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Abstract: Demand Response (DR) programs under the umbrella of Demand Side Management (DSM)
tend to involve end users in optimizing their Power Consumption (PC) patterns and offer financial
incentives to shift the load at “low-priced” hours. However, users have their own preferences of
anticipating the amount of consumed electricity. While installing an Energy Management System
(EMS), the user must be assured that this investment gives optimum comfort of bill savings, as well
as appliance utility considering Time of Use (ToU). Moreover, there is a difference between desired
load distribution and optimally-scheduled load across a 24-h time frame for lowering electricity bills.
This difference in load usage timings, if it is beyond the tolerance level of a user, increases frustration.
The comfort level is a highly variable phenomenon. An EMS giving optimum comfort to one user may
not be able to provide the same level of satisfaction to another who has different preferences regarding
electricity bill savings or appliance utility. Under such a diversity of human behaviors, it is difficult to
select an EMS for an individual user. In this work, a numeric performance metric,“User Comfort Level
(UCL)” is formulated on the basis of user preferences on cost saving, tolerance in delay regarding use
of an appliance and return of investment. The proposed framework (UCL) allows the user to select
an EMS optimally that suits his.her preferences well by anticipating electricity bill reduction, tolerable
delay in ToU of the appliance and return on investment. Furthermore, an extended literature analysis
is conducted demonstrating generic strategies of EMSs. Five major building blocks are discussed and
a comparative analysis is presented on the basis of the proposed performance metric.

Keywords: user comfort; DSM; DR programs; appliance utility; EMS; scheduling; BPSO; energy
efficiency gap

1. Introduction

The power sector is one of the most dynamic and ever evolving sectors. According to the “EIA”,
in its International Energy Outlook 2016 [1], worldwide power usage in 2012 was 21.6 trillion kilowatt
hours (KWh), which is expected to increase 69% till 2040, reaching the limit of 36.5 trillion KWh.
Renewable Energy (RE) sources are gaining world-wide acceptance across the globe and are recorded
as the fastest growing energy source. Energy generated by RE sources was incremented at the rate
of 2.6% per year between 2012 and 2014. It is expected that non-fossil fuel consumption will grow
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faster, however; yet, fossil fuels account for 78% of global energy consumption [1]. These statistics
show the rapid consumption of fossil fuels that depicts the utilization of limited resources hastily,
resulting in unpleasant climatic disturbances (carbon emissions). Power usage can be divided into two
major aspects globally, i.e., industrial and residential. Industrial includes production units, transport
and other business-oriented buildings that have to follow strict schedules and time lines; whereas,
the residential sector has more flexibility in Power Consumption (PC) patterns with respect to the
industrial sector. Considering only the U.S., residential buildings consume more than 37% of the energy,
out of which 30% is due to household electrical appliances [2]. Smart homes in the residential sector
relate to ubiquitous computing that incorporates smartness in a home. This smartness includes health,
comfort, energy consumption, safety and security issues within the residential unit [3]. Moreover,
Tolerable PC patterns of smart homes along with their huge part in global PC invited scientists and
engineering industries to think of solutions that can optimize the use of power effectively. As a result,
numerous Demand Side Management (DSM) strategies are developed. DSM programs will only
be effective if power consumers take an active part. Hence, different pricing mechanisms are also
designed [4–7] to motivate power consumers. Advertising “day ahead per hour price” of electricity is
a major pricing mechanism, and shifting electric load to low-priced hours is a promising solution to
lower electricity bills and improve the Peak to Average Ratio (PAR) regarding power usage.

Table 1 represents the list of abbreviations and mathematical notations used in this work.

Table 1. Abbreviations, symbols and mathematical notations.

Energy Management System EMS Demand Side Management DSM
Micro Grid MG Smart Grid SG
Home Occupancy HO Power Consumption PC
Peak to Average Ratio PAR Power Management Controller PMC
Real-Time Pricing RTP Pakistani Rupee (currency) PKR
Inclined Block Rate IBR Critical Peak Pricing CPP
Direct Load Control DLC Return On Investment ROI
Photovoltaic PV User Comfort Level UCL
Renewable Energy RE Number of Appliances N
Time of Use ToU Occupancy Dependent OD
Occupancy Independent OI Particle Swarm Optimization PSO
Genetic Algorithm GA Wind-Driven Optimization WDO
Appliance Waiting Time AWT Multi-User Linear Programming MULP
Multi-Objective GA MOGA Bee Colony Optimization BCO
Binary Particle Swarm Optimization BPSO Energy Information Administration EIA
Expected Appliance Utility EappUtil Expected Cost Savings EcostSavings
Expected ROI EROI User-defined value of EappUtil α

User-defined value of EcostSavings ζ Value of EROI for UCL γ

OD appliances ODAPP OI appliances OIAPP
Delay in ODAPP DOD Average delay avgD
number of ODAPP nOD Cost saving in percentage S
Cost of hour h Ch Power consumed by an appliance Pa
Power consumed by ODAPP POD Power consumed by OIAPP POI
Power consumed by an appliance at hour h P(h,a) Power consumed by all appliances at hour h P(h,allApp)
power consumed in 24 h PT (24) Starting time of scheduling window Pstart

Finishing time of scheduling window P f inish User preferred time of (n-k) appliances UP(n−k)
Power threshold for hour h Thh Power consumption at hour h PCh
Sunny time Tsun Cost during the scheduling window for N appliances CN

T
Charge on battery Bch Scheduling window size in hours T
Probability of switching on an appliance out of schedule PrT

α Delay in ToU of an appliance Dapp

End users of electricity often lack knowledge and are not interested due to different reasons.
To enjoy lower electricity bills, users need to:

• have knowledge regarding the use of EMSs (awareness),
• be able to install EMS (investment) and then,
• get monetary benefits (cost savings).

Distributed energy resources are the need of this era. Energy management solutions need to
include storage devices and microgrids to achieve maximum liberty of utilizing clean and green energy.
In the same context, Graditi et al. in [8] presented an Italian case study reflecting advancements in
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energy storage systems for load shifting concerning energy management. Major emphasis is given
to whether inducting distributed energy storage devices in DR programs plays a role in cost and
load minimization on users and the utility company simultaneously. A Decision Support Energy
Management System (DSEMS) is presented in [9] that reduces the electricity cost by approximately
18%, keeping the comfort level intact. The power sector is in the process of decentralization. For that,
distributed control is needed to achieve the maximum benefits of such decentralization. The authors
in [10] utilized multi-agent systems to investigate the impact of energy storage systems in the residential
sector concerning DR programs. The authors considered a normal U.S. residential unit and developed
an “agent-based stochastic model” to meet energy demands and lower electricity bills.

To address the thermal comfort and electricity savings along with bill reduction, the authors in [11]
taking their work ([9]) further ahead presented innovative control logics to optimize energy consumption.

1.1. Motivation

Load shifting is an easier and realistic solution to lower electricity bills and PAR. However,
shifting of electric load to low-priced hours causes a deviation in the desired ToU of appliances.
This deviation in ToU of electrical appliances tends to increase user frustration or reduce user comfort
considering the utility of delay-intolerant appliances. Hence, it can be stated that appliance utility
diminishes proportionally as the deviation in the desired ToU of appliance increases. In this situation,
the user has two options, i.e., either to bear the delay or “force start” the electric appliance. The force
start option tends to diminish the basic goals of EMS. Although machine learning algorithms try to
adjust the phenomenon of starting any electrical device out of the scheduled range by learning actual
force start incidents, learning is based on the bulk of data for the concerned instance of time, which
requires a longer time period and multiple stages to adjust and give optimality to the desired schedules.
Authors in [12] give such a learning mechanism in energy management systems.

Numerous strategies are developed to minimize this delay in the ToU of appliances, such as
effective constraint formation, categorizing appliances with respect to deviation in ToU along with
different pricing schemes [13], etc. Hence, different energy management solutions result in different
appliance deviation timings, investments and bill reductions.

Every EMS has some merits and demerits, while user satisfaction or user comfort is a relative
term that varies from situation to situation. For instance, energy requirements regarding the offices or
units that work for national interest are different than that of a personal residence. Moreover, there
is a wide gap between energy and cost savings, considering laboratory results and implemented
results [14–17]. The reason behind this is the availability of the force start option as discussed earlier.
If an EMS is chosen wisely, such problems may not occur. This eventually will result in maintaining the
efficiency of the EMS under consideration and effectively save price and energy. Devising a dynamic
performance metric that can give insight regarding the efficiency of any EMS under consideration
prior to installation (focusing user preferences) is a major concern of this work.

