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Abstract: In this paper, we consider the problem of economic model predictive control of wastewater
treatment plants based on model reduction. We apply two model approximation methods to a
wastewater treatment plant (WWTP) described by a modified Benchmark Simulation Model No.1 to
overcome the intensive computation associated with economic model predictive control (MPC).
Two computationally efficient models are obtained based on trajectory piecewise linearization
(TPWL) and reduced order TPWL. To obtain the reduced order TPWL model, a proper orthogonal
decomposition (POD)-based method is utilized. Further, the reduced order model is linearized
to obtain a TPWL-POD model. The objective is to design controllers which minimize the overall
economic cost. Accordingly, we design economic MPC (EMPC) controllers based on each of the
models. The economic control cost can be described as a weighted summation of effluent quality
and overall operating cost. We compare the accuracy of the two proposed approximation models
with different linearization point numbers. We evaluate the average evaluation time for the two
proposed EMPC controllers and make comparisons with the EMPC based on the original nonlinear
model. We also investigate how the number of linearization points involved in the TPWL model
and TPWL-POD model affects the control performance in terms of average performance cost and the
average evaluation time.

Keywords: economic model predictive control; wastewater treatment plant; model reduction;
trajectory piecewise linearization

1. Introduction

Wastewater treatment plants (WWTPs) have been widely used to recycle wastewater in order to
minimize its adverse environmental impacts. A typical WWTP is a large-scale nonlinear process that
consists of a series of interconnected biological reactors and a secondary settler. While meeting the strict
requirements in environmental regulations, ensuring the process safety and minimizing the cost of
operation, a wastewater treatment plant should be monitored and regulated [1]. However, significant
variability of inlet flow rates and wastewater compositions leads to the increased complexity in the
design of advanced control and monitoring schemes for WWTPs [2].

In the literature, there are many existing resutls on the control of WWTPs. For example,
in [3], proportional-integral (PI) was used to control a nutrient removal WWTP. In [4], the tuning
of proportional-integral-derivative control was considered in the control of the dissolved oxygen
concentration in the activated sludge process. Advanced control methods such as model predictive
control (MPC) have also attracted much research attention in the control of WWTPs. In [5–7],
simultaneous design and control of WWTPs were considered with MPC. In [8], an MPC controller
was developed for the Benchmark Simulation Model No.1 (BSM1). MPC was also used to in the
control of oxygen concentration in [9,10]. In [11,12], MPC was applied to a WWTP to increase the
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plant efficiency, and in [13] it was applied to reduce the power usage. In one of our previous works,
we applied economic MPC (EMPC) to explicitly optimize the operating economics of WWTPs [14].
While the EMPC can lead to improved effluent quality and improved overall operating cost, its high
evaluation time renders the online implementation of this economic MPC intractable.

When considering economic MPC, it in general requires more time to evaluate the corresponding
optimization problem compared with the traditional tracking MPC. One way to address the high
evaluation time of economic MPC of nonlinear system is to use a distributed computing framework.
Following this idea, in a recent work [1], we developed distributed EMPC schemes for WWTPs to
reduce the evaluation time of the centralized EMPC. In this work, we consider another approach
to address the high evaluation time of economic MPC; that is, to design economic MPC based on
approximated models. This is based on the consideration that when solving the nonlinear optimization
problem of an economic MPC, the model of the system is evaluated many times. If we can use an
approximated model that can be evaluated faster, then the economic MPC can be evaluated faster.

The objective of this work is to study how two model approximation methods can help speed up
the evaluation of the optimization problem of economic MPC. Specifically, we propose to develop linear
approximated models of the original nonlinear system and use the approximated models in EMPC
design. A lot of achievements have been made on the use of approximated models in MPC. The work
of [15] applied feedback linearization to the plant and then used MPC in a cascade arrangement for the
resulting linear system. The nonlinear programming problem was reduced to a quadratic optimization
problem which can improve the computational efficiency. The implementation of MPC with a different
linear model at each time step derived from a local (Jacobian) linearization of the nonlinear plant was
first proposed in [16]. An extended Kalman filter was proposed to be added to this approach to deal
with unstable nonlinear process and ensure a better disturbance rejection in [17,18]. This idea was
further developed in [19], contraction constraints were applied and the explicit stability conditions
were derived. In [20], one technique was proposed to approximate the nonlinear system with a linear
time varying (LTV) model, which is obtained from a linearization of the system along the predicted
system trajectory. In [21,22], a novel MPC algorithm was proposed which can significantly reduce the
online evaluation time. The approach is to only compute the first control move while approximating
the rest of control moves by using a linear controller.

Pertaining to model approximation, model order reduction techniques are also popular and can
significantly abate the complexity of the nonlinear system while conserving the dominant dynamics
of the process [23]. The proper orthogonal decomposition (POD) method is extensively used in
data analysis for approximating the high-dimensional process by low-dimensional descriptions [24].
The POD method has been widely applied in control in chemical engineering [25–29]. In [30], a state
estimation scheme was established for WWTPs using POD-based model approximation. In [31,32],
a reduced order model based on the POD-Galerkin projection method was constructed for economic
MPC. With the reduced order model, the evaluation time of the economic MPC was significantly
reduced. In [33], a nonlinear system was represented by a piecewise-linear system and each of the
pieces were reduced with a Krylov projections.

