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Abstract: In this paper, we propose novel techniques to reduce total cost and peak load of factories
from a customer point of view. We control energy storage system (ESS) to minimize the total electricity
bill under the Korea commercial and industrial (KCI) tariff, which both considers peak load and
time of use (ToU). Under the KCI tariff, the average peak load, which is the maximum among
all average power consumptions measured every 15 min for the past 12 months, determines the
monthly base cost, and thus peak load control is extremely critical. We aim to leverage ESS for both
peak load reduction based on load prediction as well as energy arbitrage exploiting ToU. However,
load prediction inevitably has uncertainty, which makes ESS operation challenging with KCI tariff.
To tackle it, we apply robust optimization to minimize risk in a real environment. Our approach
significantly reduces the peak load by 49.9% and the total cost by 10.8% compared to the case that
does not consider load uncertainty. In doing this we also consider battery degradation cost and
validate the practical use of the proposed techniques.

Keywords: energy storage system (ESS); battery wear-out cost; robust optimization; load uncertainty;
peak load control

1. Introduction

The energy storage system (ESS) has become popular in recent times due to the proliferation
of intermittent renewable energies such as wind and solar power [1]. Furthermore, battery prices
have been falling notably in recent years, and this enables consumers to have their own ESS to reduce
electricity bill with the development of low cost energy storage devices [2]. By using ESS, users can
charge electrical energy when electricity price is low and discharge the energy in ESS when electricity
price is high. From social welfare point of view, installing ESS is also encouraged because it is possible
to reduce peak load and resolve overload problems threatening operational reliability in a distribution
network [3]. In this regard there have been many efforts to minimize electricity bill by using ESS [4–8].

In most countries, electricity price is determined by time of use (ToU), critical peak pricing or
real time pricing [9]. Among various electricity price policies which differ from countries to countries,
we specifically consider the case of Korea where electricity bill for industrial customers is calculated
based on both monthly peak load and daily ToU tariff. Note that the way of peak load charging in
Korea is very unique compared to other countries. Roughly speaking, the monthly base electricity cost
is determined by the highest power consumption out of all average power consumptions measured
every 15 min for the past one year including the month of consideration. This implies that peak load
without control, even only for 15 min, may affect the monthly base cost for 12 months. Thus, unlike
the U.K. triad period where customers need to reduce the load during the predetermined three half
hour periods, Korea’s peak load charging requires customers to minimize the 15 min-peak load at any
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moment. Hence, commercial and industrial customers should be extremely careful to reduce their
peak load during summer and winter. Under this unique tariff, using ESS is promising, and there was
an attempt to use demand side management and ESS to minimize total cost [10].

In operating ESS, load forecasting is essential for both peak load reduction and energy arbitrage
exploiting ToU. Load forecasting, however, cannot be always accurate since it is related with
unexpected exogenous inputs for operations as well as weather conditions [11]. Nevertheless, many
previous works about ESS operation did not actively consider load uncertainty [12–14]. In this regard,
we leverage robust optimization for ESS scheduling to solve the problem of load uncertainty. In doing
this, we further consider battery wear-out cost to compute the realistic operational cost as well as the
proper capacity of ESS.

We summarize our contributions as follows. First, we provide a framework for industrial
customers in Korea to minimize the total cost considering peak load pricing and ToU. Under the
Korea commercial and industrial (KCI) tariff, ESS operates to minimize peak load in a month as well as
ToU cost in a day. Second, we propose robust optimization algorithms for total cost minimization in a
realistic environment. There are several risks that may occur when load uncertainty is not considered;
specifically under KCI tariff, unmanaged peak load in a month may determine the base electricity cost
for up-to one year. We apply robust optimization to set robust margin considering the distribution
of prediction errors. Our results show that both total cost and peak load are reduced significantly
by 10.8% and 49.9% respectively compared to the case of deterministic optimization that does not
consider load uncertainty. Third, our approach considers battery wear-out cost to provide accurate
cost comparison, and simulates different battery capacities to determine appropriate battery size that
minimizes total cost in industry.