Paper organization: The rest of the paper is organized as: Section 2 discusses recent literature
regarding EMSs. In Section 3, the proposed performance metric reflecting optimal selection of an EMS
is presented. The study of basic building blocks regarding EMSs is conducted in Section 4; whereas
simulated results are presented in Section 5. Section 6 presents analysis and policy findings of
all scenarios (the basic building blocks of EMSs) with respect to the proposed performance metric.
The conclusion of this work is given in Section 7, which concludes this paper.

2. Related Work

Residential PC is growing day by day. Moreover, residential PC patterns are flexible with respect
to industrial zones or production units that follow strict schedules. Hence, optimizing the use of power
regarding residencies can result in the reduction of carbon emissions and depletion of natural resources.
Anticipating residential units, EMSs (if chosen wisely) are not only feasible economically, but also
improve the comfort level in the general life cycle [18]. Reduction of electricity bills is an attractive
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aspect of EMSs for the end users. Proposed energy management solutions (in the literature) offer
analytical cost savings within a range of 25% to 75% [19] with respect to baseline calculations.

The authors in [20] performed a survey regarding the role of smart metering in European smart
grid projects. Major emphasis was given to practical and real-time solutions. According to the authors,
there are more than 50 real-time projects that are linked with smart metering to ensure the reliable
flow of information between smart homes and utility; whereas, ZigBee and NB-PLCare the major
communication protocols.

The concept of smart homes and intelligent energy management solutions is reviewed in [21].
This article tries to channelize efforts for more efficient and eco-friendly systems concerning smart
homes. The authors suggested smart grid managers to study real-time user feedback at a systemic level.

Every appliance has its specific nature of use, and certain constraints can be formulated on its use.
The authors in [22] presented an activity-aware building automation system that is able to switch off
unused or unwanted smart appliances on the basis of user activeness.

In this era, there is a trend of fourth-generation buildings and compartments, which are meant
to provide more automation along with energy management. A multi-zone building control system,
based on Particle Swarm Optimization (PSO), is proposed in [23]. The proposed system ensures user
comfort, as well as energy conservation. Thermal comfort is one vital part of user comfort. In [24],
the authors proposed an uncertainty analysis methodology to enhance thermal comfort considering
a residential building.

The authors in [25] presented an analysis regarding communication protocols for Home
Area Networks (HANs) and displayed their advantages and limitations. Considering EMSs, the
authors advocated for low power and low data protocols, like ZigBee and Wavenis, etc., whereas
Insteon and EnOcean, do not offer considerable security services. Despite the security issues,
these protocols also work well in load monitoring [25].

EMS and other smart grid applications require a communication system that is highly reliable with
lower cost. However, the data rate and throughput can be compromised to some extent. Authors in [26]
presented an empirical study, suggesting 6LoPLC for Home Area Networks (HANs). The authors
claimed that their proposed model attains 99% of system reliability by limiting the data size to 64 bytes.

The future of the power sector lies in effective implementation of DR programs and distributed
energy resources. These valuable concepts are under the process of implementation and in need of
cutting edge techniques and methodologies in order to tackle the constraints both at the supply and
demand side. Pedro Faria et al. in [27] take a step ahead in taking benefits from distributed energy
resources. The authors used all resources by orchestrating a virtual power plant that is able to switch
power sources. Moreover, based on the power availability, load shifting and reduction opportunities are
exploited by formulating effective constraints. Major emphasis is given to minimizing operational costs
regarding distributed energy resources and cost and consumption minimization at the demand side.

DR control algorithms are proposed for a building with PV arrays in [28]. Proposed control
algorithms reduce 22.5% of the power generation cost, whereas carbon emissions were reduced by
7.6% in comparison with baseline calculations. The energy management solution presented in [29]
optimizes energy consumption by using sensor networks for a residential unit that has a Photovoltaic
(PV) and power storage system (lead batteries) along with a main connection from the grid.

Recent eco-friendly automobiles (electric vehicles) have taken the attention of researchers across
the globe for energy management strategies [30]. These vehicles gave a new concept of energy storage,
as well as energy transportation mechanisms.

The authors in [4] merged two pricing mechanisms i.e., the Inclined Block Rate (IBR) pricing
scheme with Real-Time Pricing (RTP), to restrict power usage below a predefined threshold level.
The authors developed an EMS for a residential unit with multiple residents and appliances. However,
the proposed EMS gives optimum results only when the proposed pricing scheme (RTP + IBR) is
offered by the utility company.
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A “multi-agent”-based control framework based on PSO that enhances energy efficiency and
comfort level in smart buildings is presented in [31]. The authors suggested to integrate an MG
composed of Renewable Energy (RE) sources, such as solar and wind, and power storage devices.
However, the installation and maintenance costs are not discussed explicitly.

Shaikh et al. developed a control system (based on the Multi-Objective Genetic Algorithm
(MOGA)) for smart buildings, which increases energy efficiency and indoor environmental comfort [32].
The authors achieved an energy efficiency of 31.6% in comparison with baseline power usage.

Micro Grids (MGs), which are composed of small-scale RE sources, are in the spotlight for
residential energy management. As in [33], the authors improved the accuracy and efficiency of MG
regarding islanded mode, as well as integrated (MG + SG) mode. The authors took multiple RE sources
and an energy storage system for a stand-alone MG user. Excessive energy is stored and then utilized
or sold to the SG using a net-metering facility.

Table 2. Recent trends (EMSs): state of the art work.

Technique Domain Feature and Findings Comments

MULP [4] HEMS Reduced Cost Optimum findings are not practical until the
proposed pricing scheme is implemented

PSO [23] Multi-zone building
control system

enhanced user comfort
and energy preservation

Need commitment throughout its operational
life to maintain maximum effectiveness

Multi-agent
with PSO [31] Smart buildings Cost minimization. RE sources with SG No economic factors discussed

MOGA [32] Smart building Energy efficiency Initial installation and implementation cost
is high, complex design

GA [34] Industrial smart
buildings

Use PV panels, roof top insulation
and sunlight for energy balancing.
Minimized cost

High investment required

Gradient-based
PSO [35] HEMS

Better solution w.r.t commercial-based
CPLEX system. Minimized computational
and electricity costs

Appliance delay in ToU is not considered

MILP [36] HEMS Real-time scenarios, cost reduction by
using two different pricing schemes offered. High initial investment needed

K-WDO [37] HEMS Appliance waiting time reduced Prone to generate peaks at times.

Cooperative
HEMS [38]

Multiple smart
homes

Integrating power bank with the roof top
PV system

Generate load peaks with increasing number of
homes

MILP [39] Smart Homes Minimizing load consumption Integrating MG generic framework for EMS
considering economic and environmental factors

BPSO [40] HEMS Minimized cost by scheduling appliances User comfort is compromised

Prosumer-based
DSM [41]

DSM, appliance
clustering

Autonomous PC regulation cost
optimization and PAR User comfort is not considered

MILP [42] (DSM) Minimize
electricity bills

Exact and efficient MILP modeling
w.r.t real-time scenarios. Cost reduction
by integrating two pricing schemes

Not appropriate for an individual smart home.

Game
theory [30] HEMS Bi-directional energy exchange to minimize

cost. Normalized PAR and cost is minimized

Less expensive, but not very user friendly.
An agreement needed between consumer
and seller

DRLS [43] HEMS Cost minimizing by using ACPLS
pricing scheme

Attained 53% cost saving and 35% peak
load reduction

G-DSM [44] EMS for 20 smart
homes Minimized cost and PAR Tradeoff between AWT and PAR

The Energy Efficiency Gap [45] (EEG) is a term widely used in the literature that refers to the
difference between actual energy consumption and estimated energy consumption. Two types of
energy efficiency effects are defined as the prebound effect and rebound effect [46]. The prebound
effect refers to the excessive energy production while consumption is lower. On the other hand, the
rebound effect is defined as a reduction in expected power savings by using DSM strategies due to lack
of feedback regarding baseline power usage. Considering current work on the energy management
solutions, the same dilemma exists. In recognition of the gap between measured and simulated
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performance, the authors in [14] investigated reasons of this gap, while the factors that impact the
investments for energy efficiency are examined in [47]. Schulze et al. presented an extensive review on
existing EMSs in [48].