In this work, we apply the trajectory piecewise linearization and a combination of trajectory
piecewise linearization and proper orthogonal decomposition method to WWTPs to derive low-order
linear models, which are subsequently used for EMPC controller design. The model accuracy,
economic MPC evaluation time, and economic control performance of the WWTP process under
these EMPC controllers are compared. Note that we investigate the performance of these model
approximation and reduction methods in a centralized control framework. These methods may also be
used together with distributed control to further reduce the evaluation time of the centralized EMPC.
The main contributions of this work include the folllowing:

• The investigation of two model approximation methods in EMPC evaluation time reduction in
the context of wastewater treatment control.
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• The detailed model reduction procedures for wastewater treatment processes and the design of
EMPC based on the reduced models.

• Extensive simulation results and analysis on the performance of EMPC based on reduced models
in terms of economic performance and controller evaluation time.

2. Preliminaries

2.1. WWTP Process Description and Modeling

The WWTP process considered in this work is a modified version of the Benchmark Simulation
Model No.1 (BSM1). A schematic of the process is shown in Figure 1. The process consists of a sludge
reactor consisting of five compartments and an ideal separator [34]. In the sludge reactor, the first
two compartments are anoxic compartments and the remaining three compartments are aerobic
compartments. During the operation, denitrification reactions occur in the anoxic compartments where
nitrate is converted to nitrogen, while nitrification reactions take place in three aerobic compartments
where ammonium is oxidized to nitrate. In the process, the inlet stream of the first compartment
of the reactor includes a feed stream, an internal recycle stream and an external recycle stream.
The wastewater enters the first compartment of the reactor in the feed stream at flow rate Q0 and
concentration Z0. The internal recycle stream is a portion of the effluent from the last aerated
compartment of the reactor at flow rate Qa and concentration Za. The other portion of the effluent
enters the ideal separator at flow rate Q f and concentration Z f . The external recycle stream is a portion
of the underflow of the separator and it is fed back into the first compartment of the reactor at flow rate
Qr and concentration Zr. The remaining portion of the underflow which is the generated sludge leaves
the separator at flow rate Qw and concentration Zw. The purified water leaves the process via the
overflow of the separator at flow rate Qe and concentration Ze. According to [35], eight basic biological
reactions are taken into account, and the concentrations of 13 major reaction-involved compounds
defined in Table 1 are the state variables of this model.

Separator

Figure 1. A schematic of the wastewater treatment plant.

The dynamics of WWTP based on the modified BSM1 model can be described by 78 ordinary
differential equations. The dynamics of each compartment of the reactor and the ideal separator can be
described by 13 differential equations according to 13 state variables defined in Table 1. The parameter
values of this process model are reported in [2] and Table 2 shows the model parameters adopted in
this work. The dynamics of the system are described based on mass balance as follows:

For compartment k (k = 1) of the biological reactor:

dZ1

dt
=

1
V1

(QaZa + QrZr + Q0Z0 + r1V1 −Q1Z1) (1)

Q1 = Qa + Qr + Q0 (2)
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For compartment k (k = 2, . . . , 5) of the biological reactor:

dZk
dt

=
1

Vk
(Qk−1Zk−1 + rkVk −QkZk) (3)

Qk = Qk−1 (4)

Special case for concentration SO,k, k = 1, . . . , 5, (the concentration of dissolved oxygen in
compartment k of the biological reactor):

dSO,k

dt
=

1
Vk

(Qk−1SO,k−1 + rkVk + KLakVk(S∗O − SO,k)−QkSO,k) (5)

In Equations (1), (3) and (5), Zk is the concentration of the compounds defined in Table 1 in kth
compartment of the biological reactor, Vk represents the volume of kth compartment, rk denotes the
observed conversion rates of the compound in kth compartment, S∗O is the saturation concentration for
oxygen and is equal to 8 g ·m−3, and KLak represents the oxygen transfer coefficient in kth compartment,
since compartment 1 and 2 of the reactor are anoxic compartments, KLa1 = KLa2 = 0 d−1 [2].

Table 1. Definition and notation of the process variables in the modified BSM1 model.

Definition Notation Unit

inert soluble organic matter SI g COD ·m−3

inert particulate organic matter XI g COD ·m−3

readily biodegradable and soluble substrate Ss g COD ·m−3

slowly biodegradable and soluble substrate Xs g COD ·m−3

biomass of active autotrophs XBA g COD ·m−3

biomass of active heterotrophs XBH g COD ·m−3

particulate generated from decay of organisms XP g COD ·m−3

particulate biodegradable organic nitrogen XND g N ·m−3

nitrite nitrogen and nitrate SNO g N ·m−3

free and saline ammonia SNH g N ·m−3

biodegradable and soluble organic nitrogen SND g N ·m−3

dissolved oxygen SO g (-COD) ·m−3

alkalinity SALK mol ·m−3

total sludge concentration in settler X g COD ·m−3

The ideal separator is assumed to be a membrane filtration unit and no biological activity exists
in it [34]. All soluble compounds (i.e., SI , SS, SO, SNO, SNH , SND, and SALK) are assumed to be
well-mixed in the separator, and all solid compounds (i.e., XI , XS, XB,H , XB,A, XP, and XND) are
assumed to precipitate in the bottom of the separator [36]. Based on mass balance, the dynamics of the
separator unit (k = 6) can be described as follows:

