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Abstract: In this paper, we propose a dynamic economic dispatch (DED) model with sharing
of responsibility for supply–demand balance under uncertain demands in a microgrid (MG).
For developing the proposed model, an energy band operation scheme, including a tie-line flow
(TLF) contraction between the main grid and the microgrid (MG), is constructed for preventing
considerable changes in the TLFs caused by DED optimization. The proposed scheme generalizes the
relationship between TLF contractions and MG operational costs. Moreover, a chance-constrained
approach is applied to prevent short- and over-supply risks caused by unpredictable demands in the
MG. Based on this approach, it is possible to determine the reasonable ramping capability versus
operational cost under uncertain power demands in the MG.

Keywords: chance-constrained approach; dynamic economic dispatch (DED); model predictive
control (MPC); energy band operation scheme; tie-line flow (TLF)

1. Introduction

Distributed energy resources (DERs), such as photovoltaics (PVs), wind turbines (WTs), micro
turbines (MTs), and storage devices, are expected to play an important role in the electricity supply
system and the low-carbon economy in future. However, the greater challenge is to determine the
extent to which the DERs may be adopted in a power system. In particular, an excessive supply of
DERs will produce a load balancing problem under time-varying power consumption and renewable
resource generation [1].

Owing to energy generation limits and economic concerns, the system operator (SO) of a main
grid must secure adequate energy resources in advance and solve the dynamic economic dispatch
(DED) problem. The DED problem involves determining a method of reducing operational costs
based on load demands over the N-step horizon. In computing, it has become increasingly difficult
to determine the optimal resource allocation for the DED problem in growing bulk-power systems,
and it is impracticable to economically manage individual DERs because of their dimensional and
computational complexities. Thus, an interconnected microgrid (MG) can be used to reduce the
complexities of the DED problem in a main grid by independently managing the assigned DERs.

To minimize operating costs while considering the forecast of demands in a main grid, several
studies have been conducted on the design of control structures and models [2,3]. Accordingly, many
DED model designs have been developed for MGs [4–11]. In [4], for example, a centralized controller
was proposed to monitor the execution of a scheduling plan, interrupt the monitoring process to
input new information, and repair the plan during the execution in each time interval. In a similar
study, Chen et al. presented a smart three-phase strategy using forecasting, storage, and management
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modules [5]. Their study evaluated the economic performance of energy storage systems (ESSs) based
on the respective capital, operating, and maintenance costs. To further develop the control algorithms
from [4,5], Parisio et al. proposed a linear mixed-integer programming model for DED in an MG
without considering the fluctuations in the tie-line flow (TLF) [6], and Olivares et al. proposed an
energy management system (EMS), architecture and algorithm for isolated MGs [7]. These studies
included unit commitment constraints, selling and purchasing of energy to/from the main grid, and the
curtailment schedule. Meanwhile, the distributed or decentralized control structure-based DED models
in MG have been also founded. In [8], Mahmoodi et al. proposed a distributed economic dispatch
strategy for MGs. Based on this distributed control structure, a centralized optimization problem
with computational complexity is decomposed into multiple optimization problems defined over
nanogrids. In [9–11], the architectures for managing multi-stage operation scheduling are proposed
through multi-agent system approach. As a decentralized control structure, these studies were to
provide the highest possible autonomy for different DER units and loads. However, in these control
structures, the special protocols and procedures to handle the information are yet to be studied [12].

Despite the advances made in the above research, it remains necessary to develop a method of
sharing and distributing the power outputs of the controllable generation resources under uncertain
demands between the main grid and the MGs. Most of the strategies as per previous studies can
increase potential risks or operational costs in the main grid, because those studies focused on
computing the control signals by reducing the costs of MG operation even though the main grid
is interconnected. This means that TLF, which is not in the isolated MG, is a very important variable to
optimize the objective function in the interconnected MG. Besides, more a detailed modeling of the
uncertainty should be required to be enough to ensure the reliable operation of the system. This is
because determining the amount of energy reserve to be secured is very important for maintaining the
system reliability while minimizing operational costs. The primary objectives of our present study are
the following.

• Development of a model predictive control (MPC)-based controller for minimizing the MG
operating costs, including the cost of load shedding.

• Design of a sharing scheme for demand uncertainties between the main grid and the MG (energy
band-based operation scheme).