Considering recent works on EMSs (Table 2), bio-inspired algorithms are in the spotlight.
Researchers across the globe are using such optimization techniques to present optimum energy
management solutions.

2.1. Problem Statement and Contribution

By reviewing the recent literature regarding EMSs, it can be established that: evolutionary
algorithms are widely used; installation costs or investments are often neglected; and user comfort is
defined in terms of delay in ToU of appliances mostly. However, thermal comfort is in the spotlight
of researchers [24,49,50]. Besides thermal comfort, a user needs to attain minimum delay in ToU of
household appliances, with minimum utility bills by investing minimally. Relating all of these entities
in a user-defined proportion defines user comfort.
There is a gap between experimental results and actual results. Energy consumption as predicted
analytically differs widely from actually measured energy consumption [15,17,51]. The reason is user
acceptability of the schedules made. Whenever the user needs an appliance that is scheduled to operate
beyond his/her tolerance level, the user opts to force start it, as and when needed. To overcome this
problem, there is a need for an effective framework that is based on user requirements and is able to
reflect the effectiveness of any EMS prior to its installation.

User comfort considering energy consumption has three major concerns, i.e., delay in ToU of the
appliance with respect to the desired ToU, bill reductions and the investment factor. The balanced
relationship amongst these three components varies from person to person and situation to situation.
If any one component is neglected, it will be hard to achieve user comfort. Not achieving user
comfort can result in increasing the gap between actual and estimated savings of any EMS besides
user inconvenience. Hence, there is a need for formulating a user-defined framework that can reflect
the usability of any EMS in accordance with user requirements. In this work, a performance metric
(User Comfort Level (UCL)) is formulated that ensures the above-mentioned concerns regarding user
satisfaction and EEG. UCL is further investigated to find the impact of five major building blocks of
EMSs. These building blocks were simulated and compared in [52]. In continuation of that work,
energy management solutions are studied, focusing on UCL for optimum selection of an EMS, which
contributes to minimizing EEG and elevating user comfort.

3. Performance Metric for EMS: UCL

The proposed performance metric (UCL), for any EMS, is based on the following parameters, i.e.,

• Deviation function: appliance delay in ToU,
• Cost saving function:

Saving function: reduction in utility bills.
Investment function: Return On Investment (ROI) period.

An energy management solution that gives better results for the mentioned properties will get
focus from the market. Every user requires a unique balance amongst these three entities to get
satisfaction. Moreover, these entities are related to each other, and there is a tradeoff in scheduling
appliances, i.e., an increase in appliance utility tends to diminish bill reduction. On the other hand,
huge investments are made on MGs and energy storage systems, which are optimal solutions to
increase appliance utility and reduce electricity bills.

Visualizing the global perspective, how much of the world population can invest in an MG for
long-term benefits at a personal level?

ROI depends on the cost savings, and more cost savings results in a reduction of the ROI period.
Considering any EMS, it has certain properties, i.e., has some installation cost, offers a certain degree
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of bill reduction by shifting load to “low priced” hours and keeps certain constraints to limit appliance
delay. Based on the estimated data provided by EMS developers, three values, i.e., cost savings
(bill reduction), average appliance delay in ToU and ROI period, are used to formulate the user-defined
performance metric regarding any EMS. Requirements regarding these three aspects of EMSs are
variable, and every user may have different preferences.

3.1. User Comfort Level

UCL is a variable phenomenon, and it varies from situation to situation. There are many energy
management solutions available, but which one is more feasible under given conditions is the basic
question. UCL can be defined as the integration of cost saving (EcostSavings) and the appliance deviation
(EappUtil) function. The cost saving function includes bill reduction (Esavings) in percentage (with
respect to baseline calculations) and ROI (EROI) period. The UCL range rests between zero and one,
i.e., 0 ≤ UCL ≤ 1, where zero stands for the extreme of user discomfort and one represents the
maximum value of user comfort. Mathematically, UCL can be represented as in Equation (1).

UCL = EappUtil + EcostSavings (1)

where,
EcostSavings = ESavings + EROI (2)

Heavy installation cost can make an electricity user reluctant to invest in an EMS. If the ROI
(EROI) is attractive, the user will be more focused on investing. Two variables are defined as α and
ζ to calculate UCL with respect to appliance deviation (delay in ToU) and cost savings, respectively.
The values of α and ζ are not set by default prioritizing user satisfaction (α and ζ are user defined).
α represents the deviation function, while ζ represents bill reduction (β) and ROI period (γ). The values
of α and ζ are set by the user in such a way that their sum must yield one, as expressed in Equation (3).

1 = α + ζ (3)

The user can adjust the values of α and ζ according to his/her needs. For a cost-sensitive user,
the value of ζ must be increased, such that the remaining portion of the UCL range is allocated to α and
vice versa for the delay-intolerant user. In the following subsections, deviation, cost and investment
functions are discussed, which are essential to calculate the value of UCL. Major importance is given
to the appliance utility function (α), as it plays a vital role in user comfort.

3.1.1. Deviation Function

Appliance utility is maximum when the appliance is used within the required range of time, and it
gradually decreases as scheduled ToU deviates from desired ToU. This point is discussed widely in the
existing literature, and appliances are categorized in numerous manners [36,53,54]. Considering this
work, appliances are categorized as Occupancy Independent (OI) and Occupancy Dependent (OD)
appliances. OD appliances are mostly delay-intolerant appliances and have a high impact on UCL;
whereas OI appliances are meant to shift, such that PAR (regarding PC) and electricity bills are reduced.
Hence, OD appliances can be a vital reason for the user comfort or discomfort level. Equation (4) gives
the set of ODAPP. The set of appliances within a smart home or residential unit of a building can be
divided into two groups as APP = ODAPP + OIAPP. Hence:

ODAPP = APP−OIAPP (4)

Equation (4) represents those appliances that influence UCL. Considering the deviation function,
the appliance utility of an OD appliance can be expressed as in Equation (5).

EappUtil = α− DOD
T (5)
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where DOD refers to the deviation of the OD appliance from the desired ToU, while T is the number of
hours of a scheduling window. The value of α is set by the user according to his/her requirements
within the UCL range, i.e., between zero and one. Keeping demand side in view, there can be numerous
high power consuming appliances, which can be scheduled for optimum cost savings and ultimately
PC peak reduction. Overall appliance utility can be formulated in two steps. The average delay of all
OD appliances (that are scheduled for the respective time slot) can be calculated by Equation (6).

avgD =
∑n

i=1 DODi

nOD
(6)

nOD is the number of OD appliances that are scheduled. Equation (5) calculates the appliance
deviation function for an appliance that belongs to the set of nOD appliances. Once avgD (by using
Equation (6)) is calculated, Equation (5) is utilized to produce Equation (7), which calculates the
appliance utility function.

EappUtil = α− avgD
T

(7)

Figure 1a illustrates the appliance utility function with varying appliance deviation in ToU.
The range of α is set between 0.3 and 0.7 within the UCL range, and appUtil is calculated, keeping
delay in ToU from 0.5 h to 5 h. In Figure 1a, only the deviation function of UCL is analyzed. The value
of appUtil is highest, if the average delay of an EMS is 0.5 h and the value of α is set at 0.7. The cost
saving function is illustrated in Figure 1b and explained in Section 3.1.2.
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Figure 1. Appliance utility and cost saving functions. (a) EappUtil w.r.t avgD; (b) EcostSavings w.r.t savings in %.

3.1.2. Cost Saving Function

Consider an appliance scheduling mechanism that gives cost savings of S% with respect to
baseline electricity cost, then Equation (8) presents the cost saving function. The value of ζ is to be set
by the user within the UCL range in such a way that the remaining portion is allocated to α.

EcostSavings = ζ ∗ S
100

+ γ (8)

The range of cost savings considering residential EMSs in the literature is between 25% and
75% [19]. This cost saving percentage is measured with respect to the baseline PC cost. Hence, the cost
saving range of any EMS under consideration is set between 20% and 70% for this performance metric.
Considering an EMS whose savings is lower than 20% or greater than 70% is beyond the scope of the
proposed UCL.