The remainder of the paper is organized as follows. We present a framework of robust ESS
operation in Section 2 where we formulate an optimization problem to obtain the ESS charging and
discharging strategy, and describe a way to minimize the risk with uncertain load profile. Case study
results along with electricity bill and battery wear-out cost are described in Section 3 to analyze the
performance of our algorithms as well as to suggest proper battery capacity and robust proportion.
Then, we conclude our paper in Section 4.

2. Robust ESS Operation Framework

In this section we provide a framework for robust ESS operation for daily as well as for year-round
operation. We consider a system model for smart grid environment where ESS is installed in a
customer’s premise such as factory. Load profiles vary depending on the characteristics of industries,
and we select a car manufacturing factory as a typical example. However, our method can be easily
applicable to other types of industries.

2.1. System Model

Figure 1 shows the overall structure of a robust ESS operation. Our model is specifically
focused on the case of Korea commercial and industry customers, so both peak pricing and ToU are
considered. Note that we have two different operational modes; ToU-only-minimization is performed
when the expected peak load of the day is less than the historical peak load for the past one year.
ToU-peak-minimization is performed when the monthly peak is expected to occur during the day.
Such decision is based on short-term load forecasting. Even though our framework is independent
of short-term load forecasting techniques, we use the double seasonal Holt–Winters (DSHW) [15],
which is one of the popular time series load forecasting techniques. Note that, however, our method
is compliant with any kind of load forecasting methods such as the newly developed deep neural
network (DNN)-based model [16,17]. Then, we compute the error distribution between predicted and
real load profiles, which is used to set robust margin, or called robust proportion hereafter. In operating
ESS, state of charge (SoC) has its own recommended operational range. Sometimes, in addition, there
is regional power regulation in using ESS; for example, power injection from ESS to the grid is yet
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allowed in Korea. Based on the constraints mentioned so far, robust optimization is performed, and
ESS charging and discharging rates are computed. Finally, based on the realized load profile and ESS
operation, the historical peak value is updated, and daily operational cost is computed in addition to
computing realistic battery degradation cost using battery wear-out model [18].

Electricity Price
(ToU + Peak Price)

ESS 
operation range

Constraints

Initial SoC state

Peak reduction+ Cost minimizing

Day Ahead Optimization

Robust Optimization

Charging / Discharging rate

Real time Operation

Update threshold

Battery wear-out cost

Daily cost & Peak value

Information

Information

DSHW

Load forecast

Power regulation

Error
distribution

Robust Proportion

ToU - only 
minimization

ToU - peak 
minimization

Figure 1. Overall structure of ESS operation.

2.2. Load Uncertainty

As we discussed, accurate load forecasting is essential to operate ESS, but load uncertainty
inevitably exists, which depends on the type of loads, the time of day, the season of year, etc.
To illustrate this we provide Figure 2a as an example of real load profile and its prediction based
on DSHW [15,16]. For illustrative purpose, the unit of x-axis is chosen to be one hour. To further
investigate the error distributions, we provide the distribution of mean percentage error (MPE) during
a day in Figure 3a. As can be seen, errors are not negligible at all, i.e., normally a few tens of percent
error exist in the morning, afternoon, night and dawn. We also check the error distributions for
spring, summer, fall and winter and observe in Figure 3b that there are seasonal variations as well.
These error distributions will be used to determine robust proportion to minimize risk in Section 3.3.
Not that, in Figure 2, the prediction algorithm underestimates the real load for most of the time. In fact,
we observe that the errors in each hour are not independent, and DSHW sometimes overestimates and
sometimes underestimates for almost a whole day. However, as shown in Figure 3, when the MPE
distribution is obtained for a long period of time (e.g., two years), the average of MPE is almost zero,
i.e., the occurrences of overestimation and underestimation are almost same.
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Figure 2. An example of predicted load profile of a car factory.

(a) (b)

Figure 3. Analyze the prediction error distribution. (a) Daily error distributions; and (b) seasonal
error distributions.

