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Abstract: Islanded multi-microgrids formed by interconnections of microgrids will be conducive to
the improvement of system economic efficiency and supply reliability. Due to the lack of support from
a main grid, the requirement of real-time power balance of the islanded multi-microgrid is relatively
high. In order to solve real-time dispatch problems in an island multi-microgrid system, a real-time
cooperative power dispatch framework is proposed by using the multi-agent consensus algorithm.
On this basis, a regulation cost model for the microgrid is developed. Then a consensus algorithm
of power dispatch is designed by selecting the regulation cost of each microgrid as the consensus
variable to make all microgrids share the power unbalance, thus reducing the total regulation cost.
Simulation results show that the proposed consensus algorithm can effectively solve the real-time
power dispatch problem for islanded multi-microgrids.

Keywords: islanded multi-microgrids; real-time power dispatch; multi-agent; consensus algorithm

1. Introduction

The emergence of microgrids (MG) provides a new technical means for the comprehensive
utilization of renewable energy [1–3]. According to whether there is an electrical connection with the
main grid, microgrids feature two typical operation modes, i.e., grid-connected and islanded. In general,
microgrids can operate in grid-connected mode to exchange power with the main grid. On the other
hand, when being used in a remote area or in an emergency situation, they can also be transferred
to islanded mode to guarantee local grid services [4]. Therefore, an islanded microgrid is more
suitable for remote areas without grid coverage, which can improve the utilization efficiency of local
renewable energy and reduce the cost of power supply in remote areas. Recently, the multi-microgrids
(MMGs) system has become an integrated, flexible network that incorporates multiple individual
microgrids (MGs) [5,6], which are often geographically close and connected to a distribution bus.
If the neighboring islanded microgrid in a remote area can realize the cluster operation through
interconnection, the mutual energy between the microgrids not only helps to absorb excess power
energy, but also supports each other as a backup power supply [7,8], which is beneficial to improving
the overall power supply reliability and economy.

The islanded microgrids plays an important role in renewable energy applications and power
sharing among different loads connected to multi-microgrid systems [9,10]. The key issue with islanded
microgrids is how to ensure a power balance between generation and demand in a cost-effective
way. Hence, problems of microgrid real-time dispatching and operations have received considerable
attention in the literature. There are some achievements on the dispatching and operations of individual
microgrids that mainly focus on reducing the regulation cost and the coordination of various devices
in the microgrid. Due to the intermittency and variability of renewables-based distributed generation
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(DG), the methods for uncertainty power dispatch of individual microgrid are mainly classified into
three categories: stochastic power dispatch [11], robust power dispatch [12,13], and rolling power
dispatch [14]. In order to deal with the uncertainty of demand response and renewable energy,
the authors of [11] presented a stochastic programming framework for 24-h optimal scheduling of
combined heat and power (CHP) systems-based MG. Wang R. and Luo Z. of [12] and [13] adopted a
robust optimization approach to accommodate the uncertainties of demand response and renewable
energy; it performs better than deterministic optimization in terms of the expected operational
costs. For a real renewable-based microgrid in the north of Chile, the authors of [14] proposed a
moving horizon optimization strategy to eliminate the forecasting errors caused by renewable energy.
The optimal dispatch of an individual microgrid owes more to the coordination of the controllable
units in a microgrid. However, for multi-microgrids, the power dispatch between each microgrid is a
critical issue, so the optimal dispatch of multi-microgrids is more complex.