Grietus Mulder et al. in [55] presented a near to realistic approach concerning investments made
on renewable systems, mainly PV systems and storage devices. Installation cost is one major concern
when installing any EMS for an end user. Another variable γ is used that represents EROI as a part
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of the savings function. If ROI is expected within one year, the value of γ is set as 0.15. If ROI is
expected between one and two years, the value of γ is defined as 0.10, whereas if ROI exceeds two
years, the value of γ is set as 0.05.

Figure 1b refers to the cost saving function. In this figure (for simulation purposes), the value
of ROI is set as 0.15. Figure 1b states that an EMS that gives financial savings of 70% with respect to
bills without EMS, and the value of ζ is set as 0.7, which gives maximum comfort considering the cost
saving function.

3.2. Algorithm: UCL

Algorithm 1 depicts the working of the proposed UCL. Values of α and ζ are user defined, such
that their sum must yield one, as stated earlier, while the value of γ reflects the UCL gain due to the
ROI period and is added in EcostSavings. Equation (9) is proposed to calculate the UCL of any EMS.

UCL = (α−
∑n

i=1 Dapp
n
T

) + (ζ ∗ s
100

+ γ) (9)

Algorithm 1 Calculate UCL = Eapputil + EcostSavings.

1: Savings == x%

2: ROI == γ

3: avgDelay == y

4: SchedulingWindow == T
5: if 20 ≤ x ≤ 80 then

6: ESavings ← ζ × x
100

7: else
8: if 20 ≥ x ≥ 80 then

9: ESavings ← 0
10: end if
11: end if
12: if γ ≤ 1year then

13: EROI ← γ = 0.15
14: EcostSavings ← EROI + ESavings

15: else

16: if 1year ≤ γ ≤ 2years then

17: EROI ← γ = 0.10
18: EcostSavings ← EROI + ESavings

19: else

20: if γ ≥ 2year then

21: EROI ← γ = 0.05
22: EcostSavings ← EROI + ESavings

23: end if
24: end if
25: end if
26: if 0 ≤ y ≤ 5 then

27: EappUtil ← α− y
T

28: UCL = EappUtil + EcostSavings

29: else

30: if y ≥ 5 then

31: EappUtil ← 0
32: UCL = EappUtil + EcostSavings

33: end if
34: end if
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4. Basic Building Blocks: EMS

Work on using electricity resourcefully is ongoing in multiple dimensions, and numerous
algorithms are used to develop effective EMSs. Optimization techniques and sensor networks are two
major dimensions of research in this domain [21]. Considering the existing literature, it can be stated
that EMSs are based on a few basic building blocks. These building blocks are listed below in the form
of scenarios for energy management solutions.

• Scenario 1: without EMS (baseline model),
• Scenario 2: EMS by using sensors,
• Scenario 3: EMS by using optimization techniques,
• Scenario 4: EMS by using Scenario 2 + Scenario 3,
• Scenario 5: EMS by using storage device + Scenario 3,
• Scenario 6: EMS by using storage device + Scenario 4

Base model and test strategy:

There are N electrical appliances, which are further subdivided into OD and OI appliances, where
Pa is the power consumed by an appliance in watts per hour unit, while POD and POI represent the
power of OD and OI appliances, respectively. Equation (10) gives the per hour power requirement for
OD appliances.

POD = [P(1,OD), P(2,OD), .......P(h,OD)], ∀ h = [1, 2, 3...24], ∀ OD ∈ N ∩OD (10)

Equation (11) represents the per hour power requirement for OIappliances.

POI = [P(1,OI), P(2,OI), .......P(h,OI)], ∀ h = [1, 2, 3...24], ∀ OI ∈ N ∩OI (11)

P(h,a) represents power usage of an appliance a within hour h out of 24 h of a day. This a belongs
to the set of ODAPP, while b belongs to the OIAPP set, where N is the superset of all appliances,
i.e., N = ODAPP ∪OIAPP. Hourly power demand for ODand OI appliances can be expressed in
Equations (12) and (13), respectively.

Ph OD =
N∩OD

∑
a=1

Ph,a (12)

Ph OI =
N∩OI

∑
b=1

Ph,b (13)

Equation (14) explains the power demand of an hour.

Ph =
N∩OD

∑
a=1

Ph,a +
N∩OI

∑
a=1

Ph,b (14)

Equation (15) states the power demand for 24 h of a day.

PT (24) =
24

∑
h=1

( N∩OD

∑
a=1

Ph,a +
N∩OI

∑
a=1

Ph,b

)
(15)

In this work, hourly electricity cost is expressed as an array in Equation (16):

Ch = [C1, C2, C3...Ch] ∀ h = [1, 2, 3...24] (16)

Equation (17) calculates the electricity cost of a day.
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CN
t=24 =

N

∑
a=1

24

∑
h=1

Ph,allApp × Ch (17)

Table 3 depicts the assumptions for the simulation setup regarding a list of appliances, their
category, the number of operational hours within the 24-h scheduling horizon and power ratings.

Table 3. Baseline data.

Class Appliance Opsin T (24 h) Power (Wph)

ODAPP Lights 19 h 500
ODAPP Water Pump 2 h 4000
ODAPP HVAC 11 h 4000
ODAPP EWH 3 h 4000
OIAPP Refrigerator 21 h 3000
OIAPP Clothes Dryer 2h 2000
OIAPP Dish Washer 2 h 500
OIAPP Electric Vehicle 2 h 4000
OIAPP Washing Machine 2 h 4000

The array expressed in Equation (18) gives the electricity price per unit of each hour within a day.
This (assumed as day ahead) hourly cost is utilized in this work for all scenarios.

Ch = [8 8 6 6 6 6 6 6 6 14 18 6 6 6 14 18 18 18 18 18 18 18 6] (18)

There is an important role of the test bed for any system. Tests are speculated to verify the normal
operation of a system, reaching the expectations of the user and the achievement of the expected
benefits [9].

To address the complexity of the EMSs, assumptions are made as in Table 3; where the class of the
load defines its dependency or independency on human presence inside residential unit. The data
presented in Table 3 and the price signal expressed in Equation (18) are kept constant for all scenarios.

4.1. Scenario 1: Without EMS

Scenario 1 is the basic energy consumption pattern of a residential unit and gives a benchmark
for comparisons amongst energy management solutions. No effort is made regarding energy or
cost reduction, and power is utilized as and when needed. It is obvious that, in this scenario,
appliance utility is maximum, while cost savings is totally neglected. Scenario 1 is considered as the
test bed for the rest of the five scenarios.

4.2. Scenario 2: EMS by Using Sensors

In this scenario, a network of sensors is deployed at the demand side that measures certain
attributes. These sensors as programmed to switch on and off appliances after sensing respective
features. Figure 2 illustrates the flow diagram of the algorithm, which is used for Scenario 2. Figure 2
reflects the functioning of three basic sensors, i.e., a sensor that senses the environmental temperature
(SET) for HVAC, a sensor that senses the water level in the water tank (SWL) for the water pump and
a sensor that senses the water temperature (SWT) for the electric water heater. Besides these basic
sensors, one sensor is programmed that reflects the operation of OI appliances that do not require home
occupancy. These appliances (OI appliances) are to be scheduled at low-priced hours. Considering
appliance-specific sensors, each sensor is programmed to regard, home occupancy, desired ToU range
of the appliances and power usage thresholds as explained in [56]. OI appliances are the ones that can
be shifted to “low priced” times; while OD appliances are not allowed to run for extra time using the
sensor network and user-defined timings/thresholds. As can be seen in Figure 2, before functioning of
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any appliance, the respective sensed data and thresholds are analyzed. According to these checks, OD
appliances are switched on or off.

Start

SET SWL SWT

T< t<T If L<l If WT<wtSHO==1

HVAC==on WP== off WP==on

SHO== 1

EWH==on EWH==offHVAC==off

If SHO 

==0

lowest 
price 
hours 

for user 
defined 
OI App

Ops 
Finish

Ops 
Finish

Ops 
Finish

OPS 
Finish

OPS 
Finish

OPS 
Finish

OPS 
Finish

TH>PcTH>PcTH >Pc

TH>Pc

OIAPP == on

YES

YES

YES YES

YES

YES

YES YES

YES

YES

NO

N
O NO

NO

NO NO

TH = Power Threshold
Pc = Power consumed in current time slot
L=Threshold water level; L= Current water level
T= Threshold Temperature; T= Current temperature
WT= Threshold water temperature; wt= Current 
water temperature

Figure 2. Flow chart: EMS (Scenario 2).