2.3. Daily Operation of ESS with Uncertain Load Profile

In this section we derive charging/discharging rate and the desired SoC in each time slot in a
daily operation with uncertain load profile. This result will be extended to year-round operation in
Section 2.4 Let d denote a realized load profile of a typical day, which is a T dimensional vector, i.e.,
there are T time slots in a day,

d = [d1, d2, ..., dT ] . (1)

Let l denote the predicted load profile of d,

l = [l1, l2, ..., lT ] . (2)
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Let x denote a normalized charging/discharging schedule vector, of which element lies on [−1, 1] and
will be obtained by optimization process.

x = [x1, x2, ..., xT ] . (3)

Let T = {1, 2, ..., T}. In battery operation, xi > 0 means battery charging and xi < 0 means battery
discharging, ∀i ∈ T = {1, 2, ..., T}. For practical operation, the SoC of battery must be within some
range, i.e., between Bmin and Bmax. So we have the following constraint,

Bmin ≤ b0 +
i

∑
k=1

rxk ≤ Bmax, for ∀i ∈ T (4)

where b0 is the initial battery state, and r is the maximum charging/discharging rate of ESS. Since
the regulation in Korea currently prohibits from reselling extra energy of ESS to the grid, we have an
additional constraint:

li + rxi ≥ 0 for ∀i ∈ T . (5)

We further assume that SoC level at the beginning of each day is identical. Thus, the summation of
charging and discharging rates over one day should be zero,

T

∑
i=1

xi = 0. (6)

For notational simplicity, we define F as a feasible set of x that satisfies (4)–(6). Recall that the electricity
bill of Korea industry has two parts: base cost that is determined by peak load of a month, and ToU
cost. Thus, we consider both peak reduction and ToU pricing in our objective function and formulate
linear programming as follows,

Problem 1:

minx∈F

(
(maxi∈T (li + rxi)) + β

T

∑
i=1

pi (li + rxi)

)
(7)

where pi represents the ToU price at time slot i and β is a weight factor to reflect the importance of base
cost vs ToU cost. Since it is hard to solve min/max problem using linear programming, we transform (7)
into an equivalent problem by using an auxiliary variable η as follows.

Problem 2:

minx∈F η + β
T

∑
i=1

pi (li + rxi) (8)

s.t. li + rxi ≤ η for ∀i ∈ T . (9)

Problem 2 is linear programming that reflects a way to reduce peak load. As a result, ESS operates
to minimize the total cost considering both the peak load and ToU. Note that the formulation (2)–(9)
is valid only if all parameters are known in advance (or called determined hereafter). However, load
profile li needs to be predicted and thus is subject to uncertainty.

Now, under load uncertainty we exploit robust optimization for conservative operation. In order
to develop robust ESS operation algorithm, we first introduce the robust optimization derived from
the following nominal linear programming [19].
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Robust Optimization:

max c′x (10)

s.t. Ax ≤ s, (11)

−1 ≤ x ≤ 1 (12)

where c′ is a transpose of a cost vector c, A is a matrix, of which elements may have uncertainty, s is a
constraint vector, which will be defined later and 1 is an all one vector. To apply robust optimization,
we transform Problem 2 into the above formulation of (10)–(12). Since li in (5) and (9) is uncertain,
we put (5) and (9) into the following equivalent matrix form as in (13):

r 0 . . . 0 l1
0 r 0 . . 0 l2
. 0 r . . . .
. . 0 . . . .
. . . 0 . 0 .
0 0 0 0 0 r lT
−r 0 . . . 0 −l1
0 −r 0 . . 0 −l2
. 0 −r . . . .
. . 0 . . . .
. . . 0 . 0 .
0 0 0 0 0 −r −lT



×



x1

x2

.

.

.
xT
1


≤



η

η

.

.

.
η

0
0
.
.
.
0



. (13)

Note that (13) has the same structure of (11) except that x is augmented by 1 to be associated
with the uncertain load profile. Consequently, uncertainty only exists at (T + 1)th column of A. Now
we apply the robust optimization in [19], which boils down to the Soyster’s method in our case [20]
such as:

Problem 3:

minx∈F ,y η + β
T

∑
i=1

pi(li + rxi) (14)

s.t.
T+1

∑
j=1

aijxj + ∑
j∈Ji

ûijyj ≤ si, for ∀i ∈ {1, 2, ..., 2T} (15)

Bmin ≤ b0 +
i

∑
k=1

rxk ≤ Bmax, for ∀i ∈ T (16)

T

∑
i=1

xi = 0, (17)

−yj ≤ xj ≤ yj, ∀j ∈ T (18)

