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Abstract: The importance of neural network (NN) modelling is evident from its performance benefits
in a myriad of applications, where, unlike conventional techniques, NN modeling provides superior
performance without relying on complex filtering and/or time-consuming parameter tuning specific
to applications and their wider ranges of conditions. In this paper, we employ NN modelling
with training data generation based on sensitivity analysis for the prediction of building energy
consumption to improve performance and reliability. Unlike our previous work, where insignificant
input variables are successively screened out based on their mean impact values (MIVs) during the
training process, we use the receiver operating characteristic (ROC) plot to generate reliable data with
a conservative or progressive point of view, which overcomes the issue of data insufficiency of the MIV
method: By properly setting boundaries for input variables based on the ROC plot and their statistics,
instead of completely screening them out as in the MIV-based method, we can generate new training
data that maximize true positive and false negative numbers from the partial data set. Then a NN
model is constructed and trained with the generated training data using Levenberg–Marquardt back
propagation (LM-BP) to perform electricity prediction for commercial buildings. The performance of
the proposed data generation methods is compared with that of the MIV method through experiments,
whose results show that data generation using successive and cross pattern provides satisfactory
performance, following energy consumption trends with good phase. Among the two options in data
generation, i.e., successive and two data combination, the successive option shows lower root mean
square error (RMSE) than the combination one by around 400~900 kWh (i.e., 30%~75%).

Keywords: energy management; building modelling; neural network (NN); receiver operating
characteristic (ROC); mean impact value (MIV)

1. Introduction

Energy optimization has become a critical issue in reducing CO2 emissions. By the end of 2017
non-renewable electricity generation still accounted for around 73.5%, despite significant investment
in the renewable energy sector; the investment in the renewable energy amounted to $274 billion and
279.8 billion USD in 2016 and 2017, respectively [1]. Compared to renewable hydro power capacity
of around 1114 GW, solar and wind power generation still take small portions of 1.9% and 5.6%,
respectively [1]. In view of the current low energy provision from renewable sources, other methods of
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saving natural resources—including better management of electricity energy consumption (whether
renewable or non-renewable)—are as important as improving and increasing the renewable supply.
With growing urbanization, building energy consumption has also increased gradually. Electricity
consumption in buildings has been predicted to drastically increase to 35% of total energy consumption
by 2020 in China [2].

Most building electricity consumptions have been controlled in consideration of the surrounding
local environmental factors such as working day, temperature, or humidity. Additionally, improving
electricity consumption efficiency remains challenging from a micro-grid electricity management
viewpoint. Hence, the study of building electricity energy prediction has become an important area of
study, not only for efficient building energy control but also regarding smart city organization. There
have been a lot of researches dedicated to the energy optimization, prediction, and decision-making
methodologies for the building blocks [3–8]. Because of the large and complex building structures,
modelling based on neural networks (NN) has recently been used to analyze the electricity consumption
in buildings [6–15]. Note that the low efficiency, slow convergence, fluctuations, and oscillation during
the training process of NN-based modeling were overcome by the Levenberg–Marquardt Back
Propagation (LM-BP) algorithm by Ye and Kim [14].

System performance is related to sensitivity, having a complementary characteristic [16]. NN
sensitivity analysis (SA) is closely related to weights between NN nodes and has been extensively
investigated [17–20]. As discussed in [21,22], sensitivity analyses of NNs can be categorized into two
approaches, i.e., the analytic approach defined by the partial derivative of the output with respect
to the input variation [17,18] and the statistical approach proposed by Choi et. al [19]. The two
approaches have common difficulties in measuring expected output error with respect to overall input
variations [20]. Hence, Zeng and Yeung proposed a SA method by combining two approaches and
derived an output variance equation based on the perturbation of inputs and weights. They also
emphasized that the result aided in the selection of more weight sets with a low sensitivity level during
training [20].

In previous research [23,24], the mean impact value (MIV) was used to predict building electricity
consumption and improve the prediction accuracy of building energy consumption, where we proposed
a simplified neural network and verified its effectiveness. During the investigation, we applied several
neural network algorithms, and compared their sensitivities. Finally, a neural network algorithm with
a data-driven approach was selected and the result was well suited to building energy consumption
prediction based on how each environmental element influences the electricity consumption in
a building [24]. It is recognized that understanding the sensitivity of building energy consumption
models is important because the sensitivity is also closely related to the performance and robustness
of the system [16–19]. In this research, we investigate how different environmental elements—such
as temperature, humidity, working day, wind speed, and weather characteristics—influence actual
electricity energy consumption in buildings using generated training data.