4.3. Scenario 3: EMS by Using Optimization Techniques

In this scenario, the binary version of the widely-studied PSO, i.e., (BPSO) (considering energy
management solutions) is used as in [35,36,57]. Equation (19) expresses the objective function with the
respective constraints.

obj1 = min(CN
t=24) (19)

such that:

α ∈ (ODAPP ∪OIAPP) ∈ N, (19a)

PCh ≤ Thh∀, T1 = [1, 2, 3, ...24], (19b)

PrT
β = (1− ρ)× Pmax

β ∀β ∈ N, and, ∀β /∈ Th (19c)

Constraint “19a” explains that appliance α ∈ N, where ODAPP ∪OIAPP = N. Constraint “19b”
represents the maximum PC value for the current hour to trim PC peaks. PrT

β represents the probability
by which an electrical device β ∈ N can be forced to switch on without following the schedule.
Constraint “19c” elaborates the probability of switching on any electrical device without following
the schedule made by the scheduler. This is calculated by an update function ρ, whose value is set
as binary.
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4.4. Scenario 4: EMS by Using Scenario 2 + Scenario 3

In this scenario, EMSs are developed by integrating sensor networks and an evolutionary
algorithm as in [56]. Final schedules are made by BPSO on the basis of sensory inputs, while inputs
for sensors are user defined. The objective function as in Scenario 3 is utilized here, as well, but with
modified constraints. There is also a high impact of the scheduling window size on the appliance utility
function [56]. Figure 3 illustrates the basic flow diagram of such a technique that has a scheduling
window of 6 h and needs four cycles to complete the 24-h time slot.

Modifying Equation (17) for four logical scheduling windows, i.e., T1, T2, T3 and T4, Equation (20)
is produced for the T1 time slot of 6 h, where (N − a) is the set of appliances that are to be scheduled
during this time slot. The set (N − a) is defined by the user and sensory data. The same equation can
be used four times to complete one cycle of 24 h, and in each scheduling window, there is a different
set of appliances based on the user preferred time and sensor inputs, as can be seen in Equations (20)
to (23).

CN−a
T1=6 =

N−a

∑
a=1

6

∑
h=1

Ph,a × Ch ∀h = 1, 2, 3, 4, 5, 6 (20)

CN−b
T2=6 =

N−b

∑
a=1

12

∑
h=6

Ph,a × Ch ∀h = 6, 7, 8, 9, 10, 11, 12 (21)

CN−c
T3=6 =

N−c

∑
a=1

18

∑
h=12

Ph,a × Ch ∀h = 13, 14, 15, 16, 17, 18 (22)

CN−d
T4=6 =

N−d

∑
a=1

24

∑
h=18

Ph,a × Ch ∀h = 19, 20, 21, 22, 23, 24 (23)

The objective function is set to minimize the cost with given constraints, as presented in
Equation (24).

obj = min
(
(C(n−a)

T1
) + C(n−b)

T2
) + C(n−c)

T3
) + C(n−d)

T4
))

)
(24)

Such that:

Tstart ≤ UPα ≤ TFinish ∀ T = [T1, T2, T3, T4] (24a)

UP(N − k) ∈ T ∀ T = [T1, T2, T3, T4] (24b)

PCh ≤ Thh ∀ T = [T1, T2, T3, T4], (24c)

PrT1
x = (1− ρ)× Pmax

α ∀α ∈ N, and, ∀α /∈ (N − a) (24d)

PrT2
x = (1− ρ)× Pmax

α ∀α ∈ N, and, ∀α /∈ (N − b) (24e)

PrT3
x = (1− ρ)× Pmax

α ∀α ∈ N, and, ∀α /∈ (N − c) (24f)

PrT4
x = (1− ρ)× Pmax

α ∀α ∈ N, and, ∀α /∈ (N − d) (24g)

Constraint “24a” restricts the use of an appliance within its scheduling horizon. Constraint
“24b” states that every set of appliances (N − k) ∈ N is operational in its corresponding scheduling
window. These groups are formed by keeping two inputs, i.e., user preferred ToU and sensed data.
Constraint “24c” limits the power usage beyond a threshold value, while the constraints “24d to 24g”
express the measure of uncertainty (force starting of any appliance) within any scheduling window.
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Start

OD APP OI APP

PC(OD + OI)
6 hour time slot

(BPSO) Obj= 
min(cost)

Sensory 
Data

Constraints:
PC<Th

OD==On if{HO ==1} 
OI==Off if{HO==1}

Price Signal

Finish

PC= Power Consumption
Th=User Defined Threshold
HO= Home occupancy (sensor)

Figure 3. Flow diagram: Scenario 4.

4.5. Scenario 5: EMS by Using Storage Device + Scenario 3

Investments on RE sources have reached 211 USD since 2004 [58]. There are no such exact figures
accessible that presents net worldwide venture made in RE generation; in any case, 15% to 20% of the
aggregate power commitment lies in RE sources, as expressed in [59].
Microgrids are gaining attention day by day as a major relief for traditional grid infrastructure.
Residential microgrids in support of DSM are studied widely and give optimum cost savings with
lowering energy usage from the main grid [60]. The authors in [61] preset an optimal bidding
mechanism regarding the day ahead power market in a microgrid environment.

In this scenario, a storage device that is able to store 30% of per day load is added, while load
shifting is done by using BPSO. Power is stored in storage devices at off-peak pricing hours and
utilized at on-peak pricing hours. This ensures minimal appliance deviation from the desired ToU and
is also cost effective.

Algorithm 2 explains the functioning of the energy storage system. The storage device can be in
any of the four possible states as fully charged (11), discharging state (10), charging state (01) and idle
state (00). B represents the battery; Bch stands for the amount of charge stored in the battery; Th depicts
the user-defined per hour PC threshold; while PCreq gives the PC requirement for this hour.
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Algorithm 2 Energy storage system.
1: Bidle

2: if Bch == 11 then

3: B← 00
4: else

5: if PCh ≤ Th then

6: B← 00

7: else

8: if PCreq ≥ Th && Bch ≥ 60% then

9: B← 10
10: else

11: if Bch ≤ 30% && PC ≤ Th then

12: B← 01

13: end if

14: end if

15: end if

16: end if

17: if Bch == 11 then

18: B← 00

19: end if

4.6. Scenario 6: EMS by Using Storage Device + Scenario 4

In this scenario, a power storage system (as expressed in Algorithm 2) is combined with the EMS
(built on the basis of Scenario 4) to get optimum results. Its installation cost is maximum, but in the
long run, this seems to be a vital solution regarding most of the energy problems [33,38,39]. Shortening
the logical scheduling window enforces less delay in appliances’ ToU, while integration of an energy
storage system helps in normalizing electricity consumption peaks.

5. Results and Discussion

This section presents the numerical results obtained by simulating the proposed UCL and
above-mentioned scenarios (in Section 4) reflecting the basic building blocks of energy management
solutions. Results regarding Scenario 1 (Section 4.1) are presented in Section 5.2, Scenario 2 (Section 4.2)
in Section 5.3, and so on so forth, till Scenario 6 (Section 4.6), whose results are discussed and presented
in Section 5.7.

5.1. Numerical Studies: UCL

Equation (9), which is depicted in Algorithm 1, is used to compute numerical results with different
values of α and ζ. The optimal solution can be achieved (of gaining the highest value of UCL) by
keeping EappUtil (Figure 4a) and EcostSavings (Figure 4b) variant.
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Figure 4. User comfort level keeping α = [0.3–0.7] and ζ = [0.3–0.7]. (a) UCL w.r.t the appliance utility
function; (b) UCL w.r.t the cost saving function.