−1 ≤ x ≤ 1, (19)

y ≥ 0 (20)

where A = [aij] is a 2T by T + 1 matrix from (11) and (13), s = [η · · · η 0 · · · 0]′ , and Ji is a set of j with
uncertain aij at ith row. It is assumed in [20] that, for j ∈ Ji, aij lies in the interval [aij − ûij, aij + ûij]

where ûij serves as the uncertainty boundary of aij. We see that uncertainty only arises at (T + 1)th
column of A because uncertainty comes from the forecasted load data li in (5) and (9). When x∗ is an
optimal solution of Problem 3, then y∗j = |x∗j | [20], and thus (15) becomes:
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T+1

∑
j=1

aijx∗j + ∑
j∈Ji

ûij|x∗j | ≤ si. (21)

Note that ûij for ∀t ∈ T and j ∈ Ji should be determined by analyzing historical load profiles and
their prediction errors as presented in Section 2.2

Example 1 (Robust optimization). Before extending our work to year-round robust ESS operation in
Section 2.4, we compare the daily results using different optimization methods in Figure 4a. Simulations
parameters are same as in Section 3. As can be seen, if there were no uncertainty in load forecasting, it would
have been possible to minimize peak load by 118 MW as shown in Case 1. We call it offline optimization because
ESS scheduler perfectly knows the future. However, the real load during 9 AM–12 PM and 14 PM–17 PM is
higher than the predicted load, which results in the peak load 138 MW as shown in Case 2. We call it deterministic
optimization because ESS scheduler does not consider load uncertainty but operates in a deterministic way.
To minimize risk under load uncertainty, robust proportions are set; we will discuss how to determine robust
proportion in Section 3.3. As a result, robust optimization in Case 3 sustains the peak load by 119 MW, which
is lower than that of deterministic case. Since the monthly base cost is determined by peak load multiplied by
$8.3/kW, the customer saves more than $166,000 in a month. Note that the charging/discharging schedule of
Case 3 is the result of robust optimization, which both considers ToU and peak minimization under uncertainty.
As shown in Figure 4b, ToU is the lowest during 0–8 AM, so ESS charging is mostly done during that time.
Interestingly, by using ESS, the load during 0–8 AM, which was the valley of the daily load pattern, becomes
same to the daily peak load at 4 PM.
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Figure 4. Result of ESS operation and electric cost in Korea. (a) ESS operation in different algorithms;
and (b) time of use pricing in Korea.

2.4. Year-Round Operation of ESS with Uncertain Load Profile

Based on the daily operation of ESS with uncertain load profile, we now extend it to year-round
operation. Note that year-round operation is not simply the repetition of the daily operation because
of the unique KCI tariff. Indeed it becomes more challenging with load uncertainty recalling that
unmanaged peak load, even only for 15 min, may affect the base costs of the 12 months. Under this
circumstance, to be practically applicable to industry customers, we further develop a year-round
robust ESS operation algorithm as shown in Figure 5.
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m = 1

n = 1

Estimation peak load :          𝐸𝑚
𝑛  

𝐸𝑚
𝑛 ≥ (1− γ)𝑃 𝑚

𝑛

Subject to constraints of Problem 3

𝑃 𝑚
𝑛 =  max

𝑚 ′∈       
( max
𝑛 ′∈ 𝒩𝑚
𝑃𝑚′ ,𝑃

𝑛′)  

𝐶𝑚
𝑛 =   𝑝𝑖(𝑑𝑖

𝑛 + 𝑟𝑥𝑖
𝑛)

𝑖∈𝒯   
 

n = n + 1
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m = m + 1

𝐶𝑦𝑒𝑎𝑟
 =   𝐶𝑚

𝑡𝑜𝑡𝑎𝑙
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Yes
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No
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𝑛)

𝑇
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Subject to constraints of Problem 3
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Subject to constraints of Problem 3

Figure 5. Overall structure of year-round operation of ESS.