Due to the frequent fluctuation of power supply and load on both sides, offline optimal
dispatch methods have not been suitable for the multi-microgrids, especially for working in islanded
mode, which lacks support from the main grid [15]. Therefore, the power dispatch of the islanded
multi-microgrids should focus on real-time optimal dispatch capability in order to maintain a real-time
power balance between power generation and load demand, ensure the stable operation of the
multi-microgrids system, and take into account the economic operation of the system. As long as
the power command calculation process is required for centralized optimization, it will cause a
certain computational complexity. In the case of high real-time requirements, the requirements for
the generation and delivery speed of dispatching command also increase. With the advantages of
distributed control architecture in smart grids, the multi-agent theory [16] and distributed control
method [17,18] are applied to the microgrid dispatching model. The authors of [19] developed a new
hybrid intelligent algorithm called imperialist competitive algorithm-genetic algorithm (ICA-GA)
to determine both the optimal location and operation of an islanded MG. In order to minimize
the islanded microgrids’ operational losses, the authors of [20] adopted the glow-worm swarm
optimization (GSO) algorithm to solve an optimal power flow problem. However, these approaches
are a centralized optimization method that collects the whole network’s information via a central
controller and uses an intelligent optimization algorithm, such as glow-worm swarm optimization,
particle swarm optimization, ant colony optimization, etc. Although the centralized optimization
method has high regulation accuracy, when the number of network nodes is large, the communication
volume is too large, the communication line is required to be high, and the scalability is poor.
In addition, the intelligent optimization algorithm is unstable and cannot guarantee convergence to
the optimal solution, which could cause a decline in the control performance. A new distributed
reinforcement learning approach based on the multi-agent systems algorithm was applied to minimize
the power losses under given operational constraints in [21]. The multi-agent system based consensus
method [22] provides a new way of solving the real-time power dispatch problem of islanded
multi-microgrids. The main issue with a consensus problem is achieving agreement regarding certain
quantities of interest associated with agents in multi-agent systems by utilizing a local information
exchange [23]. The traditional consensus algorithm is a very simple local coordination rule, which results
in agreement at the group level, and no centralized task planner or global information is required
by the algorithm. Due to its distributed implementation, robustness, and scalability, multi-agent
consensus algorithms have been widely applied in many coordination problems, such as power system
economic dispatch [24,25], power allocation [26], optimal control [27,28], etc. Compared with the
traditional centralized optimization algorithm, the consensus method only requires each agent to
obtain the information on the local and neighboring agents in real time. Hence, it can obtain the ideal
convergence value with less transmission information and a shorter optimization time.

Motivated by these works, this paper provides a multi-agent system-based consensus algorithm
to solve the real-time power dispatch problem of islanded multi-microgrids, which have a lower
communication burden and better dynamic performance. In order to ensure the overall real-time
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power balance of the islanded multi-microgrids and reduce the power regulation costs, the real-time
cooperative power dispatch framework of the islanded multi-microgrids is built by using a multi-agent
system consensus algorithm. Simultaneously, the real-time dispatch of power imbalance is optimized to
reduce the overall regulation costs of the islanded multi-microgrids, so as to ensure that each microgrid
is responsible for the corresponding power regulation tasks according to its own situation. At the same
time, the speed of dispatching command generation and release is accelerated because of avoiding
centralized optimization, so the system can better adapt to the dynamic requirements of real-time
power dispatch of the islanded multi-microgrids. Based on the consensus method, the real-time power
dispatch strategy works in a fully distributed manner without a central coordinator; communication
occurs only between the device and its neighbors. The main contributions of this paper are as follows:

(1) A real-time cooperative dispatch framework for islanded multi-microgrids based on multi-agent
consensus method is built that can ensure the overall real-time power balance and minimize the
power regulation costs.

(2) The consensus method only needs a small amount of information from the local and neighboring
microgrids, which reduces the communications burden and increases the reliability compared
with the traditional centralized optimization method.

The remainder of this paper is organized as follows. In Section 2, we establish a cooperative
power dispatch framework for islanded multi-microgrids based on the consensus algorithm. We then
model the regulation cost of each controllable unit in the microgrid to quantify the regulation costs of
each controllable unit participating in the real-time control process in Section 3. The power dispatch
consensus algorithm is designed for an islanded multi-microgrid in Section 4. Several numerical
simulations are conducted and analyzed in Section 5, and Section 6 concludes this paper.