Table 4 gives UCL values under different situations. By using Equation (9), one can have insight
considering the effectiveness of any EMS. This framework helps an end user to select the optimal EMS
based on his/her preferences. Hence, it takes a step ahead in minimizing the gap between actual and
analytical energy consumption. For example, consider an EMS that gives an average deviation of 1 h
with 30% savings. If the user is more cost sensitive and delay-tolerant, then the values of α and ζ will
be set as 0.3 and 0.7, respectively. This combination yields UCL of 0.468, which is not very appealing
considering user preferences. However, for a delay-intolerant user, where values of α and ζ are set as
0.7 and 0.3, respectively, the EMS (that gives 70% savings and a delay of 1 h) is well suited as it gives
the UCL value of 0.748. Hence, a user needs to be clear in his/her preferences regarding energy usage,
so that he/she can select an EMS that is able to represent his/her preferences.

Table 4. UCL within different scenarios.

avgD-CSavings α = 0.3, ζ = 0.7 α = 0.4, ζ = 0.6 α = 0.5, ζ = 0.5 α = 0.6, ζ = 0.4 α = 0.7, ζ = 0.3
1 h-30% 0.468 0.538 0.608 0.678 0.748
2 h-40% 0.496 0.556 0.616 0.676 0.736
3 h-50% 0.525 0.575 0.625 0.675 0.725
4 h-60% 0.553 0.593 0.633 0.673 0.713
5 h-70% 0.581 0.611 0.641 0.671 0.701

5.2. Scenario 1

Scenario 1 depicts the baseline model as stated earlier. In this scenario, energy is utilized as
and when needed without considering the DR program or any other energy management strategy.
Figure 5a depicts the cost, while Figure 5b illustrates the load profiles without any EMS.
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Figure 5. Baseline: without EMS (Scenario 1). (a) Cost profile (Scenario 1); (b) load profile (Scenario 1).

5.3. Scenario 2

In Scenario 2, a home area sensor network is utilized to control and optimize energy consumption
as discussed earlier in Section 4.2. As in accordance with the algorithm illustrated in Figure 3, PC peaks
are normalized by using a user-defined power limiter (Figure 6a). Analyzing the cost profile of a week,
it can be seen that this scheme rips off the PC peaks; however, it generates one peak during evening
hours when the residential unit is fully occupied and the use of electrical appliances is high (Figure 6b).
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Figure 6. EMS: by using sensor networks (Scenario 2). (a) Cost profile (Scenario 2); (b) load profile
(Scenario 2); (c) UCL when: Case 1: α, ζ = 0.3, 0.7; Case 2: α, ζ = 0.5, 0.5; Case 3: α, ζ = 0.7, 0.3.

Considering Figure 6c, UCL values are 0.422, 0.618, 0.794 for Cases 1, 2 and 3, respectively.
The value of γ is set as 0.15, as the ROI is expected within a year. Looking carefully, it can be noted
that as the value of ζ decreases with respect to α, UCL increases. This explains the inverse relationship
between cost savings and lower delay in the ToU of appliances. Overall 15% cost savings was achieved
in comparison with the baseline model (Scenario 1), while the average delay is 1 h.

5.4. Scenario 3

In this scenario, load shifting to low priced hours is conducted using BPSO as stated in Section 4.3.
Figure 7a illustrates the cost profile of a week. This mechanism shifts the load in a very undesirable
manner, as can be seen in Figure 7b. Considering Figure 7c, BPSO gives the maximum value when α is
set as 0.7, while ζ is set as 0.3, and γ, which represents the ROI function, is set as 0.10. The total power
savings achieved by using BPSO for EMS is 28% with a 3-h (on average) appliance deviation from the
desired ToU.
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Figure 7. EMS: by using the optimization technique (Scenario 3). (a) Cost profile (Scenario 3);
(b) load profile (Scenario 3); (c) UCL when: Case 1: α, ζ = 0.3, 0.7; Case 2: α, ζ = 0.5, 0.5; Case
3: α, ζ = 0.7, 0.3.

5.5. Scenario 4

As discussed in Section 4.4, this scenario is hybrid in nature, i.e., combining HAN with the
optimization technique to optimize energy management. Moreover, dividing 24 h into four logical
windows to schedule load results in minimized delay in ToU and maximizes the cost savings.
Figure 8a,b illustrates the cost and load profiles of baseline and EMS using Scenario 4, along with
numerical values of UCL gain (Figure 8c). Considering the load consumption profile (Figure 8b), there
is a peak generated; however, this peak is at a low-priced hour, and its intensity is much lower than
the peaks generated in the unscheduled load (Figure 8b). Peaks are normalized, and the load is shifted
within its user-defined scheduling window. The value of γ is set at 0.05 as the ROI period exceeds two
years; while the deviation in ToU of appliances is calculated as 1.5 h with respect to the desired ToU of
an electrical appliance, giving cost savings of 21% with respect to the base model.
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Figure 8. EMS: by using a combination of sensors and the evolutionary algorithm (Scenario 4).
(a) Cost profile (Scenario 4); (b) load profile (Scenario 4); (c) UCL when: Case 1: α, ζ = 0.3, 0.7; Case 2:
α, ζ = 0.5, 0.5; Case 3: α, ζ = 0.7, 0.3.

5.6. Scenario 5

Advancements in storage systems make it more feasible to utilize them in energy management
strategies. In this scenario, load shifting is done by utilizing BPSO (Scenario 2), and energy is
stored at low-priced hours in the energy storage system as discussed in Section 4.5. This energy
is utilized at high-priced hours. Such a mechanism gives more optimum results in terms of cost
savings, appliance utility and energy usage times. Figure 9b represents the load profiles with respect
to the baseline load. Such mechanisms prove their worth; however, the installation cost is higher.
Figure 9c presents the UCL values for three different user requirements.
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Figure 9. EMS with the combination of the evolutionary algorithm (BPSO) and storage device
(Scenario 5). (a) Cost profile (Scenario 5); (b) load profile (Scenario 5); (c) UCL when: Case 1:
α, ζ = 0.3, 0.7; Case 2: α, ζ = 0.5, 0.5; Case 3: α, ζ = 0.7, 0.3.

5.7. Scenario 6

As discussed in Section 4.6, resizing the scheduling window and using BPSO to schedule load
in respective time slots ensure less delay, keeping an equilibrium amongst cost and appliance utility,
while integration of an energy storage system helps in normalizing electricity consumption peaks,
as can be seen in Figure 10a. Load profiles of Scenario 6 and Scenario 1 are presented in Figure 10b.
Scenario 6 rips off some PC peaks by using stored electricity. Anticipating Figure 10c, the highest UCL
values are achieved in comparison to the above-mentioned scenarios.
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Figure 10. EMS: by using the combination of sensors, the evolutionary algorithm (BPSO) and storage
devices (Scenario 6). (a) Cost profile (Scenario 6); (b) load profile (Scenario 6); (c) UCL when: Case 1:
α, ζ = 0.3, 0.7; Case 2: α, ζ = 0.5, 0.5; Case 3: α, ζ = 0.7, 0.3.

6. Analysis and Policy Implications

6.1. Energy and Cost Profiles

Considering energy profiles (Figure 11b), Scenario 4 utilizes lower energy in comparison with
Scenarios 1 and 2; however, considering Scenario 3, it uses more energy. This is due to the integration
of the sensor network that maximizes the appliance utility function. Scenario 5, which is a combination
of Scenario 3 and a storage system, gives the maximum cost savings of 3906 PKR (63%), 2933 PKR
(56%), 2112 PKR (48%), 2604 PKR (53%) and 448 PKR (16%) in comparison to Scenarios 1, 2, 3, 4 and 6,
respectively (Figure 11a). Anticipating energy profiles, Scenario 6 proves its worth by utilizing the
minimum amount of electricity amongst all other scenarios, as can be seen in Figure 11b.

Focusing on the impact of γ, Scenario 1 has no installation cost; hence, it has no effect on the
performance metric. Deploying an efficient ZigBee or Bluetooth sensor network costs 150,000 PKR to
200,000 PKR, as offered by different vendors. Moreover, such sensors are easily available across the
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globe. Taking the upper bound of investment, ROI is expected within 205 weeks (more than 3.8 years).
Hence, the value of γ is set as 0.05 for Scenario 2. ROI for the remaining scenarios is approximately
139 weeks (2.6 years), 268 weeks (5.5 years), 128 weeks (2.5 years) and 164 weeks (3.1 years) for
Scenarios 3, 4, 5 and 6, respectively. In this study, only installation costs were considered, ignoring the
element of uncertainty, like currency rate and other market implications.
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Figure 11. Cost and energy analysis. (a) Cost saving analysis; (b) energy consumption analysis.