For soluble compounds in the separator unit (k = 6):

dZk
dt

=
1

Vk
(Q f Z f + QeZe + QrZr + QwZw) (6)

Ze = Zr = Zw = Zk (7)

Z f = Zk−1 = Zk (8)

For solid compounds in the separator unit (k = 6):

dZk
dt

=
1

Vk
(Q f Z f + QrZr + QwZw) (9)

Zr = Zw = Zk (10)

Z f = Zk−1 = Zk (11)
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The flow rates of each stream in Figure 1 can be described as follows:

Q1 = Q2 = Q3 = Q4 = Q5 (12)

Q1 = Qa + Qr + Q0 (13)

Q f = Q5 −Qa = Qe + Qr + Qw = Qe + Qu (14)

Q0 = Qe + Qw (15)

Table 2. Parameter value of the modified BSM1 model.

V1 (volume of compartment 1) 1000 m3

V2 (volume of compartment 2) 1000 m3

V3 (volume of compartment 3) 1333 m3

V4 (volume of compartment 4) 1333 m3

V5 (volume of compartment 5) 1333 m3

Qw (Underflow discharge flow rate) 385 m3 · d−1

Qr (Outer recycle flow rate) 18, 446 m3 · d−1

Vs (Volume of separator) 6000 m3

KLa3 (Oxygen transfer coefficient of chamber 3) 240 d−1

KLa4 (Oxygen transfer coefficient of chamber 4) 240 d−1

2.2. Compact form of the System Model

The modified BSM1 model for the wastewater treatment plant can be described in the following
compact form:

ẋ(t) = f (x(t), u(t)) (16)

where x ∈ R78 is the vector of process states, u ∈ R3 represents the input vector consisting manipulated
inputs and the uncontrolled inputs. The manipulated inputs are the flow rate of the recirculation
stream (i.e., Qa) and the oxygen transfer rate in the fifth compartment of the biological reactor
(i.e., KLa5), respectively. The uncontrolled inputs contain the influent information under different
weather conditions.

2.3. Economic Control Objective

The economic control objective is defined as follows:

leco(x(τ), u(τ)) = αEQÊQ(τ) + αOCIÔCI(τ) (17)

where ÊQ is the economic index of effluent quality (EQ) which is calculated as the average amount of
the pollutants discharged and is defined in Equation (18), ÔCI represents the average amount of the
overall cost index (OCI) which contains the factors that affect the operating costs significantly and it is
defined in Equation (23), αEQ and αOCI are two weighting coefficients for EQ and OCI, respectively.

2.3.1. Effluent Quality

In BSM1, EQ (kg pollution unit · day−1) represents the daily average of a weighted summation
of the effluent concentrations of several compounds, which significantly affect the quality of the
processed water according to regional regulations. Specifically, the EQ index is evaluated as follows:

EQ =
1

T · 1000

∫ t f

t0

(
βSS · SSe(t) + βCOD ·CODe(t) + βNKj · SNKj,e(t)

+ βNO · SNO,e(t) + βBOD · BODe(t)

)
Qe(t)dt (18)
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where
SSe = 0.75

(
XS,e + XBA ,e + XBH ,e + XI,e + XP,e

)
CODe = SI,e + SS,e + XS,e + XI,e + XBH ,e + XBA ,e + XP,e

BDOe = 0.25
(
SS,e + XS,e +

(
1− fp

) (
XBA ,e + XBH ,e

) )
SNKj,e = SND,e + SNH,e + XND,e + iXB

(
XBA ,e + XBH ,e

)
+ iXP

(
XI,e + XP,e

)
In Equation (18), t0 and t f denote the initial and final time instants of the evaluation horizon;

T := t f − t0 is the length of the horizon, and is usually selected to be T = 7 days; SS represents the
concentration of suspended solids, COD is chemical oxygen demand, BOD denotes the biological
oxygen demand, and SNKj denotes the concentration of Kjeldahl nitrogen; βSS, βCOD βNKj, βNO and
βBOD represent the weighting coefficients used to calculate EQ; fp, iXB, and iXP are stoichiometirc
parameters. The corresponding values are listed in Table 3 [37] and the subscript “e” refers to the
effluent of the secondary settler.

Table 3. Values of the weighting coefficients of EQ Index.

Weighting Coefficient βSS βCOD βNKj βNO βBOD fp iXB iXP

Value 2 1 30 10 2 0.08 0.08 0.06

2.3.2. Overall Cost Index

The total operating cost required for processing wastewater is another important factor in
performance evaluation. Factors that have major effects on the operating cost include the sludge
production that needs to be disposed, the energy required for aerating and pumping, external carbon
consumption as well as mixing energy.

The sludge production (SP) is defined as the average amount per day (kg · day−1) of the solids
produced in the process over the evaluation horizon T, including the solids discharged through the
wastage flow Qw from the settler and the sedimentary solids in a WWTP plant.