• Generalization of the relationship between TLF contractions and MG operational costs.
• Contemplation of the change in operational costs according to the reliability level required in

the MG.

In order to obtain more an optimal and reasonable solution in the interconnected MG, the
centralized control model for DED in MG is designed, and we newly specify the variables required
for TLF operation. These variables include the energy contractions in each time interval between the
main grid and MG as well as the energy band operation scheme to improve the system reliability.
The remainder of this paper is organized as follows. In Section 2, the state transition models for MTs,
battery energy storage system, tie-line power flow, and unbalanced demand control are introduced to
apply the techniques in the MPC. Section 3 presents the proposed energy band operational scheme
to share demand uncertainties between the main grid and the MG. Section 4 presents the design of
the chance-constrained approach for considering the demand uncertainties as well as the relationship
between system reliability and operational costs in the MG. Section 5 presents the formulation of the
objective function through the MPC-based approach. Section 6 illustrates a numerical study conducted
on the proposed control model. The conclusions are presented in Section 7.

2. MPC-Based Microgrid System Modeling

Figure 1 depicts a schematic control diagram for an interconnected MG. As shown in this figure,
the present research assumes that the MG is centrally controlled and managed by an MG central
controller (MGCC), which has been studied in [13,14], and that the control signals are computed by
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considering predicted demands over the N-step horizon and energy contracts with the main grid.
In this section, the key features of the controllable resources considered in this research are described.
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Figure 1. Model predictive control (MPC)-based operation structure in an interconnected microgrid
(MG): (a) information flows; (b) block diagram of an MG central controller (MGCC). TLF: tie-line flow;
EB: energy band; DER: distributed energy resources.

2.1. Micro Turbines

In micro turbines (MTs), the ramp and power output constraints are mainly considered. With these
considerations, the state transition model and constraints of NG micro turbines are defined as:

Pk+1
G = Pk

G + uk
G = AGPk

G + BGuk
G (1)

Pk
G = [ Pk

G,1 · · · Pk
G,i · · · Pk

G,NG
]
T

(2)

uk
G = [ uk

G,1 · · · uk
G,i · · · uk

G,NG
]
T

(3)

Pmin
G,i ≤ Pk

G,i ≤ Pmax
G,i , for 1 ≤ i ≤ NG (4)

umin
G,i ≤ uk

G,i ≤ umax
G,i , for 1 ≤ i ≤ NG (5)

where AG and BG are NG-by-NG identity matrices.

2.2. Energy Storage

Unlike the case of an MT, the state-of-charge (SOC) and power output constraints are of primary
concern in the case of energy storage. This element is not significantly affected by the generation ramp
such as in Equation (5); nevertheless, it involves a new and different constraint (e.g., SOC). The state
transition and constraints of the battery energy storage can be expressed as:

Pk+1
B,i = Bdisuk

dis,i + Bchuk
ch,i = BBuk

B,i (6)

Sk+1
B,i = Sk

B,i + ηdis,iuk
dis,i + ηch,iuk

ch,i (7)

Pk
B = [ Pk

B,1 · · · Pk
B,i · · · Pk

B,NB
]
T

(8)

Sk
B = [ Sk

B,1 · · · Sk
B,i · · · Sk

B,NB
]
T

(9)
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uk
B = [ uk

B,1 · · · uk
B,i · · · uk

B,NB
]
T

(10)

Smin
B,i ≤ Sk

B,i ≤ Smax
B,i , for 1 ≤ i ≤ NB (11)

Pmin
B,i ≤ Pk

B,i ≤ Pmax
B,i , for 1 ≤ i ≤ NB (12)

uk
dis,i ≤ 0 , for 1 ≤ i ≤ NB (13)

0 ≤ uk
ch,i , for 1 ≤ i ≤ NB (14)

In addition, BB = [1, 1] and uB = [udis, uch]T. As shown in Equations (6)–(14), the battery model
has two independent control inputs, one for charging, uch, and the other for discharging, udis.

2.3. Tie-Line Power Flows

The state transition and constraints of a single tie-line power flow are given by:

Pk+1
tie = Pk

tie + uk
tie = AtPk

tie + Btuk
tie (15)

Pmin
tie ≤ Pk

tie ≤ Pmax
tie (16)

where At and Bt have a value of 1.
The form of this model is similar to that of the MT state model. However, scheduling Pk+1

tie in (15)
depends on the system marginal prices (SMPs) of the main grid and the MG. In other words, the
tie-line power flow is not directly associated with power production and consumption.