2. Cooperative Power Dispatch Framework of Islanded Multi-Microgrids

2.1. Cooperative Power Dispatch Framework Based on Consensus Algorithm

The microgrid is equipped with a microgrid controller (MGC) according to the requirements
of the control. The MGC is responsible for ensuring the stable real-time operation of the microgrid.
When many microgrids, through interconnection, constitute a multi-microgrids system, the traditional
centralized dispatch framework requires the upper system to gather real-time information on each
microgrid. This information is distributed and dispatched to each unit after centralized optimization.
Although this method can more fully acquire system information and adapt to various optimization
algorithms, it increases the burden on the communication network and the controller. At the same
time, it cannot adapt to the requirements of plug and play and real-time control.

The number of controllable units and amount of data in multi-microgrids is large. The multi-microgrids’
interconnection makes the operation mode diversified and requires the control mode to be easily
extended, which need to satisfies the requirement of “plug and play.” Therefore, the architecture
and operational characteristics of the islanded multi-microgrids determine that it is suitable to adopt
a decentralized control architecture [29]. This paper establishes a real-time cooperative dispatch
framework for islanded multi-microgrids based on the multi-agent consensus method, which is shown
in Figure 1.
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Figure 1. Real-time cooperative dispatch framework for islanded multi-microgrids. 
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power commands of each control unit in the microgrid according to the established strategy. Because 
each MGC does not need to acquire the global information of the system, the information needed by 
each microgrid in the iteration is only local information, and the regulation cost information 
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2.2. Power Dispatch Strategy of Microgrid 

After receiving the allocated power command, each microgrid needs to decentralize the power 
commands of the controllable units according to the power allocation strategy. It is assumed that 
each microgrid includes the following units: photovoltaic (PV), wind turbine (WT), energy storage 
device (ES), and controllable micro-power sources, such as diesel engine (DE) or  interruptible load 
(IL). 

Considering the regulation costs and dispatching priority of various regulation methods, the 
decision order of power allocation strategy for positive and negative power command is specified as 
follows. 

(1) Power allocation strategy for positive power command. When the microgrid receives a positive 
power command, it requires the microgrid to increase the power generation or reduce the power 
consumption. The energy storage discharge is preferred. If the energy storage reaches the 
discharge limit but still does not meet the demand, the diesel generator output power is 
increased. If the output of the diesel generator reaches the limit but still does not meet the 
demand, then only the load shedding method can be adopted to regulation the interruptible 
load. 
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power command, it requires the microgrid to reduce the power generation. The energy storage 
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Figure 1. Real-time cooperative dispatch framework for islanded multi-microgrids.

The control objective is to ensure the overall real-time power balance of islanded multi-microgrids
and reduce the power regulation costs, which is equivalent to the problem of converting the economic
dispatch problem into the consensus of the regulation costs in the power allocation process [30].
Therefore, the role of each MGC is as the agent in the network and the regulation cost of each
microgrid is the concerned consensus variable. Under the premise that interconnected multi-microgrids
system belongs to the same community of interests, the regulation of each microgrid is guided by
the economic signal of the whole system, i.e., the regulation cost signal. Thus the economy of
islanded multi-microgrids operation can be improved by reasonably allocating the regulation power.
The islanded multi-microgrids adopt the “leader-follower” model [31,32]. The leader MGC is a
communication center of all microgrids, which calculates the total power command, communicates and
cooperates with other MGs, and balances the power of the entire control area. The follower exchanges
the regulation costs with its adjacent MGs. After the communication iteration of each microgrid,
the total power command is delivered to each microgrid and the MGC delegates the power commands
of each control unit in the microgrid according to the established strategy. Because each MGC does not
need to acquire the global information of the system, the information needed by each microgrid in the
iteration is only local information, and the regulation cost information transmitted by the neighbors,
so the communication burden is small.

2.2. Power Dispatch Strategy of Microgrid

After receiving the allocated power command, each microgrid needs to decentralize the power
commands of the controllable units according to the power allocation strategy. It is assumed that each
microgrid includes the following units: photovoltaic (PV), wind turbine (WT), energy storage device
(ES), and controllable micro-power sources, such as diesel engine (DE) or interruptible load (IL).

Considering the regulation costs and dispatching priority of various regulation methods,
the decision order of power allocation strategy for positive and negative power command is specified
as follows.

