed three-port bidirectional DC/DC converter: (a) the converter
circuit and (b) the control circuit.

Table 6. Electrical Specifications and Component Parameters of the Proposed Converter.

Parameter Specification

Input dc voltage (Vin) 20–26 V
Battery voltage (VB) 24 V

Output dc voltage (Vo) 200 V
Maximum output power (Po) 500 W

Switching frequency (fs) 50 kHz
Turns ratio of coupled inductors N1:N2 = 1:3

Component Model Specification

S1, S2 IRFP4321 150 V/78 A
S3, S4 IRFP4868 300 V/70 A
D1, D2 MBR40200 200 V/40 A

Ci Electrolytic capacitor 100 µF/100 V
Co Electrolytic capacitor 470 µF/450 V
Cm Metallized polypropylene (MPP) film capacitor 4.7 µF/250 V
Lb MPP ring core 18 µH
Lm MPP ring core 12 µH
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Figure 11 shows the measured efficiency curves of the proposed converter topology for operation
in the three stages. The efficiencies corresponding to operations with the light load and full load in
Stage 1 are 92% and 91%, respectively. However, for operation at approximately 200 W, the highest
efficiency is 95.2%. Furthermore, for Stage 2, the highest efficiency is 94.2%. Finally, for Stage 3,
the efficiencies for the light load and full load are 94.3% and 93.9%, respectively. For operation at
250 W, the highest efficiency reached was 97.6%.
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Figure 11. Efficiency curves of the proposed three-port bidirectional converter.

Figure 12 shows a comparison graph of the measured step-up efficiencies of the proposed
converter and the converters proposed in [21,22]. Although the efficiency of the proposed converter
is greater than that of the converter proposed in [22], it is lower than the efficiency of the converter
presented in [21]. In particular, the proposed converter can operate in three stages and at higher
powers. Figure 13 shows another comparison graph of the proposed converter and the converters
presented in [21,22] for operation in the step-down mode. Clearly, the proposed converter shows
higher step-down efficiency.
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Figure 12. Comparison graphs of the measured efficiencies of the proposed converter and existing
bidirectional converters for operation in the step-up mode.
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Figure 14 shows a comparison graph of the efficiencies of the proposed converter topology and
the converter topologies presented in [24,25] for operation in Stage 1. Clearly, the proposed converter
topology is superior.

Figure 15 shows the measurement results for the proposed converter for Stage 1. Figure 15a
shows the voltage waveforms of the DC bus Vbus, voltage-doubling capacitor VCm, battery VB, and
input Vi. Figure 15b–d show the waveforms of the drive signal Vgs, switch voltage Vds, and switch
current is of switches S1, S3, and S4 for the full load, and Figure 15e depicts the current waveforms of
the transformer (ipri and isec) and inductor (iLb) for the same load. Figure 15 shows that the voltage
stresses of S1, S3, and S4 are approximately 90, 150, and 90 V, respectively. The surge resulting from
the leakage inductance when a switching is turmed off is suppressed, and Vbus is 200 V.
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5. Conclusions

This paper presents a theoretical analysis of the steady state, related considerations, and
experimental results of the proposed three-port bidirectional DC/DC converter. The converter operates
in a PV step-up mode, battery step-up mode, and DC bus step-down mode, reflecting the high circuit
functionality of the circuit. An improved boost-flyback converter and a DC -blocking capacitor are
included on the low-voltage side and high-voltage side, respectively, to increase the voltage conversion
ratio and to reduce the voltage on the transformer, both of which are necessary for high step-down
performance. In addition, the energy stored in the leakage inductor is recycled, which improves the
overall efficiency of the system. The proposed converter offers the advantages of high efficiency, a high
step-up/step-down ratio (8–10/8.33), small system size, and low cost. Finally, a 500 W three-port
bidirectional converter was implemented to verify its feasibility and practicability. The highest
efficiencies of the proposed converter for operation in the PV step-up stage, battery step-up stage, and
step-down stage were 95.2%, 94.2%, and 97.6%, respectively, and the highest efficiencies associated
with the maximum output power were 91%, 94%, and 96%, respectively.
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Lm Magnetization inductor
Co Output Capacitor
N1 Primary Turns
LLk1 Primary Leakage
Vo Output Voltage
V2 Second Voltage
VLk1 Primary Leakage Voltage
Ts Switch period
GVo Step-up voltage conversion ratio
io Output Current
iLb Charge Current
iS1 Switch S1 Current
iS4 Switch S4 Current
VS2 Switch S2 Voltage Stress
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VD1 Diode D1 Voltage Stress
Lb Charger inductor
Cm Double Voltage Capacitor
N2 Second Turns
LLk2 Second Leakage
Vb Battery Voltage
VCi Input Capacitor Voltage
VLk2 Second Leakage Voltage
Ton Switch turn-on time
GVb Step-down voltage conversion ratio
iLm Magnetization inductor Current
ipri Primary Current
iS2 Switch S2 Current
iLb(max) Charger Maximum Current
VS3 Switch S3 Voltage Stress
VD2 Diode D2 Voltage Stress
Ci Input Capacitor
Do PV Blocking Diode
N Turns ratio
Vi PV input Voltage
V1 Primary Voltage
VCm Double Voltage Capacitor Voltage
D Switch Duty Cycle
Toff Switch turn-off time
iin PV Input Current
ib Battery Charge Current
isec Second Current
iS3 Switch S3 Current
VS1 Switch S1 Voltage Stress
VS4 Switch S4 Voltage Stress
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