Let n be a day index and m be a month index. Let dn
i and xn

i denote the realized load profile and
the charging/discharging rate of day n at time slot i, respectively. Then, the daily peak load is denoted
by Pn = maxi∈T dn

i + rxn
i , and the monthly peak load is denoted by Pm = maxn∈Nm Pn where Nm is

a set of working days of month m. Let P̄n
m denote the historical peak load from the past 12 months

excluding spring and fall (which is denoted byMm), and up to the day n of month m. Then, we have:

P̄n
m = max

n′≤n

(
max

m′∈Mm
Pm′ , Pn′

)
. (22)

Let En
m denote day-ahead peak load estimation of day n of month m. Then, based on En

m,
ESS determines whether to control peak load or not. If the estimated peak load is less than the
historical peak P̄n

m, passive peak load control is performed; ESS operates just to minimize the ToU cost
with the peak load constrain of P̄n

m. The term ‘passive’ implies that peak control is not in the objective
function but only in the constraint (case: No in the flowchart). By contrast, if a new peak is likely
to occur tomorrow, ESS operates to jointly minimize peak load as well as ToU cost in the objective
function at the same time (case: Yes). The subtlety lies in that, if the realized load happens to be a lot
higher than the expected value En

m, the peak load may exceed P̄n
m even though it could have been kept

lower than P̄n
m.

In order to avoid this subtle case, we conservatively design the algorithm by discounting P̄n
m by

γ ∈ [0, 1] so that peak load control can be done more often. P̄n
m is then updated everyday as in (22).

Let Cn
m be the ToU cost of day n of month m, which is simply given by:

Cn
m = ∑

i∈T
pi(dn

i + rxn
i ). (23)

When n reaches the end of the month, the monthly electricity bill, which is the sum of base cost and
the ToU cost is computed by:

Ctotal
m = pb P̄n

m + ∑
n∈Nm

Cn
m. (24)

Finally, after year-round operation, the yearly cost Cyear is computed.
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3. Simulation Results

In this section, we present the simulation results based on the proposed algorithms. We compare
the result based on four representative cases and analyze the performances in terms of total cost
minimization and peak reduction under different experimental environments.

3.1. Experimental Set-Up

The load profile is predicted by DSHW algorithm using past two weeks of data. Based on the
prediction error distribution obtained in the past, we set the robust proportion, which was explained in
Section 2.1. The average power consumption is measured every 15 min so is the operational decision
of ESS charging/discharging.

Figure 6 represents the load profile of the car factory which is used in whole of simulation results
in Section 3. In the load profile, we see repetitive load patterns which have specific peak values that
make it appropriate to use ESS in KCI tariff system.

Day
Time (hour)

0

20

600

40

60

80

100

Lo
ad

 (
M

W
)

120

140

160

180

400
20

15200 10
5

0

Figure 6. Real load profile in car factory.

Table 1 summarizes the simulation parameters. The unmanaged peak load is more than 150 MW,
the capacity of ESS is 400 MWh, and charging/discharging efficiency of ESS is 90%. Battery operating
SoC range is set between 10%–90% because battery degradation is severe when SoC level is below
10% or higher than 90% as depicted in [21]. In calculating the cost, we do not include the cost of air
conditioners that is required to keep the ESS room temperature moderate assuming that customers’
load is dominant so the load of air conditioners is negligible. Weighting factor β is the inverse of
base electricity price. We use battery price quoted from the practical data [22], and the battery price
per kWh is $150, and total cycle life is about 3500 cycles when battery is used with 80% depth of
discharge (DoD).
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Table 1. Simulation parameters for case studies.

Parameters Symbols Values (Unit)

Time interval − 15 min
Time slot i 1–96 (based on 24 h)

Battery price − $150/kWh
Battery type − Battery C [22]

Battery efficiency − 90%
Operational SoC range − 10%–90%

Weighting factor β 1/base electricity price
Initial SOC b0 10%

Battery capacity B 400 MWh
Maximum battery power rate r 200 MW

Base electricity price pb $8.3/kW
Time of Use Pricing pt $0.05–0.15/kWh

3.2. Case 1: Comparison of Peak Reduction

In this section, we show how appropriate robust optimization is to reduce peak load in a real
situation. Figure 7a shows the monthly peak loads for two years in four different cases: offline,
deterministic optimization, robust optimization and no ESS. In the case of offline, we assume that the
optimizer perfectly knows the future. Offline case achieves the best result and is provided to compare
the results of other algorithms. Deterministic optimization is the case when the algorithm solely relies
on predicted data in a deterministically, i.e., does not consider load uncertainty. Thus, deterministic
optimization can be vulnerable to prediction errors as we will see shortly. Robust optimization is the
case when load prediction uncertainty is considered. No ESS is the case when ESS is not installed and
thus serves as a baseline. As can be seen in Figure 7a, the monthly peak loads obtained from year-round
robust operation are between no ESS and offline cases. Interestingly, however, the deterministic case is
sometimes even worse than no ESS case because it is vulnerable to prediction error; when the peak
load is wrongly managed due to load prediction error from August to October, the historical peak load
keeps excessively high, which discourages the peak load control in the subsequent 11 months. We call
it the memory effect due to the failure of peak load control.