6.2. UCL and PAR Profiles

Anticipating UCL(Figure 12a), the values of α (user-defined value of appliance deviation function)
and ζ (user-defined value of cost saving function) are set equal to 0.5. These values are user defined and
can be changed as per the requirement. Scenario 6 gives the maximum comfort level with the highest
installation cost; however, huge cost savings narrow down its ROI period. The UCL gain of 0.373
is achieved in comparison with unscheduled PC as can be seen in Figure 12a. Figure 12b illustrates
the value of the highest PC peak and PAR focusing on the six scenarios. Considering Figure 12b, the
maximum electrical load utilized by Scenario 1 in a week is 98 KWpHat certain hour, while its PAR is
0.12. The PAR reflecting Scenario 2 is lowest, whereas the PAR of Scenarios 5 and 6 is highest. However,
the maximum PC by these two mechanisms is 91 KW and 66 KW, respectively, which is lower than
Scenarios 1, 2 and 3. Scenario 3 produces the highest peak, utilizing 126 KWpH, as it tends to shift
all load to “low-priced” hours. Scenario 4 takes care of ToU, as well as load shifting for cost savings;
hence, it tends to create an equilibrium amongst price and appliance utility. Scenario 4 increased the
second lowest PC peak amongst the six scenarios, as can be seen in Figure 12b.
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Figure 12. Performance metric and PAR. (a) UCL achieved; (b) PAR.



Energies 2017, 10, 335 21 of 25

Table 5 depicts the overall summary of all scenarios that are utilized for developing an EMS.

Table 5. Performance analysis of major EMS mechanisms.

Properties Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Scheduling Window No window no window 1 × 24 = 24 h 4 × 6 = 24 h 1× 24 =24h 4 × 6 = 24 h

Power limiting
threshold No Constant Fixed Dynamic range Fixed Dynamic range

Appliance
categorization No No Based on PC Based on HO Based on PC

Based on
HO and PC

Load balancing No Yes Load shift
w.r.t. need
and price Power bank

Balance between
cost and price

Appliance utility Maximum Maximum Do not care
Tends to

create equilibrium Do not care optimum

Shave cost peaks No Yes Yes Yes Yes Yes

User comfort level Compromised Compromised Compromised
Achieve a level

of user satisfaction better Maximum

Home occupancy
considered Yes Yes No Yes No Yes

Take care of utility No To some extent Only at user premises
Tends to

accommodate Yes Yes

Computational cost No
Minimum
complexity Yes Yes Yes

Maximum
complexity

6.3. UCL Scope and Limitations

The basic goals of EMSs are to reduce electricity bills for the end users and avoid PC peaks for the
utility companies. By achieving these targets, numerous problems are addressed, the most important
of which are the reduction in carbon emissions and utilizing fossil fuels resourcefully.

This study offers the optimal EMS selection framework for any PC unit considering user comfort
and preferences. As discussed earlier, user comfort or user convenience tends to reduce the difference
between estimated and actual PC. An EMS that gives a greater comfort level lessens this difference.
Hence, a performance metric is formulated in this work that is able to predict the performance of any
EMS prior to its installation anticipating user preferences. However, the proposed UCL has certain
limitations. UCL is limited to the study of various EMSs proposed in the literature that reflect power
usage and bill reduction to a certain level, where the grid is the only power source, or at the maximum
small-scale PV, or the energy storage system is employed, which is able to manage 30% of the total
power requirement of a day. This power storage is charged at low-priced hours of the day. Heavy
storage devices and MGs that can support a residential unit to reach islanded mode are beyond the
scope of this study. Market fluctuations are not controllable; hence, investment costs may vary that
directly influence the value of γ. Moreover, an EMS that saves cost below 20% or above 70% is out of
scope considering the proposed performance metric.

There is one critical aspect in using UCL, i.e., the electricity user must be aware of the relationship
between cost savings and delay in the ToU of appliances, which are inversely proportional to each
other. Hence, the user must decide the values of α and ζ carefully to achieve the maximum level of
satisfaction. Moreover, the electricity user must be aware of his/her baseline electricity consumption
and bills paid to the utility for comparison purposes. Hence, users have a responsibility to determine
their preferences realistically with respect to appliance utility and savings to minimize the gap between
estimated and actual PC, as well as cost savings.

7. Conclusions

Utilizing power resourcefully is the need of this era for preserving the atmosphere (limiting
carbon emissions) and natural resources (fossil fuel consumption). To reach optimality in energy
consumption, numerous EMSs are developed under the umbrella of DR programs. Diverse load
shifting and load-preserving techniques have been proposed since last decade. However, there is
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a wide gap between actual and analytical results. The basic properties of existing EMSs are bill
reduction, appliance deviation in ToU and ROI period. In this work, a numerical solution was
proposed, which is based on the user-defined proportion of appliance deviation and cost savings,
whereas the ROI period is dependent on the investment made and savings. By using the proposed
metric (UCL), a user can choose an EMS that not only enhances comfort level, but is also cost and
energy effective. This also tends to minimize the gap between the analytical and actual results of EMSs.
In the latter part of paper, an extended literature analysis is presented that depicts the major techniques
used in developing an EMS. EMSs are based on five generic building blocks, which were demonstrated
and simulated (in the form of five scenarios) for performance analysis keeping the proposed UCL as
the performance metric.

For the developing part of the world, differences between power demand and supply can be
observed. Hence, energy management solutions are a must for such parts of the globe. However, lack of
awareness, accessibility of smart appliances and economic issues result in poor energy managing
strategies. Applying Scenario 2 (EMS using sensor networks) is advocated, which not only gives
minimum PAR, but it is also an easily available and affordable to preserve electricity and ensure user
comfort at a good level.
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14. Hrovatin, N.; Dolšak, N.; Zorić, J. Factors impacting investments in energy efficiency and clean technologies:
Empirical evidence from Slovenian manufacturing firms. J. Clean. Prod. 2016, 127, 475–486.

15. Menezes, A.C.; Cripps, A.; Bouchlaghem, D.; Buswell, R. Predicted vs. actual energy performance of
non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap. Appl. Energy
2012, 97, 355–364.

16. USGBC Research Committee. A National Green Building Research Agenda. US Green Building
Council. 2007. Available online: http://www.usgbc.org/Docs/Archive/General/Docs3402.pdf (accessed on
15 March 2014).

17. De Wilde, P. The gap between predicted and measured energy performance of buildings: A framework for
investigation. Autom. Constr. 2014, 41, 40–49.

18. Kibert, C.J. Sustainable Construction: Green Building Design and Delivery; John Wiley & Sons: New York, NY,
USA, 2016.

19. Dwaikat, L.N.; Ali, K.N. Measuring the Actual Energy Cost Performance of Green Buildings: A Test of the
Earned Value Management Approach. Energies 2016, 9, 188.

20. Andreadou, N.; Guardiola, M.O.; Fulli, G. Telecommunication Technologies for Smart Grid Projects with
Focus on Smart Metering Applications. Energies 2016, 9, 375.

21. Lobaccaro, G.; Carlucci, S.; Löfström, E. A Review of Systems and Technologies for Smart Homes and Smart
Grids. Energies 2016, 9, 348.

22. Thomas BL, Cook DJ. Activity-Aware Energy-Efficient Automation of Smart Buildings. Energies 2016, 9, 624.
23. Kan, E.M.; Kan, S.L.; Ling, N.H.; Soh, Y.; Lai, M. Multi-zone Building Control System for Energy and Comfort

Management. In Hybrid Intelligent Systems; Springer: Berlin, Germany, 2016; pp. 41–51.
24. Cetin, K.S.; Manuel, L.; Novoselac, A. Thermal comfort evaluation for mechanically conditioned buildings

using response surfaces in an uncertainty analysis framework. Sci. Technol. Built Environ. 2016, 22, 140–152.
25. Mendes, T.D.; Godina, R.; Rodrigues, E.M.; Matias, J.C.; Catalão, J.P. Smart home communication

technologies and applications: Wireless protocol assessment for home area network resources. Energies 2015,
8, 7279–7311.