As previously mentioned, NN SA has been carried out by analyzing output variance with respect
to the variation of inputs and connected weights [21,22]. Besides analytical SA, MIV is also applied to
analyze the effect on the output by the variation of input variables [23,24]. Due to the NN structure,
which can be considered as a black box, we measure the output variation under perturbation in
the input data set. Most research considers the importance of reliable data to guarantee system
performance. When we are faced with a shortage of training data, reliable training data needs to be
generated based on a rational methodology. Hence, here we attempt to generate effective training
data based on the receiver operating characteristic (ROC) plot where there are not available sufficient
training data [25,26]. ROC plots have been used for the purposes of signal or trial classification based
on the statistical decision theory [25]. Decisiveness is its threshold level in assigning true or false in
a test. If the level is a precise value, its sensitivity is very high and conversely, 1–specificity is quite low.
As a result, it provides the optimum tradeoff between false positives and false negatives [26].
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In the paper, we use actual electricity consumption data from a shopping mall in Dalian, China, to
predict energy consumption [27]. However, we face the issue of data insufficiency in applying NN
prediction models; this could be an issue, too, when we use few reliable data from the plenty of available
data [24]. In order to overcome the issue of insufficient training data, therefore, we systematically
generate more training data based on the ROC plot. Firstly, electricity consumption data of a shopping
mall in Dalian, China, for 2 months are reordered, i.e., consumption ranged from 17,385 kWh to
7711 kWh, from 1 March to 29 April 2014 [27]. With the help of the ROC plot, input values of
temperature, humidity, working day, weather characteristics and electricity consumption are generated
considering the quality of data: By choosing the maximal input and output, we generate data in a more
conservative way, while the minimal values of input and output lead to more flexible data generation.
Training data generation processes are described in more detail in Section 3.3.

Next, we constitute a new training set from the original and generated data set and apply test
data to verify the performance of the proposed NN in this paper, which is compared with that of the
simplified NN from [24]. Results show how the reliability of data affects the output performance.
LM-BP is used despite the availability of insufficient real data, which would typically result in
overfitting, since we are able to generate additional training data as described.

The rest of the paper is organized as follows: In Section 2, SA and least square (LS) are introduced.
In Section 3, the use of ROC plot for the data classification is introduced, and the reliable data
generation procedures based on the ROC plot are described. In Section 4, a comparative analysis of
the performance of the proposed NN trained with training data derived from the ROC with that of
the simplified NN in [24] is carried out based on simulation experiments. And the analysis for each
of the data generation methods is discussed. Finally, Section 5 concludes our work in this paper and
provides directions for future research.

2. Sensitivity in Neural Network

2.1. Sensitivity Analysis

Sensitivity has become a fundamental topic for NNs since 1990, where the output from a multilayer
perceptron (MLP) are analyzed with respect to its input and weight variations [21,22]. In this section, NN
sensitivity is introduced and the link between sensitivity and connections is addressed. A three-layer
back propagation (BP) NN structure as shown in Figure 1 was illustrated in previous research [23,24].
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Figure 1. Three-layer back propagation (BP) neural network structure [24].

The output Yk of the output layer can be expressed as follows [24]:

Yk =
∑l

j=1

∑n

i=1
v jkwi jxi, k = 1, 2, . . . , m, (1)

where wi j and v jk are the weights from the input to the hidden layer and from the hidden to the output
layer, respectively, and n, l, and m are the numbers of input, hidden, and output nodes [24].
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For each output Yk, error values are formulated by Ek = Fk −Yk, k = 1, 2, . . . , m. Fks are the actual
values for each k = 1, 2, . . . , m. The total perturbation then can be obtained as

EToT =
∑m

k=1
Ek =

∑m

k=1

∑l

j=1

∑n

i=1
v jkwi jxi. (2)

Output variation with respect to the input variable—i.e., ∂Yk
∂xi

—for k = 1, 2, , m and i = 1, 2, . . . , n
is expressed by

∂Yk
∂xi

= −
∂Ek
∂xi

=
[

wi1 wi2 · · · wil
]


v1k
v2k

...
vlk

. (3)

For each output variation due to input perturbation is expressed by the multiplication of weights
from the input to the hidden layer and from the hidden to the output layer [24].

2.2. Least Square Error Evaluation

The NN square error value with respect to actual output Fk, k = 1, 2, , m, can be expressed as in (4)
without consideration of a threshold value [23,24].