(1) Power allocation strategy for positive power command. When the microgrid receives a positive
power command, it requires the microgrid to increase the power generation or reduce the power
consumption. The energy storage discharge is preferred. If the energy storage reaches the
discharge limit but still does not meet the demand, the diesel generator output power is increased.
If the output of the diesel generator reaches the limit but still does not meet the demand, then only
the load shedding method can be adopted to regulation the interruptible load.

(2) Power allocation strategy for negative power command. When the microgrid receives a negative
power command, it requires the microgrid to reduce the power generation. The energy storage
charge is preferred. If the energy storage reaches the charge limit but still does not meet the
demand, the output of the photovoltaic system or wind turbine will be reduced and part of the
power generation will be abandoned.
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3. Microgrid Regulation Cost Modeling

In this section, the regulation cost of each controllable unit in the microgrid is modeled to quantify
the regulation cost of each controllable unit participating in the real-time control process, thus providing
a basis for calculating the consensus power allocation.

Considering that the regulation cost of most controllable units is more suitable to be measured
by electricity, the state duration window TS is introduced here. When calculating the regulation cost
of each controllable unit at time t, the cumulated regulation power of each controllable unit in TS

period starting from time t is calculated by using real-time power commands, so that the real-time
regulation cost of each microgrid at time t can be quantified according to the amount of electricity.
The significance of the regulation cost described in this paper is to calculate the regulation cost of
running each microgrid in the state specified by the current power command within a given time
window, and to quantify the regulation cost by converting the power into electricity.

3.1. Regulation Cost of Energy Storage Battery

The regulation cost of an energy storage battery includes the damage to the battery life caused by
the charge and discharge behavior and the corresponding maintenance cost, which is related to the
charge and discharge power and the state of charge (SOC). According to the working requirements of
an energy storage battery, four reference limits are selected to divide the battery capacity of an energy
storage battery into five areas, as shown in Figure 2.
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life of the battery and will lead to lower regulation costs. Therefore, the real-time maximum charge 
and discharge power of the energy storage system are given as follows: 

Figure 2. Schematic diagram for energy storage system SOC subarea: (a) Description of the SOC
operating area; (b) Description of the regulation cost.

The four reference limits are SOCmax, SOChigh, SOClow, and SOCmin, which are 90%, 70%, 30%,
and 10%, respectively. Between SOCmin and SOCmax is the working area. It is required that the SOC of
an energy storage battery be confined to within this range. The ideal working area (30-70%) is the
optimal range of SOC. When the SOC enters the early-warning working area, it should not further
approach the prohibited working area. In order to enable the dispatching energy storage battery to
conform to the above basic idea, the unit regulation cost of each area is set according to the charge
and discharge process in the working area, and it satisfies rES1 < rES2 < rES3. For example, in the
early-warning area with high SOC, if the charging continues, the unit regulation cost will be higher.
It can be considered that the damage to the battery will be greater, however. Conversely, the discharging
will help the SOC approach the ideal working area. It can be considered that this is beneficial to the life
of the battery and will lead to lower regulation costs. Therefore, the real-time maximum charge and
discharge power of the energy storage system are given as follows:
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Pmax
ES+ =

 η(SOC(t−∆t)−SOCmin)VES
∆t , SOC(t) < SOCmin

ηPmax
ES , SOC(t) ≥ SOCmin

SOC(t) = SOC(t− ∆t) −
Pmax

ES ∆t
VES

(1)

Pmax
ES− =

 Pmax
ES , SOC(t) ≤ SOCmax

(SOCmax−SOC(t−∆t))VES
η∆t , SOC(t) > SOCmax

SOC(t) = SOC(t− ∆t) +
ηPmax

ES ∆t
VES

(2)

where ∆t is the time interval of power command; SOC(t) and SOC(t− ∆t) represent the current SOC
calculated value and the actual SOC value of the previous time point, respectively; and VES, Pmax

ES ,
and η are the energy storage system capacity, power limits, and efficiency, respectively.