2.4. Controls for Unbalanced Power Demands

Two types of uncontrollable resource allocation conditions exist for meeting an uncertain demand:
energy shortage and excess supply. In these cases, the control state transition and constraints of the
two conditions can be represented as:

Pk+1
curt = uk

curt (17)

Pk+1
shed = uk

shed (18)

uk
curt ≥ 0 (19)

uk
shed ≤ 0 (20)

Here, the two control options are energy curtailment in the case of an excess supply, and load shedding
in the case of a resource shortage.

2.5. Concatenated State Transition Model

The concatenated state transition matrix in the MG is developed using Equations (1)–(20). The state
transition model has the following form.

xk+1 = Axk + Buk (21)

where,
xk = [ Pk

G Pk
B Pk

tie Sk
B Pk

curt Pk
shed ]

T
(22)

uk = [ uk
G uk

dis uk
ch uk

tie uk
curt uk

shed ]
T

(23)
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where both A and B are expressed as a matrix with (NG + (2 × NB) + Ntie + 2)-by-(NG + (2 × NB) + Ntie + 2),
respectively. Based on Equation (21), the state predictive model over the N-step horizon is given by:

Xk|k =


A
A2

...
AN

xk +


B

AB
...

AN−1B

0
B
...

AN−2B

· · ·
· · ·
. . .
· · ·

0
0
...
B




uk|k
uk+1|k

...
uk−1+N|k


= Mxxk + CuUk

(24)

3. Energy-Band Operation Scheme

A DED is a long-term operation schedule for minimizing the operating cost of resource generation
by forecasting the next N-demands every 5 to 60 min. Operational efficiency and optimization can
thus be effectively achieved by sharing the resource and demand information among the participants,
including the SO and MG operators.

Compared to the main grid, the MG has the major complication that the demand significantly
depends on the uncontrollable power sources [15,16]. Moreover, the demand can have relatively
sharp fluctuations caused by a few customers with a large electrical demand. Previous MG studies
endeavored to develop an estimation model to forecast the MG demand patterns. Despite the
contributions of these models, the demand estimation errors in an MG cannot be ignored owing
to the high volatility. Figure 2 shows the differences between the actual power demand and the
day-ahead forecasted demand in an MG, with a peak load of approximately 200 kW, in the isolated
Gasa Island in Korea [17]. Each demand is calculated as the summation of the load and renewable
power outputs. Over the five days of the investigation, this system experienced a large number
of forecasting errors owing to the uncertain information on the renewables and loads in the future.
Through the existing MG operational scheme, the responsibility for supply–demand balancing is
transferred to the SO when this MG system is interconnected with the main grid.

To economically share the uncertainties in an interconnected MG, the present research considers
an energy band (EB) operation scheme. Figure 3 shows the basic concept of the EB operation of a TLF.
A rescheduled TLF, Pk

tie, is expressed as:

Pk
tie,c − PRB

tie ≤ Pk
tie ≤ Pk

tie,c + PRB
tie (25)

Pk+1
tie,c − PRB

tie − Pk
tie ≤ uk

tie ≤ Pk+1
tie,c + PRB

tie − Pk
tie (26)

where Ptie,c is the amount of contractual TLF (CTLF), and PRB
tie is the size of the energy band used to

shift the demand uncertainties to the SO by the CTLF.
Equation (26) describes the new constraints under the multi-stage control and the rescheduled

TLF given in Equation (25). In this scheme, there is no additional energy cost for a breach of the
CTLF within the EB; this is similar to the previous power exchange market for frequency control [18].
However, in contrast to the exchange market, the rescheduling information should be confirmed with
the SO before changing the TLF schedule from Ptie,c, because it is a schedule of the resource generation
and not a short-term operating scheme. This information can assist the SO in minimizing the operating
costs and maintaining a stable operation through resource allocation.
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4. Designing Chance-Constrained Approach for DED in an MG

Most conventional DED studies have presented precise information: i.e., a known probability
mass function with a few events. However, such knowledge is rarely available in practice, and the
schedule, computed through a few scenarios, might be infeasible or exhibit poor performance when
implemented. This section introduces the proposed chance-constrained approach for the MGCC and
contemplates two different standards, the value of lost load (VOLL) and the required system reliability,
for optimization.