ELS = 1
2
∑
k
(Fk −Yk)

2

= 1
2
∑

k

(
Fk −

∑l
j=1

∑n
i=1 v jkwi jxi

)2
, j = 1, 2, . . . , land k = 1, 2, . . . , m

(4)

The total output error summation is defined as

EToT =
∑k

i=1
Ek (5)

Equation (5) has the same structure as Equation (2). In the NN model, sensitivity with respect to
the input variable is calculated as follows:

∑m

k=1

∂ELS
∂xi

=
∑m

k=1

{
(Fk −Yk)

∂Yk
∂xi

}
(6)

From (4) and (6), we obtain∑m

k=1

∂ELS
∂xi

= −
∑m

k=1

∑l

j=1

∑n

i=1
(Fk −Yk)v jkwi j (7)

Equation (7) therefore represents the total error with respect to input variation [24]. This shows
that the least square error perturbation is obtained by the summation of multiplications between the
output error Ek and NN weights. From the relationship between Equations (3) and (7), it is clear that
the reliability of the input variables affects the output and error value as highlighted in Section 1.
Hence, the previous application of MIV in the selection of reliable data when constructing a simplified
NN [24].

3. Reliable Data Generation with ROC

The construction of a NN model is completed when the weights v jk, wi j are fixed after the
application of training data. Because the performance of a NN model is significantly dependent on
the training data used, more training data than available from the real world are often needed to
sufficiently train the NN. When real training data are insufficient for NN training, it is necessary to
artificially manufacture more training data that can adequately train NN. In this section, we propose
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a methodology for constructing additional training data using the receiver operating characteristic
(ROC) plot [25,26].

3.1. Data Classification with ROC

The ROC has been proposed as a methodology for selecting an appropriate classification threshold
leading to the provision of higher quality output information. For example, the ROC plot has been
applied to the classification of clinical lab tests since 1950s, where signals or trials are classified based on
statistical decision theory [25]. The threshold level for the classification is determined by maximizing
true positives and true negatives, which results in the optimum tradeoff between false positives and
false negatives [26]. Test and output numbers are illustrated in Table 1.

Table 1. Number of output and test.

Test
Output

Total
Positive Negative

Positive TP<#1> FP<#2> #1 + #2

Negative FN<#3> TN<#4> #3 + #4

Total #1 + #3 #2 + #4 #1 + #2 + #3 + #4

Now we consider the ROC plot of sensitivity with respect to 1–specificity shown in Figure 2; this
can also be formed by maximizing the ratio between true positive rate (TPR) and 1–true negative rate
(TNR) [28,29]. The output and test results are defined as follows:

For True Positive(TP): #1; True Negative (TN): #4; False Negative(FN): #3; False Positive (FP): #2
True Positive Rate(TPR):= Sensitivity: #1

#1+#3
True Negative Rate(TNR):= Specificity: #4

#2+#4
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Figure 2. ROC plot with sensitivity to 1-specificity.

The ROC plot indicates the division with TP and FP relationship. The red circle close to the top
left of Figure 2 illustrates a very good classification. This means that a high likelihood ratio (LR),
LR+ = sensitivity/(1–specificity), guarantees more positive than negative outputs when the test is
positive. With increasing LR+, we obtain a high TP with an appropriate threshold in the red circle.
Similarly, a high LR− = (1–sensitivity)/specificity, guarantees a larger true negative than false negative.
The 45-degree dotted line in Figure 2 denotes that no classification happens, it merely serves to divide
the data set with half. When data with high temperature, humidity and electricity consumption are
chosen, they are considered as conservative and will be selected as true positive in Table 1. Whereas,
data with low temperature and electricity consumption belong to true negative in Table 1.
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3.2. Generation of Training Data Based on ROC

Here we describe how to generate artificial training data with the help of the ROC plot, which is
used to select reliable data components during the generation process. The generation processes are
as follows:

1. Arrange electricity consumption and input values such as temperature, humidity, and working
days for data sets.

2. Choose high/low inputs and outputs among successive data sets. Values are TP or TN in Table 2.
3. Generate input and output values.
4. Organize training data.

Daily data are considered in Process 1; in this paper, two-day input and output data are considered,
successively or randomly. In Process 2, high inputs and outputs are considered to ensure that TP is
greater than FP, and low inputs and outputs guarantee TN is greater than FN. Next, we continue to
generate input and output data, and gather as training data in Processes 3 and 4, whose further details
are illustrated with real data in Section 3.3.