The real-time regulation cost of the energy storage system can be expressed as follows:
CES(∆PES) = VESTS

3∑
i=1

rESi∆Si

∆PES∆P ≥ 0
−Pmax

ES− ≤ ∆PES ≤ Pmax
ES+

, (3)

where ∆PES is the power command of the energy storage device, CES(∆PES) is the regulation cost
generated when the energy storage system is adjusted to the power command ∆PES and the regulation
cost in the other adjustment modes below is the same, and ∆P is the total power imbalance of the
multi-microgrids, that is, the real-time power imbalance. ∆Si is the SOC change caused by the SOC area
with a regulation cost of rESi after running the TS period with the current power command. The interval
that the SOC may actually traverse during the calculation of the real-time power command is also
related to the selection of the state duration window TS. Pmax

ES− and Pmax
ES+ are the maximum charge and

discharge power of the energy storage system, respectively.

3.2. Regulation Cost of Diesel Generator

The generation cost of the diesel generator is determined by its fuel consumption coefficient and
fuel unit price. In this paper, the power commands of diesel generators in the power allocation process
refer to the output value within the range of its adjustable output force, i.e.,

CDE(∆PDE) = rDE∆PDETS = λroil∆PDET
∆PDE = PDE(t) − Pmin

DE
∆Pmax

DE = Pmax
DE − Pmin

DE
Pmin

DE = max
{
0.3PN

DE, PDE(t− ∆t) −Rd∆t
}

Pmax
DE = min

{
PN

DE, PDE(t− ∆t) + Ru∆t
}

Pmin
DE ≤ PDE(t) ≤ Pmax

DE
0 ≤ ∆PDE ≤ ∆Pmax

DE

, (4)

where ∆PDE is the power command of the diesel generator; rDE, λ, and roil are the unit generation cost,
unit fuel coefficient, and fuel unit cost of the diesel generator, respectively. PN

DE, Pmax
DE , and Pmin

DE are the
rated power and real-time output upper and lower limit of diesel generators, respectively. ∆Pmax

DE is the
upper limit of diesel generator power command. Ru and Rd are the rates of increasing and decreasing
output of diesel generators, respectively.

Here ∆PDE is the excess part of the current real-time output PDE(t), relative to the lower limit of
output Pmin

DE at this time. That is, the Pmin
DE output part is regarded as the unadjustable part in the power

allocation calculation process, which is recorded as the forced output. The operation cost generated by
Pmin

DE is recorded as the forced cost, which is not included in the regulation cost of the microgrid.
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In this paper, the starting and stopping of the diesel generator are determined by setting the start
and stop thresholds, given the start and stop coefficients kDE_on and kDE_off. When the power shortage
of the i-th microgrid equipped with diesel generator exceeds kDE_onPN

DE and the diesel generator
satisfies the other operational constraints, the diesel generator is started. If the power shortage of
the i-th microgrid is lower than kDE_offPN

DE, and the diesel generator has satisfied the other operation
constraints, the diesel generator is shut down. When the diesel generator enters the start-stop state, it
runs according to the increase/decrease output rate until the state transition is completed.

3.3. Regulation Cost of Other Units

For interruptible load and DG, the following assumptions are made in this paper: (1) when a
part of the interruptible load needs to be cut off, the current calculation point calculates the current
interruptible load amount and the next calculation point restores part of the load under the necessary
conditions by default. If the next calculation point is still unable to restore the load, that part will be
delayed according to the actual demand; (2) photovoltaic or wind turbines operate in the maximum
power point tracking (MPPT) mode. When the output of distributed generation needs to be reduced,
the current calculation point calculates the reduction command at the current maximum output, and
the next calculation point is still calculated by the maximum output by default, so there is no need to
consider the increase of the distributed generation output.