4.1. Ramping Capability with CTLF Consideration

At each time k, the upward and downward ramping capability (URC and DRC) for the next
period, k + 1, is computed as:
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rk
u =


NG
∑

i=1
min(Pmax

G,i − Pk
G,i, umax

G,i ) + min(Pk+1
tie,c + PRB

tie − Pk
tie, Pmax

tie − Pk
tie)

+
NB
∑

i=1
min( 1

ηi,dis
(−Smin

B,i + Sk
B,i),−Pmin

B,i + Pk
B)

 (27)

rk
d =


NG
∑

i=1
max(Pmin

G,i − Pk
G,i, umin

G,i ) + max(Pk+1
tie,c − PRB

tie − Pk
tie, Pmin

tie − Pk
tie)

+
NB
∑

i=1
max( 1

ηi,ch
(−Smax

B,i + Sk
B,i),−Pmax

B,i + Pk
B)

 (28)

where,
max(a, b) = {y|y ≥ a and y ≥ b , y ∈ {a, b}} (29)

min(a, b) = {y|y ≤ a and y ≤ b , y ∈ {a, b}} (30)

By securing rk
u, the MG operator can avoid the operational risk caused by resource shortage if the

future power demand at time k + 1 is less than the summation of the given power demand Pk
D and the

upward ramping capability rk
u. Equation (28) relates to the future energy dissipation (or curtailment)

at time k + 1.
In determining the ramping capability, it is necessary to reflect the CTLF and EB, because a change

in CTLF affects the demand patterns in the MG; moreover, it may cause load shedding or energy
curtailment. For example, the TLF at time k can be set to the maximum value, Pk

tie,c + PRB
tie , while the

SMP in the MG is higher than that in the main grid. In this case, the URC from the TLF can have
a negative value when Pk+1

tie,c is lower than Pk
tie,c. Hence, to reduce load shedding or energy curtailment,

the values of URC and DRC should reflect the change in CTLF and EB over the predictive horizons.

4.2. Chance-Constrained Approach for Ramping Capability

To prevent system operation risks arising from resource shortages or excessive supply conditions,
the MG operator employs a strategy for determining the proper amount of URC and DRC for future use.
In this study, a chance-constrained approach is adopted to maintain an adequate reliability level for
the predictive horizon NR, where NR ≤ N. Assuming that wk is an independently distributed random
variable, which provides the uncertainties of the forecasted demand information, the constraints at
each time k have the mathematical form:

prob
(

P̂k+1
D − P̂k

D + wk − rk
u ≤ 0

)
≥ ηk

shed (31)

prob
(

P̂k+1
D − P̂k

D + wk − rk
d ≥ 0

)
≥ ηk

curt (32)

Figure 4 shows the method of determining the amount of energy reserve in the proposed
approach. In this case, it is assumed that the forecasting engine provides the forecasted demand
and the probability distribution function (PDF) of the forecasting errors in each time interval based on
the actual demand, weather information, and historical data. Based to this information, the MGCC can
handle the supply–demand balance for a designated reliable level, given by Equations (31) and (32).
In this case, the chance-constrained approach can be easily realized and implemented, even though
most of the chance constraints are nonlinear and difficult to handle, because the cumulative distribution
function of wk in each time interval is a known continuous function. Thus, Equations (31) and (32) can
be written in the following form:

rk
u ≥ Pk

u (33)

rk
d ≤ Pk

d (34)

where Pk
u and Pk

d are the minimum and maximum constant values that satisfy (31) and (32), respectively.
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Since convex functions guarantee the convexity or concavity of their composition [19],
the constraints, given by Equations (33) and (34), are convex. Accordingly, the optimization process
can be developed through a numerical analysis method. This research uses sequential quadratic
programming (SQR) to optimize the generation resource allocation schedule.
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4.3. Value of Lost Load versus System Reliability in Optimization

VOLL, which is the cost of an outage to customers or the price that an average customer would
be willing to pay to avoid an involuntary interruption of their electricity supply [20], is an important
parameter for managing the MG economically. The MG operator should consider the extent to which
the URC is economical according to the VOLL. However, it is a well-known fact that determining the
VOLL is very difficult, and the major reasons for the difficulty are as follows.

• Each electricity customer in the power system has different attributes in terms of electricity outage
or power quality degradation.