26. Ikpehai, A.; Adebisi, B.; Rabie, K.M.; Haggar, R.; Baker, M. Experimental Study of 6LoPLC for Home Energy
Management Systems. Energies 2016, 9, 1046.

27. Faria, P.; Vale, Z.; Baptista, J. Constrained consumption shifting management in the distributed energy
resources scheduling considering demand response. Energy Convers. Manag. 2015, 93, 309–320.

28. Pallonetto, F.; Oxizidis, S.; Milano, F.; Finn, D. The effect of time-of-use tariffs on the demand response
flexibility of an all-electric smart-grid-ready dwelling. Energy Build. 2016, 128, 56–67.

29. Castillo-Cagigal, M.; Matallanas, E.; Gutiérrez, A.; Monasterio-Huelin, F.; Caamaño-Martín, E.; Masa-Bote, D.;
Jiménez-Leube, J. Heterogeneous collaborative sensor network for electrical management of an automated
house with PV energy. Sensors 2011, 11, 11544–11559.

30. Gao, B.; Zhang, W.; Tang, Y.; Hu, M.; Zhu, M.; Zhan, H. Game-theoretic energy management for residential
users with dischargeable plug-in electric vehicles. Energies 2014, 7, 7499–7518.

31. Wang, Z.; Yang, R.; Wang, L. Intelligent multi-agent control for integrated building and micro-grid systems.
In Proceedings of the 2011 IEEE PES Innovative Smart Grid Technologies (ISGT), Anaheim, CA, USA,
17–19 January 2011; pp. 1–7.

32. Shaikh, P.H.; Nor, N.B.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. Intelligent multi-objective control and
management for smart energy efficient buildings. Int. J. Electr. Power Energy Syst. 2016, 74, 403–409.

33. Lin, W.M.; Tu, C.S.; Tsai, M.T. Energy management strategy for microgrids by using enhanced bee colony
optimization. Energies 2015, 9, 5.

34. Kim, H.Y.; Kang, H.J. A Study on Development of a Cost Optimal and Energy Saving Building Model:
Focused on Industrial Building. Energies 2016, 9, 181.

35. Huang, Y.; Tian, H.; Wang, L. Demand response for home energy management system. Int. J. Electr. Power
Energy Syst. 2015, 73, 448–455.



Energies 2017, 10, 335 24 of 25

36. Bradac, Z.; Kaczmarczyk, V.; Fiedler, P. Optimal scheduling of domestic appliances via MILP. Energies 2014,
8, 217–232.

37. Rasheed, M.B.; Javaid, N.; Ahmad, A.; Khan, Z.A.; Qasim, U.; Alrajeh, N. An Efficient Power Scheduling
Scheme for Residential Load Management in Smart Homes. Appl. Sci. 2015, 5, 1134–1163.

38. Iwafune, Y.; Ikegami, T.; da Silva Fonseca, J.G.; Oozeki, T.; Ogimoto, K. Cooperative home energy
management using batteries for a photovoltaic system considering the diversity of households.
Energy Convers. Manag. 2015, 96, 322–329.

39. Zhang, D.; Evangelisti, S.; Lettieri, P.; Papageorgiou, L.G. Economic and environmental scheduling of smart
homes with microgrid: DER operation and electrical tasks. Energy Convers. Manag. 2016, 110, 113–124.

40. Karimi-Nasab, M.; Modarres, M.; Seyedhoseini, S.M. A self-adaptive PSO for joint lot sizing and job shop
scheduling with compressible process times. Appl. Soft Comput. 2015, 27, 137–147.

41. Adika, C.O.; Wang, L. Autonomous appliance scheduling for household energy management. IEEE Trans.
Smart Grid 2014, 5, 673–682.

42. Polaki, S.K.; Reza, M.; Roy, D.S. A genetic algorithm for optimal power scheduling for residential energy
management. In Proceedings of the 2015 IEEE 15th International Conference on Environment and Electrical
Engineering (EEEIC), Florence, Italy, 10–13 June 2015; pp. 2061–2065.

43. Haider, H.T.; See, O.H.; Elmenreich, W. Dynamic residential load scheduling based on adaptive consumption
level pricing scheme. Electr. Power Syst. Res. 2016, 133, 27–35.

44. Khan, M.A.; Javaid, N.; Mahmood, A.; Khan, Z.A.; Alrajeh, N. A generic demand-side management model
for smart grid. Int. J. Energy Res. 2015, 39, 954–964.

45. Jaffe, A.B.; Stavins, R.N. The energy-efficiency gap What does it mean? Energy Policy 1994, 22, 804–810.
46. Sunikka-Blank, M.; Galvin, R. Introducing the prebound effect: the gap between performance and actual

energy consumption. Build. Res. Inf. 2012, 40, 260–273.
47. Pusnik, M.; Al-Mansour, F.; Sucic, B.; Gubina, A.F. Gap analysis of industrial energy management systems in

Slovenia. Energy. 2016, 108, 41–49.
48. Schulze, M.; Nehler, H.; Ottosson, M.; Thollander, P. Energy management in industry–a systematic review of

previous findings and an integrative conceptual framework. J. Clean. Prod. 2016, 112, 3692–3708.
49. Cetin, K.S.; Manuel, L.; Novoselac, A. Effect of technology-enabled time-of-use energy pricing on thermal

comfort and energy use in mechanically-conditioned residential buildings in cooling dominated climates.
Build. Environ. 2016, 96, 118–130.

50. Toftum, J.; Kazanci, O.B.; Olesen, B.W. Effect of Set-point Variation on Thermal Comfort and Energy Use in
a Plus-energy Dwelling. In Proceedings of the 9th Windsor Conference: Making Comfort Relevant, Windsor,
UK, 7–10 April 2016.

51. Salehi, M.M.; Cavka, B.T.; Frisque, A.; Whitehead, D.; Bushe, W.K. A case study: The energy performance gap
of the Center for Interactive Research on Sustainability at the University of British Columbia. J. Build. Eng.
2015, 4, 127–139.

52. Mahmood, D.; Javaid, N.; Nouman, U.; Urrahman, A.; Khan, Z.A.; Qasim, U. Comparative Analysis
of Energy Management Solutions focusing Practical Implementation. In Proceedings of the 2016 10th
International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), Fukuoka, Japan,
6–8 July 2016; pp. 271–277.

53. Zhou, B.; Li, W.; Chan, K.W.; Cao, Y.; Kuang, Y.; Liu, X.; Wang, X. Smart home energy management systems:
Concept, configurations, and scheduling strategies. Renew. Sustain. Energy Rev. 2016, 61, 30–40.

54. Paradiso, F.; Paganelli, F.; Giuli, D.; Capobianco, S. Context-Based Energy Disaggregation in Smart Homes.
Future Internet 2016, 8, 4.

55. Mulder, G.; Six, D.; Claessens, B.; Broes, T.; Omar, N.; Van Mierlo, J. The dimensioning of PV-battery systems
depending on the incentive and selling price conditions. Appl. Energy 2013, 111, 1126–1135.

56. Mahmood, D.; Javaid, N.; Alrajeh, N.; Khan, Z.A.; Qasim, U.; Ahmed, I.; Ilahi, M. Realistic Scheduling
Mechanism for Smart Homes. Energies 2016, 9, 202.

57. Liu, Z.; Chen, C.; Yuan, J. Hybrid Energy Scheduling in a Renewable Micro Grid. Appl. Sci. 2015, 5, 516–531.
58. UNEP BN. Global Trends in Renewable Energy Investments 2011. Analysis of Trends and Issues in the

Financing of Renewable Energy. 2011.
59. OECD/IEA. International Energy Agency—Scenarios & Strategies to 2050. 2010. Available online: https:

//www.iea.org/publications/freepublications/publication/etp2010.pdf (accessed on 7 March 2017).



Energies 2017, 10, 335 25 of 25

60. Ferruzzi, G.; Graditi, G.; Rossi, F.; Russo, A. Optimal operation of a residential microgrid: The role of demand
side management. Intell. Ind. Syst. 2015, 1, 61–82.

61. Ferruzzi, G.; Cervone, G.; Delle Monache, L.; Graditi, G.; Jacobone, F. Optimal bidding in a Day-Ahead
energy market for Micro Grid under uncertainty in renewable energy production. Energy 2016, 106, 194–202.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