The regulation costs of load shedding and distributed generation abandoned generation are
as follows: 

CIL(∆PIL) = rIL∆PILTS

0 ≤ ∆PIL ≤ Pmax
IL

Pmax
IL = PIL(t)

(5)


CDG(∆PDG−) = rDG|∆PDG−|TS

−Pmax
DG− ≤ ∆PDG− ≤ 0

Pmax
DG = PPV(t) + PWT(t)

, (6)

where ∆PIL and ∆PDG− are the power commands of the interruptible load and the distributed generation
output reduction, respectively. rIL and rDG are the unit regulation costs of the interruptible load
and the distributed generation output reduction, respectively. Pmax

IL and Pmax
DG− are the upper limit of

interruptible load and the distributed generation output reduction, respectively. Pmax
IL is the real-time

maximum load PIL(t) of the current interruptible load, i.e., Pmax
DG− is the sum of the real-time output of

PV (PPV(t)) and the real-time output of (PWT(t)).

3.4. Regulation Cost Function of Microgrid

Combining with the microgrid power allocation strategy and the regulation cost model of each
controllable unit, the regulation cost function of each microgrid can be constructed as shown in Figure 3.
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From the previous analysis, it can be seen that the regulation cost of each controllable unit can
be approximated as a linear or piecewise linear function (e.g., the SOC variation in the charge and
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discharge process of energy storage system spans two areas of different unit regulation cost). It can be
seen from Figure 3 that, when considering the dispatch priority, this paper can combine the regulation
cost model of each controllable unit with the segmental linear function according to the power allocation
strategy decision order of positive and negative power commands, that is, the microgrid regulation
cost function.

This profile has the following salient features:

(1) Because the power allocation strategy determines the dispatching order according to the regulation
cost, the unit with low regulation cost takes priority in the task of power regulation. Therefore,
the curve along the increasing direction of positive and negative power command is steeper,
that is, the slope value increases.

(2) The positive and negative power command parts of the regulation cost function are single-valued
functions. In other words, for any positive and negative power command, as long as the microgrid
power command ∆PMG is determined, the corresponding power allocation scheme and regulation
cost can be uniquely determined. Conversely, a uniquely determined power command can be
obtained when the regulation cost is given.

(3) For the positive power command, Pmax
ES+, ∆Pmax

DE , and Pmax
IL jointly determine the upper limit of the

microgrid power regulation amount, i.e., ∆Pmax
MG = Pmax

ES+ + ∆Pmax
DE + Pmax

IL . For the negative power
command, Pmax

ES− and Pmax
DG− jointly determine the lower limit of the microgrid power regulation

amount, i.e., ∆Pmin
MG = Pmax

ES− + Pmax
DG−.

(4) Due to the above assumptions in this paper, it is the case that the load-shedding operation and
the distributed generation increasing the output after reducing the output can be regarded as
the default cost-free adjustment strategy with the highest priority, which is not reflected in the
regulation cost function.

4. Consensus Algorithm Design for Power Dispatch

4.1. Cooperative Power Dispatch Model for Islanded Multi-Microgrids

In this paper, a power dispatch consensus algorithm is designed for islanded multi-microgrids,
which take the regulation cost of each microgrid as a consensus variable and use the discrete-time
first-order consensus algorithm [33] to solve the problem iteratively. Hence, the total regulation cost
of the multi-microgrids is chosen as the objective function. The mathematical model is constructed
as follows: 

minF =
n∑

i=1
fC(∆PMGi)

s.t. ∆P =
n∑

i=1
∆PMGi

=
n∑

i=1

(
PLoadi − PPVi − PWTi − Pmin

DEi

)
∆PMGi = ∆PESi + ∆PDEi + ∆PILi + ∆PDG−i
∆P∆PMGi > 0

∆Pmin
MGi ≤ ∆PMGi ≤ ∆Pmax

MGi

, (7)

where the total power command ∆P of the islanded multi-microgrids is the difference between the
total load and the total output of the wind power, PV, and the forced output of the energy storage
device. ∆PMGi is the power command of the i-th microgrid, that is, the power regulation amount of
the i-th microgrid. fC(∆PMGi) is the regulation cost of the i-th microgrid, which is a function of the
microgrid power regulation. PLoadi is the total load of the i-th microgrid. ∆Pmax

MGi and ∆Pmin
MGi are the

upper and lower limits of the power regulation of the i-th microgrid, respectively, which depend on
the real-time status of each control unit in the microgrid. n is the number of microgrids.