• The value of electricity demand changes with time.
• Load shedding in the power system is an economic problem as well as a reliability problem.

For these reasons, the conventional two-stage or scenario-based approach will have limitations
during operation, because they usually assume that the VOLL is a fixed and constant price.

The chance-constrained approach can provide a stable operating condition for the designated
reliability level. Therefore, the MG operator can set the reliability level based on extensive consultations
with the local customers in the MG. Otherwise, to minimize the operating cost, the MG operator can
approach the subject by applying various reliability levels versus a scenario of VOLL over time. In this
case, the operational cost can be expressed as a value over the convex curve computed using different
degrees of URC.

5. Mathematical DED Formulation

Considering the physical and operational constraints given in Equations (1) to (34), the objective
function in (35) represents the cost for the multi-stage operation, including the active power outputs of
the controllable DERs, load shedding, and energy dissipation at each time k.
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min f0 =
N
∑

k=1
Costk

=
N
∑

k=1

(
NG
∑

i=1
Ci(Pk

G,i) + ρk
Ntie
∑

i=1
Pk

tie,i +
NB
∑

i=1
Cwear

i (Pk
B,i)− ρshedPk

shed

) (35)

where,
NG

∑
i=1

Pk
G,i +

NB

∑
i=1

Pk
B,i + Pk

tie − Pk
res − Pk

shed = P̂k
D (36)

Ci(Pk
G,i) = aiPk

G,i
2
+ biPk

G,i + ci (37)

Cwear
i (Pk

B,i) = Cbw,iPk
B,i (38)

Interestingly, the proposed control scheme computes the optimal signals through a single
forecasted scenario. The scenario generation process is required only to develop the PDF at each
time rather than to compute the complicated objective functions including multiple scenarios. On the
other hand, in the scenario-based approach, which is widely applied in stochastic problems, there
is a difficulty in determining the breadth of the scenario of the future [21], because the number of
scenarios in the optimization process affects the credibility of the computed solution and also increases
the computation cost. Without loss of generality, the computation cost in the scenario-based approach
is increased by a factor given by the product of predicted horizon size and the number of scenarios.

During the control process, energy imbalances can occur at the stage k + i because of the high
reliability levels required for the demand at the next stage k + i + 1. When a sudden surge of demand
arises, the URC is spontaneously decreased, because the operating points of the DERs can be changed
near their physical maximum outputs. These outputs may be unable to secure the URC for the next
stage. In this case, the strict constraints of the URC can increase the size of load shedding. This means
that it is necessary to balance the economic values of the quantity of load shedding at the k + i stage
and that it is important to maintain the specified reliability levels for the demand at the next stage
(k + i + 1). To manage the MG as flexibly as possible, the option of MGCC reducing the corresponding
reliability levels is suggested at the unsettled and unstable time horizons until the levels do not affect
the load shedding.

6. Numerical Examples

With the predictive horizon N to 24 h, the proposed EB-based control scheme was implemented by
updating the control signals hourly. Analysis was performed on the operation results in the modified
Gasa Island MG that involved three MTs and one battery energy storage [17]. Table 1 presents the
parameters and initial operating points for the given system. To analyze the operational results of the
energy storage among different control strategies, the wear cost was assumed as zero. Figure 5 shows
the day-ahead forecasted demand, the market prices for electrical energy (or contracted energy prices)
at the main grid, and the CTLF schedule for the next 72 h. Here, the CTLF schedule was developed by
optimizing Equation (35) based on a deterministic day-ahead forecasted demand. In this simulation,
to implement a stochastic environment system easily, it was assumed that wk in each time interval
was represented by an independent and identically distributed random variable with a Gaussian
distribution N(µk, σ2

k ). In this case, µk is designed to ensure that the pattern of the forecasted demand
is preserved in the actual demand scenario, and the stochastic demand scenario is generated by an
Ornstein–Uhlenbeck mean reverting random walk model as given below [22,23].

Pk+1
D = Pk

D + α
(

P̂k
D − Pk

D

)
+ wk (39)
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Pk
D is the actual demand. Table 2 lists the parameters computed by analyzing the data of the Gasa Island

MG and the VOLL. This research especially considers various VOLLs in the range of 3–10 $/kWh,
because the VOLL significantly affects the operational results, i.e., the operating costs.
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Table 1. Simulation data for DERs and tie-line.