Table 2. Output and Test for electricity consumption.

Test
Output

Total
Positive Negative

High Energy TP FP→0 High considered

Low energy FN→0 TN Low considered

Total High consumption Low consumption Total data

3.3. Illustration of ROC-Based Data Generation with Real Data

To further illustrate the ROC-based training data generation processes, we use actual building
electricity consumption data obtained from a shopping mall in Dalian, China [27], which are the
same data used to propose the simplified NN with MIV in [24]. In the research, the most effective
data were selected from all input data using MIV in order to construct a simplified NN. From
the results obtained, it was observed that there were two inputs that significantly affect electricity
consumption—i.e., working day and temperature—as summarized in Table 3. Therefore, we compared
electricity consumption with all inputs and combinations of inputs through simulation experiments [24].
The importance of sensitivity on the output value was clearly demonstrated [24,30], pointing again to
the need for sufficient and reliable training data. From the analysis, we assigned the variable a numeric
value {1, 2, 3, 4} = temperature, humidity, working day, weather characteristics. The RMSE for all
inputs were found to be 5342.2 kWh, whilst using only {1, 3} resulted in 2291.9 kWh with LM-BP [24].

Table 3. Mean impact value (MIV) rates (%) for the input factors [24].

Temperature Humidity Working Day Weather Characteristics Wind Speed

MIV 2.5% 1.51% 2.7% −1.64% −0.09%

In order to generate reliable training data, we considered ROC plots, as discussed in Section 3.2.
Electricity consumption data in Appendix A is rearranged by electricity consumption size from largest
to smallest as illustrated in Table 4. In the data generation, we generate data by the comparison of k
rows. Data generation procedure in this paper, we consider for k = 2 or 3.
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Table 4. Part of training data in Appendix A.

Date Temperature
(◦C)

Humidity
(%)

Working
Day

Weather
Characteristics

Electricity
Consumption (kWh)

04.27 15 68 0 0.5 17,385 Sun
03.08 3 69 0 0.6 15,588 Sat
04.12 13 59 0 0.9 15,145 Sat
04.20 18 40 0 0.8 15,128 Sun
04.19 17 42 0 0.8 14,352 Sat
04.13 16 49 0 0.8 14,183 Sun
03.01 5 42 0 0.8 13,958 Sat
04.06 18 30 0 1 13,868 Sun
. . . . . . . . . . . . . . . . . . . . .

Data generation is carried out based on Table 4 and the generation process are followed by
assigning data to make belong to TP and TN based on Table 2; FP and FN data are also generated in
the same way.

Firstly, all minimum values from two successive rows of data are selected. For example, the data
from 27 April and 8 March, 2014, form the first row of information in Gen_2 below.

1) Gen_k: Select minimum characteristics per attribute comparing successive days data Table 4
(k = 2)

Process 1
Temperature

(◦C)
Humidity

(%)
Working Day

Weather
Characteristics

Electricity
Consumption (kWh)

04.27/03.08 3 68 0 0.5 15,588
03.08/04.12 3 59 0 0.6 15,145
04.12/04.20 13 40 0 0.8 15,128

2) Gen_k_cross: Select minimum characteristic per attribute and maximum consumption comparing
successive days data Table 4 (k = 2)

Process 2
Temperature

(◦C)
Humidity

(%)
Working Day

Weather
Characteristics

Electricity
Consumption (kWh)

04.27/03.08 3 68 0 0.5 17,385
03.08/04.12 3 59 0 0.6 15,588
04.12/04.20 13 40 0 0.8 15,145

We apply the same procedure to all combinations of two rows.

3) Gen_k_all: Take all minimum attributes for all combinations of two rows in Table 4 (k = 2)

Process 3
Temperature

(◦C)
Humidity

(%)
Working Day

Weather
Characteristics

Electricity
Consumption (kWh)

04.27/03.08 3 68 0 0.5 15,588
04.27/04.12 13 59 0 0.5 15,145
04.27/04.20 15 40 0 0.5 15,128

4) Gen_2_all_cross: Take minimum for all characteristics and maximum consumption for all
combinations of two rows in Table 4 (k = 2)

Process 4
Temperature

(◦C)
Humidity

(%)
Working Day

Weather
Characteristics

Electricity
Consumption (kWh)

04.27/03.08 3 68 0 0.5 17,385
04.27/04.12 13 59 0 0.5 17,385
04.27/04.20 15 40 0 0.58 17,385
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5) Gen_k_reverse_cross: Select high temperature, humidity, weather characteristics, low working
day and high consumption, comparing successive days in Table 4 (k = 2)