SP =
0.75

T · 1000

∫ t f

t0

(
XS,w(t) + XI,w(t) + XBA ,w(t) + XBH ,w(t) + XP,w(t)

)
Qw(t)dt

+
1

T · 1000

(
SS(t f )− SS(t0)

) (19)

In Equation (19), the subscript “w” refers to the wastage outlet of the secondary settler.
The aeration energy (AE) (kWh · day−1) is associated with several plant characteristics,

including the diffuser type, the submersion depth, the bubble size, etc. AE is calculated based on the
oxygen transfer rates (i.e., KLai, i = 1, . . . , 5) by considering an immersion depth of 4 m as follows:

AE =
Ssat

o
T · 1800

∫ t f

t0

5

∑
i=1

Vi · KLai(t)dt (20)

where i ∈ {1 2 3 4 5}, Vi denotes the volume of the i-th chamber of the sludge reactor, and KLai denotes
the oxygen transfer rate in the i-th chamber. Ssat

o denotes the saturation concentration of oxygen and
its value is 8 g/m3.

The pumping energy (PE) (kWh · day−1) represents the energy consumed by the pumps used for
inner recycle (i.e., Qa) and outer recycle (i.e., Qr). PE is calculated as below:

PE =
1
T

∫ t f

t0

(
0.004Qa(t) + 0.05Qw(t) + 0, 008Qr(t)

)
dt (21)



Processes 2019, 7, 682 7 of 21

The mixing energy (ME) (kWh · day−1) denotes the energy consumed for mixing the compounds
in the anoxic chambers to avoid the occurrence of settling. ME is calculated depending on the volume
of each chamber and the oxygen transfer rates:

ME =
24
T

∫ t f

t0

(
∑
i∈I

0.005 ·Vi

)
dt (22)

where I := {i| i ∈ {1 2 3 4 5}}.
The overall cost index (OCI) approximates the total cost for WWTP operation by taking a weighted

summation of the listed major factors as follows:

OCI = 5 · SP + AE + PE + ME (23)

3. Trajectory Piecewise Linear (TPWL) Model

In this section, the trajectory piecewise linear model approach is introduced and the trajectory
piecewise linear model is presented. The steps to generate the piecewise linear model are also shown
in this section.

3.1. Piecewise Linear Representation

A linearized model for the nonlinear system can be obtained at a steady-state point (xs, us)
as follows:

dx
dt

= f (xs, us) + A(x− xs) + B(u− us) (24a)

A =
∂ f
∂x
|xs ,us (24b)

B =
∂ f
∂u
|xs ,us (24c)

where A is the Jacobian matrix of system f (x, u) evaluated at the steady-state.
The simple linearized model can be used to approximate weakly nonlinear systems with less

evaluation time [33]. The approximated result of the linearized model usually depends on the range of
inputs. If the system is a highly nonlinear system, the simple linearized model which is only linearized
at one point would be less accurate. The main idea of the piecewise linear model approach is to
generate a weighted combination of linear models which are linearized at appropriately selected
states of the original nonlinear system. Compared with the system which is linearized at one single
point, the system consisting of a combination of multiple linearizations would generate a better
approximation result for a more complex nonlinear system.

Assuming that s linearized models have been generated for the nonlinear system of Equation (16)
at points (xi, ui), i = 0, 1, . . . , (s− 1):

dx
dt

= f (xi, ui) + Ai(x− xi) + Bi(u− ui) (25a)

Ai =
∂ f
∂x
|xi ,ui (25b)

Bi =
∂ f
∂u
|xi ,ui (25c)

A weighted combination of the linearized models in the form of Equation (25) of the nonlinear
system leads to the following representation:

dx
dt

=
s−1

∑
i=0

wi(x)( f (xi, ui) + Ai(x− xi) + Bi(u− ui)) (26)
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where the weight wi(x) is a state dependent variable and it can be computed from the distance between
current state x and the linearized point xi [33].

3.2. Generation of Piecewise Linear Model

The trajectory piecewise linear model is developed based on a fixed trajectory of the entire
nonlinear system. The fixed trajectory is generated by simulating the nonlinear system based on a fixed
training input u. Let us consider that we have generated a fixed trajectory of the nonlinear system,
and the initial state x0 is given. The selection of linearization points can be shown as in Algorithm 1.

Algorithm 1: Algorithm for finding the linearization points of piecewise linear model

1. Define S = {0, 1, . . . , N} and Sp = {}.
2. Set i = 0 and Sl = {xi}.
3. If S 6= Sp, then:

3.1. Set xi as one of the linearization points.
3.2. For each j ∈ S \ Sp,

3.2.1 Calculate the distance between point xj and the linearization point xi,
dj = ‖xj − xi‖2.

3.2.2 If dj ≤ δ (δ > 0), then:
Sp = Sp ∪ {j}.

Else, do:
Sp = Sp.

3.3. Select kmin such that kmin = arg min
k

{
dk|k ∈ S \ Sp

}
.

3.4. Set i = kmin, set Sl = Sl ∪ {xi}. Go to Step 3.1.

Else, end.

In Algorithm 1, the operator “\" denotes set subtraction such that A \ B := {x|x ∈ A, x 6∈ B}. N
is the number of sampled points on this fixed trajectory. Sl is the set of the linearization points. The δ

value is a pre-determined distance threshold, and it can be determined in Algorithm 2. In Algorithm 2,
s is the number of models supposed to be generated.

Algorithm 2: Determination of the pre-determined distance threshold δ value algorithm

1. Find the maximum distance between any of the two points on the trajectory, dj = ‖xj − xh‖2,
j, h ∈ {0, 1, . . . , N}.

2. Set δ = dmax/s.

The state dependent weight wi(x) shown in Equation (26) can be computed as described in
Algrithm 3 [33].
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Algorithm 3: Computation algorithm for the state dependent weight parameter wi(x)

1. At each linearization point (xi, ui), compute the distance di = ‖x− xi‖2.
2. Find the minimum value among di, m = mini=0,...,(s−1)di.