Therefore, when a power imbalance occurs in the islanded multi-microgrids, it will be jointly
undertaken by all the microgrids that can participate in the regulation. Selecting the regulation cost
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of the microgrid as the consensus variable can enable each microgrid to participate in the regulation
according to its own resources. Its essence is to allocate the power regulation amount to each microgrid
according to the slope value of each segment of each microgrid regulation cost function, which aims at
reducing the overall regulation cost of the multi-microgrids.

4.2. Microgrid Regulation Cost Consensus

The regulation cost of each microgrid is selected as the consensus variable, which is abbreviated
as C. Based on the discrete-time first-order consensus algorithm [33], the formula for updating the
consensus variables of each agent is as follows:

C(k+1)
i =

n∑
j=1

d(k)i j C(k)
j , (8)

where C(k)
i is the regulation cost calculated by the k-th iteration of the i-th microgrid. d(k)i j is the

i-th row and j-th column element of the row-stochastic matrix D when iterating at the k-th step.
The row-stochastic matrix D is obtained from the Laplacian matrix L of the communication topology
and is related to the structure of the communication topology, which is defined by the following:

di j =

∣∣∣li j
∣∣∣

n∑
j=1

∣∣∣li j
∣∣∣ , i = 1, · · · , n with


lii =

∑
i, j

ai j

li j = −ai j

, (9)

where ai j is the (i, j) entry of the adjacency matrix A. In this paper, the adjacency matrix A is

A =


0 1 1
1 0 1
1 1 0

. (10)

It can be known from Equation (8) that each agent obtains the state information of the previous
iteration of the neighboring agent by means of the row stochastic matrix D, which is related to the
communication topology to update its state. In order to ensure the power balance, the leader guides
the regulation direction and magnitude of the regulation cost. As a leader, the microgrid regulation
cost update formula is given as follows:

C(k+1)
i =


n∑

j=1
d(k)i j C(k)

j + µ∆Perror ∆P > 0

n∑
j=1

d(k)i j C(k)
j − µ∆Perror ∆P < 0

, (11)

where µ is the error adjustment step size; ∆Perror is the deviation between the total power command and
the sum of the microgrid power commands, which ignores the line loss of the islanded multi-microgrids
system. The expression of ∆Perror is:

∆Perror = ∆P−
n∑

i=1

∆PMGi. (12)

The error adjustment step size µ can be artificially given an appropriate parameter or adaptively
adjusted by detecting ∆Perror. The meaning of Equation (10) can be explained as follows: taking the
current total power command ∆P > 0 as an example, if ∆Perror > 0, the sum of the power commands
of each microgrid is still insufficient to balance the current power imbalance, and the regulation cost
needs to be increased accordingly; if ∆Perror < 0, the regulation cost can be reduced.
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In principle, the selection of leaders should be determined by the regulation capability. Selecting the
microgrid with the largest regulation capability as the leader can reduce the need to replace leaders.
The so-called regulation capability can be reflected by the parameters that reflect the regulatable
resource of microgrid, such as energy storage capacity, diesel generator capacity, interruptible load
capacity, etc.

In summary, the regulation cost of each microgrid in the iterative process is the weighted average
of the regulation cost of the local and neighbors’ previous iterations, so the communication burden
on the network is small. When some microgrids have reached the limit of the power regulation,
they should quit the communication topology and stop updating. The adjacent microgrids should also
modify the corresponding row random matrix elements according to the new communication topology.
In the convergence process of the consensus algorithm, |∆Perror| ≤ ε is taken as the convergence
condition, where ε is the convergence error.