Month
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P
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k 
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W
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(a)
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2 4 6 8 10 12 14 16 18 20 22 24

P
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Robust
No ESS

(b)

Figure 7. Peak load control comparison. (a) Monthly peak load; and (b) peak load within one year
historical peak load.

Figure 7b shows the historical peak load, which determines the base price of each month and may
last for the subsequent 11 months. It is interesting to observe that even in the offline case, the historical
peak load remains around 170 MW for up-to one year. This is due to the peak load of December



Energies 2017, 10, 416 11 of 15

in the previous year (which is not shown in the figure), before the proposed algorithm is applied.
This implies that it takes one year to see the effect of installing ESS and peak load control. However, the
historical peak values finally decrease in the second year for the case of offline and robust optimization.
By contrast, we see that deterministic optimization suffers from unexpectedly high peak load, and
even worse than no ESS case.

3.3. Case 2: Monte Carlo Simulation to Determine Proper Robust Proportion

Before applying the proposed algorithm into real data, we discuss how to determine robust
proportion, ûij/aij in (15) by analyzing the distribution of prediction errors. As shown in Figure 8,

the error distribution of
(

li−di
di

)
follows normal distribution N (µ, σ2) with µ = 0.0457 and σ = 0.0963

(i.e., almost zero mean and around 10% of error in average). To observe the effect of prediction
error distribution on peak load and to derive proper robust proportion, we perform a Monte Carlo
simulation by generating a large set of load profiles that are deviated from the load prediction with σ

varying from 0 to 0.2.

Figure 8. Error distribution of load profile.

Figure 9 shows the result of peak value and electricity bill for various robust proportions and
σ. We focus on peak value because it affects electricity bill for up-to one year. In Figure 9a, we see
that robust proportion that minimizes peak load increases as σ grows. Furthermore, excessive robust
proportion is not beneficial at all. This is because unnecessarily conservative operation makes η become
high. It is interesting to see that the peak values are not sensitive to the choice of robust proportion.
The property of insensitivity is desirable in real operation because exact error distribution is hard to
know in advance. Based on the observation in Figure 9a we set the robust proportion as 10% for
operation with real data in the subsequent section. Figure 9b shows the electricity bill, which is the
sum of peak cost and ToU cost. Even though electricity bill is insensitive to robust proportion, there are
severe undesirable results when robust proportion is too small or too high, e.g., below than 2.5% or
higher than 22.5%. This is because when the proportion is set below than 2.5%, there is not enough
consideration of uncertainty to minimize peak load and cost. In addition, it is hard to reduce peak
load if we set robust proportion too high because some portion of ESS is not utilized at all. This is also
observable when σ is zero.
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Figure 9. Result of Monte Carlo simulation. (a) Peak load; and (b) electricity bill in different
robust proportion.

3.4. Case 3: Cost Comparison for Year-Round Operation

Now we present the results of total cost for year-round operation using the proposed algorithm
in Section 2.4. Simulation is performed using two years’ load data. Note that we focus on the second
year of operation because it takes one year to be effective due to the memory effect as explained in
Section 3.2.