3. For i = 0, . . . , (s− 1) compute ŵi = e−βdi/m.
4. Compute the summation of ŵi, S(x) = ∑s−1

j=0 ŵi(x).

5. Compute the normalized parameter wi(x) = ŵi(x)
S(x) .

In Algorithm 3, β is a positive constant value. The weighting parameter wi(x) changes according
to the position of current state x in state space. The exponential term in step 3 to determine the
weighting parameter ensures that the distribution of the weight wi will change immediately close to
one if current state x is sufficiently close to the linearization point xi.

4. TPWL Model Based on POD Method

In this section, the TPWL method is combined with the POD method to further reduce the
evaluation time. The POD method is introduced in this section. The steps of establishing the
TPWL-POD model are presented and the representation of the model is also shown in this section.

4.1. POD Method Introduction

The POD method can be used to obtain a low-order model but capture the most important
dynamics of the original complicated systems [24]. POD method is a SVD-based approximation
method to derive the low dimensional system to approximate the large scale system. It can be applied
to both high-complexity linear and nonlinear systems [38].

Giving a fixed input u, the trajectory of state x ∈ Rn at certain time instances tk can be measured as:

X = [x(t1) x(t2) x(t3) . . . x(tN)] (27)

X ∈ Rn×N in (27) can be called as the snapshot matrix of the process data. It should be mentioned
that the measured time instant points N should be much greater than the dimension of the system
n, i.e., N � n. By computing the singular value decomposition of the snapshot matrix, X can be
decomposed into a product of three matrices [38]:

X = UΣVT ∈ Rn×N (28)

where U ∈ Rn×n and V ∈ RN×N are orthonormal and called the left and right singular vector,
respectively. Σ = diag(σ1, . . . , σn) ∈ Rn×N is a diagonal matrix, and each diagonal entry of the matrix
is called the singular values. The singular values of X are nonnegative numbers and ordered in a
decreasing way, i.e., σ1 ≥ σ2 ≥ · · · ≥ σn. The greater σ value represents the basis vector captures
the more important information present in the data [39]. If the singular values of the matrix drop off
rapidly, we can obtain a low-dimensional approximated system [38]:

X = UΣVT ≈ UkΣkVT
k , k� n (29)

Let x(t) ≈ Ukz(t), z(t) ∈ Rk, the reduced-order system model can be shown as follows:

ż(t) = UT
k f (Ukz(t), u(t)) (30)

where z(t) is the approximation of states x(t) in a low-dimensional space which is spanned by the
first k columns of the left singular vector of X [38], i.e., Uk. Note that POD alone is not effective in
reducing the evaluation time of EMPC or other optimization-based control schemes. For nonlinear
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systems, it is in general very difficult to express UT
k f (Ukz, u) explicitly. This makes the evaluation

time of UT
k f (Ukz, u) often even more than the evaluation time of the original nonlinear function

f . However, when POD is used together with TPWL, they can lead to significant evaluation time
reduction. This method is discussed in the following subsection.

4.2. TPWL-POD Model Representation

Assuming we have generated the reduced order basis Uk via POD method for the process system,
and the reduced order model of the system is with k states. The relationship between state x with
order N in the original space and projection z with order k (k � N) in reduced-order space can be
represented in the following form:

x = Ukz (31)

where Uk ∈ RN×k is an orthogonal matrix and represents the projection of x in original space onto z in
the reduced-order space.

Combining with Equation (31), the TPWL model of Equation (26) generated in Section 3.1 can be
represented as follows:

d(Ukz)
dt

=
s−1

∑
i=0

wi(z)( f (Ukzi, ui) + Ai(Ukz−Ukzi) + Bi(u− ui)) (32)

where zi is the projection of the linearized points xi in the reduced-order space, and [z0, z1, . . . , zs−1] =[
UT

k x0, UT
k x1, . . . , UT

k xs−1
]

Multiplying Equation (32) by UT
k , the model can be shown as:

dz
dt

=
s−1

∑
i=0

wi(z)(Airz + Biru + γir) (33)

where
Air = UT

k AiUk

Bir = UT
k Bi

γir = UT
k ( f (xi, ui)− Aixi − Biui)

s−1

∑
i=0

wi(z) = 1

The weight wi(z) is calculated based on the distance between current projected state z and the
linearization point zi, and it follows the Algorithm 3 shown in Section 3.1.

4.3. Generation Method of TPWL-POD Model

The generation of the reduced order TPWL-POD model consists of two parts: generation of
the POD reduced basis and the generation of trajectory piecewise linear model. Figure 2 shows the
methodology used in this work.

The strategy to generate the POD basis for WWTP process is described by Algorithm 4.
The strategy to generate the piecewise linear model is the same as the one shown in Section 3.2.