Type Parameters and Values

MT #1

Pmin
G,1 Pmax

G,1 umin
G,1 umax

G,1 P0
G,1

20 80 −10 10 60
a1 b1 c1

0.35 0.095 1.5 × 10−4

MT #1

Pmin
G,2 Pmax

G,2 umin
G,2 umax

G,2 P0
G,2

20 80 −10 10 50
a2 b2 c2

0.40 0.115 1.4 × 10−4

MT #3

Pmin
G,3 Pmax

G,3 umin
G,3 umax

G,3 P0
G,3

20 100 −10 10 40
a3 b3 c3

0.45 0.125 1.2 × 10−4

Tie-line
Pmin

tie Pmax
tie P0

tie
−60 60 50

Battery energy storage

CB Pmin
B Pmax

B P0
B ηdis

80 −10 10 0 1.1/80
ηch Smin

B Smax
B S0

B Cbw
0.9/80 20 80 50 0

Table 2. Parameters for the stochastic process and value of lost load (VOLL).

Parameter Value

Mean reverting ratio α 0.7
Mean µk P̂k+1

D − P̂k
D

Variation σ 7.42
VOLL ($/kWh) ρshed 3–10
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6.1. Comparison of MG Operation Strategy

In Figure 6, a comparison of the operation results in the interconnected system are shown for
the case when the VOLL is $3/kWh, The MG operator in the given system uses one of the following
operation strategies for optimizing the control signals.

(1) Case 1: As a representative operational strategy of an interconnected MG system, this case does
not have the ramping limitation of the TLF, nor does it consider the necessity of securing the URC
and DRC.

(2) Case 2: The MG operator is required to maintain the CTLF within ±20 kW; however, it does not
consider the necessity of securing the URC and DRC.

(3) Case 3: The MG operator maintains the URC over 2σ, which is approximately 97.2%, where
NR = 24. Conversely, the DRC is required to be below −2σ.

According to the operating conditions of the TLF, the MG operator shares in a different manner
the responsibility for the supply–demand balance under uncertain demand changes with the SO.
In Case 1, very different TLF results are obtained from the predetermined (contractual) TLF scenario,
as shown in region R2 in Figure 6. These results show that the MGCC re-optimizes the control signal
schedules for cost minimization with no tie-line ramp (EB) limitations. As an interesting aspect, the
TLFs are found to change significantly to about 41.4 kW from 11 h to 12 h with the corresponding
change of actual demand of 21.3 kW. Such large changes in region R2 in Case 1 involve an increase in
potential risks or operational costs in the main grid, despite a significant reduction in operating costs
in the MG The major problem is the decrease in system reliability which is much more critical and
important than the operating cost reduction in MG. This means that the scalability, to adopt MGs in
main grid, can be limited. In the proposed EB-based scheme, the MGCC optimizes the control signal of
the TLF within the EB, as shown in the figure for Cases 2 and 3. Such results are relevant to prevent the
extension of operational problems in the MG, i.e., shortages of energy supply to the main grid, even
though each operational cost is higher compared to that in Case 1. Therefore, sharing of reliability—i.e.,
determining the size of the EB as an operating condition—should be carefully considered, because
each interconnected system has a trade-off between system reliability and operating cost.

In the proposed EB-based scheme, securing adequate ramping capability in the MG is very
important for avoiding the operation risks caused by load shedding or energy curtailment. As shown
in Figure 6 for Case 2, the decreased and restricted control for the TLF may accompany the increase for
the supply–demand balancing problem in the MG. Specifically, the operational costs in Cases 1, 2, and
3 are $1174.1, $1236.7, and $1184.5, respectively, when the VOLL is $3/kWh. Although the operating
cost in the proposed scheme, Case 3, is 0.8% ($10.4) higher than that in Case 1, it is a successful choice
compared to Case 2 because the operation cost is reduced about 4.2% ($52.2). These results show that
the increased responsibility for the supply–demand balance requires the preparation of a plan for
securing the ramping capability of the MG operator.