Process 5
Temperature

(◦C)
Humidity

(%)
Working Day

Weather
Characteristics

Electricity
Consumption (kWh)

04.27/03.08 15 69 0 0.6 17,385
03.08/04.12 13 69 0 0.9 15,588
04.12/04.20 18 59 0 0.9 15,145

In the process of data generation, 1) and 3) belong to the FT and FN cases, and 2) and 4) belong
to the TP and TN data groups. Data generation in 5) is not rational for consideration because high
electricity consumption is considered for high temperature and other cases. As described in Sections 3.1
and 3.2, we generate more reliable data with the help of ROC knowledge: It is expected that the NN
model trained with generated data emphasizing TP and TN (i.e., the generation process #2) could
provide better predictive performance than the model trained with generated data emphasizing FT and
FN, because the former generated data are based on the components providing higher classification
performance as shown in Table 2.

4. Illustrative Example and Discussions

In this section, we carry out simulation experiments and compare the prediction performance of
a NN model trained with both original data and generated data: We first produce 2/3 of the training
data from the original data [27] and compare the prediction results with those with the generated data
based on the proposed processes in Section 3, which is followed by the analysis of simulation results
and discussions.

4.1. Data Collection or Generation for Training

In the previous section, we generated training data based on the ROC plot. After training with
the generated data, testing has been carried out and the results are summarized with root mean
square error (RMSE) values in Table 5. From Table 5, it can be seen that the training and test follow
a similar pattern.

Table 5. Training and test results.

Set of Inputs Mean of RMSE (Training) (kWh) Mean of RMSE (Test) (kWh)

Original(without generation) 680.3 1205.4
Gen_2 589.8 1183.1

Gen_2_cross 670.4 1197.0
Gen_3 608.3 1184.8

Gen_3_cross 968.9 1214.6
Gen_2_all 1634.9 2121.4

Gen_2_all_cross 1070.1 1801.0
Gen_2_reverse_cross 658.9 1200.1
Gen_3_reverse_cross 662.1 1225.5

The shopping mall covers an area of 50,000 square meters, and thus represents a high-energy
consumption building [27]. We use and analyze the building energy consumption data for March
and April in 2014. Two-thirds of the calendrical data without generation are used in training for NN,
and it shows RMSE with 680.3 kWh. For the training results with Gen_2, Gen_3, Gen_2_cross, and
Gen_k_reverse_cross, k = 2, 3 show lower error than the result without generation. For the testing
results, Gen_2, Gen_3, and Gen_2_cross and Gen_2_reverse_cross produce lower RMSE than the result
without generation as well.
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From the numerical results in Table 5, we recognize that training results with generated data
show similar phase with the training results. Data generation with Gen_2_all and Gen_2_all_cross
is composed with non-successive data pair from electricity consumption viewpoint, so we consider
that it is more progressive way of data generation. All the test simulations based on training data are
carried out, and the comparisons between each generation procedure from 1) to 5) are illustrated in
Figures 3–6.

The predictions based on generated data, except Gen _2_all and Gen _2_all_cross, provide the test
results showing patterns similar to that of the actual value; among them, Gen_k, k = 2, 3, show rather
faithful trend in test performance. RMSE of train and test also shows good performance. In case of
Gen_2_all and Gen_2_all_cross, as clearly shown in Figure 4, their results are rather flat and could not
follow the peak values of the actual value as shown in the figures; as mentioned, this is because the
data generation based on the procedure of Gen _2_all does not only consider successive ones only but
all combinations, which may not well take into account the time correlation between two consecutive
data in time, especially for weather and working day, and, as a result, cannot represent peaks in the
original data of building energy consumption.
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The results for Gen_k_cross k = 2, 3, shown in Figure 5, which emphasize the data in TP and TN
groups, provide rather smaller RMSEs and are faithful in representing peak values. This is also the case
for the results for Gen_k_reverse_cross k = 2, 3, shown in Figure 6, which consider data belonging to
FT or FN groups. In both the cases, the data generations take into account the time correlation between
adjunct rows and, unlike Gen_2_all and Gen_2_all_cross, are able to reproduce well the peaks in the
original data of building energy consumption.

4.2. Discussions

As we discussed, the good test performance could be guaranteed from enough training data.
Hence, we face with difficulty in training when data are not enough. So, we apply data generation
methodology with the help of ROC, and the training process has been done with the part of actual
data. Five data generation procedures are introduced and verified by way of simulation.