After generating the linearization points xi, these linearization points are projected to the reduced-order
space, i.e., zi = UT

k xi. The weighting parameter wi(z) is computed based on the states in reduced-order
space, and the strategy to calculate it is the same as the steps in Algorithm 3.
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Algorithm 4: Generation of POD basis algorithm

1. Simulate the nonlinear system for t ∈ (0, N] to generate the snapshot matrix of the process,
i.e., X.

2. Take singular value decomposition on snapshot matrix X, X = UΣVT .
3. Determine the proper reduced order k to choose the k most relevant basis vectors of

the system.
4. Generate the POD basis vectors matrix Uk.
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Linearization 
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𝑠−1
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+ 𝐴𝑖 𝑥 − 𝑥𝑖

+ 𝐵𝑖 𝑢 − 𝑢𝑖)) 

Modeled by To obtain 
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Wastewater 
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projection 

TPWL-POD 
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Figure 2. TPWL-POD framework.

5. Centralized EMPC Design Based on TPWL Model and TPWL-POD Model

In this section, we present the proposed centralized EMPC design based on two different models.
The two considered models are as follows: TPWL model introduced in Section 3 and TPWL-POD
model introduced in Section 4. The control objective is to minimize the economic cost introduced in
Section 2.3.

5.1. Centralized EMPC Design Based on TPWL Model

First, the nonlinear model of the WWTP system is linearized using the trajectory piecewise
linearization method proposed in Section 3. The EMPC developed based on the TPWL model can be
formulated as the following optimization problem:
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u∗(τ|tk) = arg min
u(τ)∈S(∆)

∫ tk+N

tk

l (x̃(τ), u(τ)) dτ (34a)

s.t. ˙̃x(τ) =
s−1

∑
i=0

wi(x̃(τ))( f (xi, ui) + Ai(x̃(τ)− xi) + Bi(u(τ)− ui)) (34b)

x̃(tk) = x(tk) (34c)

u(τ) ∈ U (34d)

In the above optimization problem of Equation (34), u∗(τ|tk) is the optimal solution to the problem.
Equation (34a) denotes the objective function for the centralized EMPC controller that minimizes the
economic cost l defined in Equation (17), N denotes the control horizon, and Si(δ) represents a family
of piecewise-constant functions. Equation (34b) is the approximated piecewise linear model of the
nonlinear system as introduced in Section 3. The state measurement value at current sampling time tk
(i.e., x(tk)) is used to initialize the predicted state trajectory in Equation (34c). Equation (34d) is the
constraint on input u.

The optimal input trajectory is achieved after the optimization problem Equation (34) is solved
(i.e., u∗(τ|tk)). The first step value of the input trajectory is defined to be the manipulated input applied
to the operating process at time instant tk, which can be shown as follows:

u(t) = u∗(t|tk), t ∈ [tk, tk+1) (35)

5.2. Centralized EMPC Design Based on TPWL-POD Model

In this section, the centralized EMPC is designed based on the TPWL-POD model. The model is
linearized using TPWL method shown in Section 3 and the order of the nonlinear system is reduced
using POD method proposed in Section 4. The proposed EMPC design can be shown as follows:

u∗(τ|tk) = arg min
u(τ)∈S(∆)

∫ tk+N

tk

l (Ukz(τ), u(τ)) dτ (36a)

s.t. ˙̃z(τ) =
s−1

∑
i=0

wi(z)(Airz + Biru + γir) (36b)

z̃(tk) = UT
k x(tk) (36c)

Air = UT
k AiUk (36d)

Bir = UT
k Bi (36e)

γir = UT
k ( f (xi, ui)− Aixi − Biui) (36f)

s−1

∑
i=0

wi(z) = 1 (36g)

u(τ) ∈ U (36h)

In the optimization problem of Equation (36), let u∗(τ|tk) accounts for the optimal solution to
this problem. The objective function is Equation (36a). Equation (36b) denotes the order reduced
linear model using TPWL-POD method introduced in Section 4 for the nonlinear system. Air, Bir, γir,
and wi(z) in model Equation (36b) are shown in Equations (36d)–(36g), respectively. In Equation (36c),
the predicted state in the reduced-order space is initialized with the state measurement x(tk) and it is
projected to the reduced-order space by multiplying the projection matrix Uk. Equation (36h) is the
input constraint. The manipulated input applied to the control process is the first step value of the
optimal input trajectory, i.e., u∗(t|tk), t ∈ [tk, tk+1).
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6. Simulation Results

In this section, we apply the TPWL method introduced in Section 3 and the TPWL-POD method
introduced in Section 4 to the WWTP. The reduced order basis and the linearization points for
both TPWL model and TPWL-POD model are obtained based on a given training input signal.
The approximated model accuracy for the nonlinear system with TPWL model and TPWL-POD model
are discussed. We apply the proposed control strategies introduced in Sections 5.1 and 5.2 to the
modified BSM1 model. The performance of these control strategies is compared in terms of effluent
quality, operating cost and computational efficiency under dry weather condition. The simulations are
all carried out with a computing server with 2.0 GHz CPUs and the EMPC optimization problems are
solved using interior point optimizer.

6.1. Simulation Settings

The dry weather condition data file are provided in the International Water Association Web
site [40]. The inlet flowrate Q0, and the concentration Z0 of the influent flow can be found in the data
file. The wastewater treatment plant is simulated with the average value of Q0 and Z0 under dry
weather condition to achieve the optimal steady state. We consider the optimal steady state as the
initial condition for this wastewater treatment process.

To compare the performance index between different control strategies, the simulation time is
set to be 14 days and the simulation results of the last 7 days will be used to evaluate the control
performance index. The sampling time is picked as ∆ = 15 min.