To pursue profits from energy storage, it is necessary to consider the characteristics of energy
storage or the given MG system conditions. Figure 6 shows that the given energy storage, except in
Case 3, is not sufficiently recharged to restore SOC; this is to ensure profit by discharging the energy in
the future. This is because the round-trip efficiency is set to approximately 82%, which is a normal
value of efficiency in the conventional technique [24]. In the given scenario, arbitrage trading—without
considering the wear cost—could occur while an SMP in the MG during N predictive demand is at
least 1.22 times greater or less with respect to the present condition. This means that the SMPs in the
given MG do not have such a difference, even without the wear cost of energy storage. However,
the energy storage in Case 3 is better utilized than in other cases, because securing the ramping
capability increases the difference among the SMPs in the MG. In particular, the energy storage had
a distinguishable charging process from 29 h to 31 h in region R1, which increases SOC about 22.5%
even though SOCs over the other cases are reduced or not changed. The reason why the battery was
not fully charged is that the charged power was used to secure the URC; the charged power was used
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for supplying power during the period from 36 to 40 h, which is the time interval with relatively high
market price for electrical energy, as shown in Figure 5.
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operational strategies.

Table 3 presents the extent to which the operating cost can change with different VOLL settings.
It can be seen from Table 3 that the operating costs in Case 2 are largely affected by a change in the
VOLL, unlike in Cases 1 and 3. Besides, the amount of load shedding is 18.9 kWh at Case 2. The reason
why the operational costs and schedules in Cases 1 and 3 have not changed is the availability of
sufficient secured reserves, which completely prevent load shedding. According to the results in Case
3, the reliability level should be carefully determined because the reliability level may be set too high.
In other words, the VOLL does not affect the generation schedule developed through the proposed
approach once the MG operator decides the reliability level.

Table 3. Operating costs with different VOLLs.

Parameters
Operation Strategies

Case 1 Case 2 Case 3

VOLL ($/kWh)

0.2 1174.1 1183.7 1184.5
0.5 1174.1 1189.4 1184.5
1 1174.1 1198.9 1184.5
2 1174.1 1217.8 1184.5
3 1174.1 1236.7 1184.5

Using a computer with an Intel Core i5-3570 CPU @ 3.40 GHz and 8 GB RAM, the average and
maximum computation time for optimizing the schedule shown in Figure 6 were recorded as 2.66 s and
4.98 s, respectively. The reason why these impressive results are obtained is that the objective function
has a simple convex form. In addition, as mentioned before, the scenario generation process is required
only to develop the PDF at each time for determining the URC and DRC based on the designated
reliability level. However, in the scenario-based approach, the generated and clustered scenarios
should be inserted into the objective function, and this increases the computational complexity.
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6.2. Effects of Tie-Line Flow Contraction and Reliability Level

Figure 7 shows the average operation results from 15 randomly generated actual demand scenarios
according to different sizes of the EB and different reliability levels. It can be seen that the MG operator
can expect a significant decrease in operating cost by expanding the size of the EB. In all cases, when
the VOLL is $3/kWh, the operating cost decreases as the EB is further secured. In simulation, the
average operation costs (the maximum changes of TLFs) in sizes of EB, 20 kW, 30 kW, and 40 kW, are
$1177.6 (38.0 kW), $1773.4 (40.5 kW), and $1170.9 (48.2 kW), respectively, when the reliability level
is 1σ. For this, the SO may avoid determining a large size of the EB; however, a small size of the EB
can aggravate the economic feasibility in the MG. The current MG systems typically have insufficient
economic efficiency on account of high marginal prices or relatively low reliability compared to the
main grid. In this case, to lead the MG operators to voluntarily participate in this proposed scheme,
additional support—such as incentives for control efforts during uncertain demands, and construction
of eco-friendly generation resources—would be required.

It is necessary to secure a proper ramping capability to prevent operation risks and reduce
operating costs. As shown in Figure 7, when the MG operator secures a URC of more than 2σ, load
shedding almost does not occur, but the operating cost at 1σ is up to 0.7% ($8.4) lower than for the
others. This shows that increasing the reliability level decreases the operation risks caused by load
shedding; however, securing adequate reserves inevitably incurs additional costs. Based on this
relation, the expected average cost is expressed as mentioned before, and a reasonable reliability level
is determined by computing the reliability level that responds to the minimum value of the curve.