For the data generation, we find another way of data generation method such as bootstrap
application in database [31]. However, the method is carried out in the process by choosing the data
with randomly from data set, therefore it cannot be guaranteed that the data is trustworthy. With the
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obtained result, we can provide more reliable data generation, hence it provides a useful data resource
to apply in NN training.

From the simulation results with generated data procedure in Section 3.3, the performance
still needs to be improved, even though Gen_k_cross and Gen_k_reverse_cross showed relevant
results. Specifically, peak value predictions are not satisfactory and continual difference in low power
consumption is illustrated as well. Hence, more diverse considerations are necessary to minimize
RMSE and output prediction.

5. Conclusions

A study on the prediction of energy consumption in the building environment has been carried out
in this paper. The design of a building model is important to the prediction of the energy consumption
and operation scheduling. In NN modelling, the preparation/generation of input training data is the
key to its performance and reliability. In our previous work, we used the MIV to screen out insignificant
input variables based on the sensitivity analysis and demonstrated its effectiveness [24]. One major
issue in the use of MIV, however, is that, because insignificant variables are completely removed during
the training data generation and thereby simplified/reduced the structure of NN, all the available
information from the original data cannot be fully taken into account in constructing NN.

In order to overcome the issue of data insufficiency in the MIV method, therefore, we generate
the training data based on the ROC plot and the statistics of the original data in this work, where
boundaries for the selection of input data are decided based on several methods, including successive or
combination for two or three data are considered to choose input data. Minimum electric consumption
guarantees conservative viewpoint, whereas maximum consumption allows progressive one. We use
LM-BP NN structure, which has an advantage in smaller training data. After training data generation,
test results are compared with those based on the original (without generation) data.

The experimental results demonstrate that data generation with ROC is more reliable and can
overcome the data insufficiency issue of the MIV method, which results in a more efficient and
reliable NN model for the prediction of building energy consumption. Specifically, the results with
successive data show rather relevant output together with training results. However, two or three data
combination case does not follow the consumption phase, that is, a rather conservative prediction;
specifically, the results for Gen_2_all and Gen_2_all_cross show a difference of 390~950 kWh and
600~900 kWh for training and test with respect to the reference case of the original data, respectively.

Note that the results from this work can be extend and applied to other research areas, including
the construction of NN models with insufficient data set.

Author Contributions: Conceptualization, M.K.K. and V.H.P.; methodology, S.L. and J.C.; software, V.H.P.;
validation, K.S.K. and V.H.P.; resources, M.K.K.; writing—review and editing, S.L., K.S.K. and M.L.; supervision,
M.K.K. and K.S.K.; funding acquisition, S.L.

Funding: This research was funded by RDF from XJTLU, grant number RDF 14-03-11.

Acknowledgments: The authors appreciate to the support of CeSGIC from XJTLU to finish the research article.

Conflicts of Interest: All authors confirmed that there is no conflict of interest.



Processes 2019, 7, 731 12 of 13

Appendix A

Table A1. Electricity consumption data for a shopping mall in Dalian [27].

Date Temperature
(◦C)

Humidity
(%)

Working
Day

Weather
Characteristics

Electricity
Consumption (kWh)

04.27 15 68 0 0.5 17,385 Sun
03.08 3 69 0 0.6 15,588 Sat
04.12 13 59 0 0.9 15,145 Sat
04.20 18 40 0 0.8 15,128 Sun
04.19 17 42 0 0.8 14,352 Sat
04.13 16 49 0 0.8 14,183 Sun
03.01 5 42 0 0.8 13,958 Sat
04.06 18 30 0 1 13,868 Sun
03.22 17 33 0 1 13,783 Sat
03.30 17 31 0 1 13,755 Sun
03.29 14 45 0 0.8 13,716 Sat
03.23 16 31 0 1 13,701 Sun
03.15 12 32 0 1 13,674 Sat
. . . .. .. . . . . . . . .

03.11 8 42 1 0.8 10,571 Tue
04.17 15 76 1 0.7 10,556 Thu
03.14 7 31 1 1 9790 Fri
04.03 11 31 1 1 9723 Thu
03.10 6 30 1 1 9446 Mon
03.03 6 46 1 0.8 9148 Mon
03.12 5 51 1 0.9 8967 Wed
03.07 4 29 1 1 8748 Fri
03.06 5 33 1 1 8734 Thu
03.13 4 33 1 1 8419 Thu
03.05 3 46 1 1 7711 Wed
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