The weighting parameter β in Algorithm 3 is set to be 25. The weighting coefficients αEQ and αOCI
in the economic control objective function Equation (17) are considered to be 1 and 0.3. The control
horizon is determined to be 25 in all EMPC controller designs. The constraints on manipulated inputs
(i.e., U) for all control designs are considered as follows:

0 ≤ Qa ≤ 5Q0,stab (37)

0 ≤ KLa5 ≤ 240 day−1 (38)

where Q0,stab is the average dry weather influent flow rate and is equal to 18,446 m3/day.

6.2. Model Validation and Comparison

6.2.1. Model Validation

To verify the generated TPWL model and TPWL-POD model not only work for the inputs
which are very close to the given training input but also for other inputs, the accuracy of the model
is investigated under different manipulated input values. For model validation, the number of
linearization points s in both TPWL model and TPWL-POD model is set to be 9, and the reduced basis
order k is set to be 35 for TPWL-POD model. Note that the number of linearzation points s and the
order k are determined based on extensive simulations. The guideline is to achieve a balance between
model accuracy and evaluation time. In general, with the increase of s and k, the accuracy of the model
increases but the time needed in evaluation also increases. When determining s and k, we need to
achieve a balance between accuracy and evaluation time, which is indeed case specific.

The approximated state trajectories based on TPWL model, TPWL-POD model and the actual
state trajectories based on the nonlinear system model for certain process states in the first week of
the operation under the training input signal and fixed input signal are presented in Figures 3 and 4,
respectively. For the fixed input signal, the two manipulated inputs are fixed as KLa5 = 83.9405 d−1

and Qa = 37,723.4072 m3/day. As can be seen from Figures 3 and 4, the state trajectories almost overlap
each other in all the cases. The results show that TPWL model and TPWL-POD model provide accurate
models for the original nonlinear WWTP system.
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Figure 3. Trajectories of the states based on nonlinear model (blue solid lines), TPWL model (red
dash-dot lines), TPWL-POD model (yellow dashed lines) under training input signal in dry weather.
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Figure 4. Trajectories of the states based on nonlinear model (blue solid lines), TPWL model (red
dash-dot lines), TPWL-POD model (yellow dashed lines) under fixed input signal in dry weather.
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6.2.2. Model Comparison

The model approximation accuracy and computation time for TPWL method and TPWL-POD
method are investigated under different number of the linearization points (s).

Figure 5 presents the state trajectories for certain process states using TPWL model with different
number of linearization points under a given input signal in dry weather condition. Figure 6 shows
the state trajectories for those states using TPWL-POD model with different number of linearization
points under the same input signal in dry weather condition.

Table 4 presents the root mean square error of TPWL model and TPWL-POD model with different
number of the linearization points. The result elucidates that the approximated model accuracy would
increase as the number of linearization points increase for both TPWL and TPWL-POD models. As can
be seen from the table, under the same linearization point number, TPWL model provides a better
approximation than TPWL-POD model.

Table 4. Root mean square error of TPWL model and TPWL-POD model with different number of the
linearization points.

Threshold δ Linearization Point Number RMSE
TPWL Model

RMSE
TPWL-POD Model

1000 4 18.3979 48.6197
950 6 10.5667 12.4511
600 9 6.0770 8.6849
570 10 5.5003 6.5913
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Figure 5. Trajectories of the states based on nonlinear model (blue solid lines), TPWL model with 4
linearization points (red dash-dot lines), TPWL model with 6 linearization points (yellow dashed lines),
TPWL model with 9 linearization points (purple solid lines), and TPWL model with 10 linearization
points (green dashed lines) under a given input signal in dry weather.
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Figure 6. Trajectories of the states based on nonlinear model (blue solid lines), TPWL-POD model
with 4 linearization points (red dash-dot lines), TPWL-POD model with 6 linearization points (yellow
dashed lines), TPWL-POD model with 9 linearization points (purple solid lines), and TPWL-POD
model with 10 linearization points (green dashed lines) under a given input signal in dry weather.

6.3. Simulation Results of EMPC in Dry Weather

We evaluate the performance of EMPC based on the nonlinear model, EMPC based on TPWL
model and EMPC based on TPWL-POD model in dry weather condition, respectively.

To study the impacts of the number of linearization points (s) on EMPC design based on TPWL
model, we apply the proposed EMPC scheme with s = 4, s = 6, s = 9, and s = 10 respectively.
The trajectories of the instantaneous effluent quality level in dry weather condition under EMPC based
on the nonlinear model, EMPC based on TPWL model with linearization point number s = 4, s = 6,
s = 9, s = 10 are presented in Figure 7. Table 5 presents the calculated control performance index EQ,
OCI, average economic cost, and average evaluation time consumed over the full operating period
for EMPC based on nonlinear model and EMPC based on TPWL model with s = 4, s = 6, s = 9,
s = 10. Based on the average EQ value shown in Table 5 and the instantaneous effluent quality level
shown in Figure 7, we can conclude that the effluent quality level is improved as the linearization
point number s in TPWL model increases. Our objective is to minimize the average economic cost.
Consequently, the smaller average performance cost indicates that the model can give us a better
control performance. As can be seen from Table 5, the EMPC with nonlinear model provides us with
the best control performance, and the control performance of EMPC based on TPWL model enhances
as the linearization point number raises. The EMPC based on TPWL model with s = 4 performs
18.24% worse than nonlinear model while the EMPC based on TPWL model with s = 10 is only 5.93%
lower than nonlinear model. As the linearization point number s increases from 4 to 10, the control
performance improves 10.42%.