To minimize the operating cost, the reliability level should be changed according to the operating
conditions. In Figure 7, it can be seen that the operating costs at 1σ are lower than in the other cases.
However, 1σ could not be an optimal choice if the operating conditions are changed. There are two
key factors for this. First, expanding the size of the EB is to vitalize energy trading to reduce the SMP
caused by uncertain demands in the MG. In simulation for Figure 7, the maximum changes of TLFs in
the different sizes of EB, 20 kW, 30 kW, and 40 kW, are 38 kW, 40.5 kW, and 48.2 kW, respectively, when
the reliability level is 1σ. From the point of view of the MG operator, the responsibility for balancing
supply-demand in MG could be transferred to the SO in main grid, as the use of the expensive generators
due to uncertain demand increases could be reduced. Based on these, an MG operator strategy for
minimizing the operating costs could be to expand the size of EB more rather than increasing the
reliability level. Second, the VOLL is also the key consideration in determining the reliability level.
Some sectors of industry, such as mining, place an extremely high VOLL, exceeding 50,000 $/MWh [20].
Clearly, the higher the VOLL that is set in the MG, the higher is the reliability level that is required.
This means that the average operating cost curves in Figure 7 should be moved to the right.
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7. Conclusions

In this study, an MPC-based controller for optimizing DED problems under uncertain demands
in an interconnected MG was developed. The controller optimizes the control signals of MTs, battery
energy storage system, tie-line power flow, and unbalanced demand control. In order to reduce
operation risks made by the demand uncertainties in MG, the chance-constrained approach was
adopted in stochastic process. In simulation, the process was developed by an Ornstein–Uhlenbeck
mean reverting random walk model. Based on this approach, this study analyzed the relationship
between system reliability and operational costs as well as contemplating the reasonable reliability level
in MG. It provided outstanding results in reducing operating costs and preventing energy imbalances
within a designated reliability level. In addition, to mitigate the effect of considerable changes in
power demands caused by the MG, an EB-based operational scheme was constructed for sharing
the demand uncertainties with the main grid. This scheme could prevent potential risks and reduce
operational costs in the main grid in comparison with previous studies which focused on only reducing
the costs on MG. Based on this scheme, in simulation, the TLF was smoothly managed within the
energy band even though the results from existing interconnected MG operational schemes showed
that TLF changes sharply. In future research, the authors plan to design the structure of a distributed
control model that involves several interconnected MGs.
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Nomenclature

The main symbols that appear in this paper are defined below. Other symbols are defined in the text as they appear.
Constants
NG Number of micro turbines
NB Number of battery energy storage devices
Untie Number of tie-lines
N Predictive horizon size
NR Horizon size of the ramping capability
ηdis(ch) Discharging (charging) coefficient in a state of charge
α Rate of mean reversion of volatility, 0 ≤ α ≤ 1
ρshed Value of the lost load (US $/kW)
Cbw Wear cost for ith battery energy storage (US $/kWh)
ai Quadratic cost parameter for ith generator (US $/kWh2)
bi Linear cost parameter for ith generator (US $/kWh)
ci Constant cost parameter for ith generator (US $)
CB Battery capacity (kWh)
PRB

tie Size of the energy band (kW)

Pmax(min)
x Maximum (minimum) power generation from unit x, where x ∈ {G, B, Tie, curt, shed} (kW)

Smax(min)
B,i Maximum (minimum) state of charge (%)

umax(min)
x Maximum (minimum) ramp generation from unit x, where x ∈ {G, B, Tie, curt, shed} (kW)

Variables
Pk

G,i ith microturbine power output at time k (kW)
Pk

B,i ith battery energy storage power output quantity at time k (kW)
Pk

tie Tie-line power flow at time k from/to the main grid (kW)
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Pk
tie,c Contractual tie-line power flow between the MG operator and the system operator (kW)

Pk
curt Energy curtailment at time k (kW)

Pk
shed Load shedding at time k (kW)

Pk
D Actual electricity demand at time k (kW)

Sk
B,i State of charge in ith battery energy storage at time k (%)

uk
x Control signal for the unit x at time k, where x ∈ {G, B, Tie, curt, shed} (kW)

ρk Market price of electrical energy at time k (US $/kW)
εk Independently distributed random variable with a zero mean
P̂k

D Forecasted (standard) demand at time k (kW)
rk

u Upper ramping capability at time k (kW)
rk

d Down ramping capability at time k (kW)
ηk

shed Required reliability (probability) level to prevent load shedding at time k
ηk

curt Required reliability (probability) level to prevent energy curtailment at time k
Indices
k State time step
G Generator
B Battery
Tie Tie-line flow
Curt Curtailment
Shed Load shedding
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