In Figure 10a, we compare the electricity bill without considering battery wear-out cost during
operation. As can be seen, electricity bill with robust optimization lies between that of the deterministic
case and the offline case. The case of deterministic optimization is almost same to no ESS case, which
shows the importance of employing robust optimization. Figure 10b shows the case when battery
wear-out cost is computed based on wear density function [18] :

Ncycle(D) =
a

Db (25)

In (25), D denotes the DoD of battery and Ncycle means the battery cycle life at the level of
DoD. a and b are constant variables which determine by battery characteristic. Using these variables,
we could apply wear-out density function W(s) to define a battery wear-out cost in each time slot,

Battery price (USD)

Ncycle(D)× 2× D× Battery capacity (kWh)× µ2 =
1
D

∫ 1

1−D
W(s)ds (26)

where µ denotes the charging/discharging efficiency of battery operation, and s is the SoC level.
By differentiating both sides in (26), the wear-out density function W(s) is derived as follow,

W(s) =
Battery price (USD)

2× Battery capacity (kWh)× µ2 ×
b× (1− s)b−1

a
= κ × b× (1− s)b−1

a
. (27)

In ESS optimization process, battery SoC level is calculated in each time slot which makes it
possible to calculate total wear-cost by integration of W(s) in each time slot. By applying the battery
wear-out density function in (27), total cost of the deterministic case becomes even higher than that of
no ESS. As a result, robust optimization can save $2,004,200 per year compared with no ESS case.
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Figure 10. Cost comparison in different cases. (a) Electricity bill; and (b) total cost including battery
wear-out cost.

3.5. Case 4: Battery Capacity and Robust Proportion to Minimize Total Cost

As discussed so far, robust optimization is a proper way to reduce total cost in a real environment.
However, to minimize total cost, we should consider the proper battery capacity and robust proportion
simultaneously.

Figure 11 represents the result of electricity bill for different robust proportion and battery capacity
considering battery wear-out cost in (27). In Figure 11a, the minimum electricity bill is $144,230,000
when the battery capacity is 700 MWh and robust proportion is 10%. Figure 11b shows the total cost
including both electricity bill and battery wear-cost, and the minimum total cost is $165,138,000 when
battery capacity is 600 MW and robust proportion is 10%. Note that the desired battery capacity is
reduced because battery cost is considered.
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Figure 11. Cost comparison depending on ESS capacity and robust proportion. (a) Electricity bill; and
(b) total cost including battery wear-out cost.

We summarize the whole of results using different algorithms in Table 2, which shows the
electricity bill, peak load of the year, ESS wear-out cost and the total cost. By using robust optimization,
we save $4,585,000 per year compared with the case of no ESS. Furthermore, electricity bill is reduced
by $19,840,000 per year. Considering that the ESS installation cost is $150/kWh × 400,000 kWh =
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$60,000,000, this result implies that return on investment is 3.02 year. The peak load is reduced by
more than 3320 kW per year. Since this peak load affects for the next 11 months, the reduced peak load
cost is 3320 kW × $8.3/kW × 12 months = $330,672. Since the total peak cost per year is $17,446,932,
peak cost is about 10.6% out of the electricity bill case by case. When robust optimization is compared
with deterministic case, $19,383,000 is saved.

Table 2. Comparison of different algorithms.

Algorithms Electricity Bill ($) Max Peak Load (kW) ESS Wear-Out Cost ($) Total Cost ($)

Offline 142,520,000 145,530 14,490,000 157,010,000
Deterministic 159,760,000 342,870 19,788,000 179,548,000

Robust 144,910,000 171,850 15,255,000 160,165,000
No ESS 164,750,000 175,170 0 164,750,000

4. Conclusions

In this paper we propose novel algorithms to minimize the total cost under the Korea commercial
and industrial tariff system. In doing this we considered peak load as well as ToU in addition to
the regulation of ESS operation. Because the monthly base cost is determined by the 15 min-average
peak power consumption and it may affect for 12 months, peak load control should be performed
by accurately predicting load profile. However, load prediction errors inevitably exist, and thus we
leveraged robust optimization for daily ESS operation. We then extended it to year-round ESS operation
based on either active or passive peak load control combined with ToU minimization. By performing
Monte Carlo simulations we demonstrated that the proposed algorithm is insensitive to the choice
of robust proportion, which makes our algorithm practical. We also considered battery degradation
cost using battery wear-out density function. Our extensive simulation with a car manufacturing
factory for 24 months confirmed that the proposed algorithm can reduce the peak load by 49.9% and
the total cost by 10.8% compared to the case of deterministic optimization. Future work could address
when ESS operation is combined with renewable energy, e.g., photovoltaic, which also requires the
prediction of renewable generation but generation uncertainty exists.
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