To compare the evaluation times of EMPC based on the nonlinear model and EMPC based on
TPWL model with s = 4, s = 6, s = 9, s = 10, the average computation time consumed over the
full operation period is evaluated and shown in Table 5. The average computation time over the full



Processes 2019, 7, 682 17 of 21

operation period is evaluated based on 10 repetitive simulation runs. The evaluation time consumed
by EMPC based on TPWL model with s = 4, s = 6, and s = 9 is 30.02%, 27.97%, and 22.05% less than
EMPC based on nonlinear model, respectively. However, as the linearization point number s increases,
the computation load increases accordingly. The EMPC based on TPWL model with s = 10 is 16.29%
lower than EMPC with the nonlinear model.

We also evaluate how linearization point number s influences the control performance of
EMPC based on TPWL-POD model. Figure 8 presents the trajectories of the instantaneous effluent
quality level in dry weather condition under EMPC based on the nonlinear model, EMPC based
on TPWL-POD model with linearization point number s = 4, s = 6, s = 9, s = 10. Table 6 shows
the EQ, OCI, average economic cost and average evaluation time of EMPC based on nonlinear
model, EMPC based on TPWL-POD model with s = 4, s = 6, s = 9 and s = 10. We can draw the
same conclusion as we have for EMPC based on TPWL model. The more linearization points we
consider, the better control performance of EMPC based on TPWL-POD model would be. The average
evaluation time consumed by TPWL-POD model will raise when the linearization point number s
increases. Compared with the evaluation time consumed by EMPC based on the nonlinear model,
EMPC based on TPWL-POD model with s = 4, s = 6, s = 9 and s = 10 is 70.13%, 67.40%, 54.51% and
15.62% less, respectively.
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Figure 7. Trajectories of the instantaneous effluent quality level in dry weather condition under EMPC
based on nonlinear model, TPWL model with 4 linearization points, TPWL model with 6 linearization
points, TPWL model with 9 linearization points and TPWL model with 10 linearization points.



Processes 2019, 7, 682 18 of 21

0 1 2 3 4 5 6 7
0

1

2
107

0 1 2 3 4 5 6 7
0

1

2
107

0 1 2 3 4 5 6 7
0

1

2
107

0 1 2 3 4 5 6 7
0

1

2
107

0 1 2 3 4 5 6 7
0

1

2
107

Figure 8. Trajectories of the instantaneous effluent quality level in dry weather condition under EMPC
based on nonlinear model, TPWL-POD model with 4 linearization points, TPWL-POD model with 6
linearization points, TPWL-POD model with 9 linearization points and TPWL-POD model with 10
linearization points.

Table 5. Control performance in dry weather condition under EMPC based on nonlinear model,
TPWL model with different linearization point numbers (s = 4, s = 6, s = 9, s = 10).

Model
Linearization

Point
Number

Average
Computation

Time (s)

EQ
(kg Pollution

Unit/Day)
OCI

Average
Performance

Cost

Nonlinear N/A 7.34× 104 3896.8080 19,592.3016 9774.4985

TPWL

4 5.13× 104 5570.4105 19,958.9991 11,558.1102
6 5.28× 104 5710.0077 19,404.2978 11,531.2970
9 5.72× 104 4739.8563 19,654.6556 10,636.2530
10 8.53× 104 4349.7785 20,014.8107 10,354.2217

By examining Tables 5 and 6, we can see that with the same linearization point number s,
the average evaluation time used by EMPC based on TPWL-POD model is approximately 58.54% less
than that based on the TPWL model. The average evaluation time of the EMPC based on TPWL-POD
model is up to 70.13% lower than EMPC based on the nonlinear model. However, it should be noted
that the control performance for EMPC based on TPWL-POD model is degraded by 1.39% compared
with the TPWL model and 19.89% compared with the original nonlinear model.
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Table 6. Control performance in dry weather condition under EMPC based on nonlinear model,
TPWL-POD model with different linearization point numbers (s = 4, s = 6, s = 9, s = 10).

Model
Linearization

Point
Number

Average
Computation

Time (s)

EQ
(kg Pollution

Unit/Day)
OCI

Average
Performance

Cost

Nonlinear N/A 7.34× 104 3896.8080 19,592.3016 9774.4985

TPWL-POD

4 2.19× 104 5747.8930 19,902.6197 11,718.6789
6 2.39× 104 5913.2938 19,378.8133 11,726.9378
9 3.34× 104 5589.5613 19,328.1781 11,388.0147
10 6.19× 104 5436.7213 19,280.6409 11,220.9136

7. Conclusions

Two model approximation methods are applied to the modified nonlinear WWTP process.
In particular, the two model approximation methods are TPWL method and TPWL-POD method.
Two centralized EMPC controllers are designed based on the two models correspondingly. We have
compared the model accuracy of the TPWL model and the TPWL-POD model with nonlinear model.
In this work, our main objective was to investigate how the computational efficiency of EMPC may
be improved through model reduction and approximation. While the investigated methods lead to
improved computational efficiency, it does come at the cost of reduced control performance. In the
future work, we will study how to improve the computational efficiency while remain the control
performance close to the one when the original nonlinear model is used.
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