When the regulation cost is updated by communication interaction between microgrids, the power
command of each unit needs to be inversely solved by the variable of regulation cost and the
corresponding regulation cost function. Because the regulation cost function is a piecewise linear
function and has a unique solution, the calculation process is not complicated, and each MGC can quickly
solve and calculate the microgrid total power command for the next iteration. The flowchart of the
proposed consensus algorithm for real-time cooperative power dispatch of islanded multi-microgrids
is shown in Figure 4.
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5. Numerical Simulations

5.1. Simulation Parameter Setting

In this paper, an islanded multi-microgrids model formed by three interconnected microgrids
is established. The main program is carried out in a Matlab 2015b (USA mathworks company)
environment. The communication topology is shown in Figure 1. In the absence of power overrun
in microgrids, there is communication between any two microgrids. Considering the regulatable
resources of each microgrid, MG1 is the leader, and MG2 and MG3 are followers.

The equipment parameters of the multi-microgrids are given in Table 1. The minimum output of
the diesel generator is 30% of the rated output, the minimum running time is 60 min, the minimum stop
time is 30 min, and the start and stop coefficients kDE_on and kDE_o f f are set at 1.5 and 0.5, respectively.
The regulation cost parameters are given in Table 2.

Table 1. Equipment parameters of multi-microgrids.

Equipment Parameters MG1 MG2 MG3

PV capacity/kW 180 100 120
WT capacity/kW 40 80 80
ES capacity/kWh 200 200 300

ES rated power/kW 50 50 100
ES efficiency η 0.9 0.9 0.9
ES initial SOC 0.34 0.25 0.21

DE rated power/kW 50 50 -
DE increase output rate/(kW/min) 2 2 -
DE decrease output rate/(kW/min) 2 2 -

Maximum load/kW 130 180 140

Table 2. Parameters of regulating cost.

Parameters of Regulating Cost ($/kWh) MG1 MG2 MG3

rES1 0.05 0.05 0.05
rES2 0.1 0.1 0.1
rES3 0.25 0.25 0.25
rDE 1.4 1.4 1.4
rDG 1.6 1.6 1.6
rIL 1.6 1.9 1.8

5.2. Simulation of Multi-Microgrids Power Allocation

The simulation analysis of continuous real-time power allocation is performed at intervals of
1 min. The total duration is 24 h. The shorter interval is also applicable in practical applications.
The time window is taken as TS = 30 min or 0.5 h, the error adjustment step size of consensus algorithm
is µ = 0.01, and the convergence error is ∆Perror = 0.1 kW.

The load curve of the multi-microgrids, the total output curve of wind power and photovoltaics,
and the corresponding power imbalance curve are shown in Figure 5, whose data source is an actual
islanded multi-microgrid [34]. It can be seen that the power imbalance mainly occurs at 09:00–22:00.
On the one hand, due to the large PV output at noon, there is a situation of excess power, and then a
power shortage occurs after the peak load arrives at night.
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After simulation, the power command of each microgrid basically follows the trend of the total
power command. The regulation power of each unit throughout the day and the corresponding
microgrid regulation cost are given in Table 3. The total regulation cost of MG1 and MG2 includes the
forced cost corresponding to the unadjustable part of the output of the energy storage device. Since
MG1 and MG2 are equipped with energy storage devices, the actual regulation costs of MG1 and MG2
are higher than that of MG3. The power command curves of each microgrid and the output curves of
various distributed generations are shown in Figures 6 and 7, respectively.

Table 3. Regulation power and cost.

MG1 MG2 MG3 Total

Diesel power generation (kWh) 248.07 260.88 0 508.95
Load shedding (kWh) 9.63 8.00 6.18 23.81

Abandoned power generation (kWh) 120.77 116.38 97.09 334.25
Regulation cost ($) 484.06 498.88 140.76 1123.70
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The results of charge and discharge power control of each microgrid energy storage unit are 
analyzed. The real-time power curve and SOC curve of each microgrid energy storage unit are shown 
in Figure 8 and 9. It can be seen that the energy storage units of each microgrid are charged during 
the period of excessive photovoltaic output during the daytime, and discharge is completed during 
the peak load period, which is in accordance with the scheduling rules. The SOC change trend of each 
energy storage is basically the same, the capacity can be effectively utilized, and the power command 
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The results of charge and discharge power control of each microgrid energy storage unit are
analyzed. The real-time power curve and SOC curve of each microgrid energy storage unit are shown
in Figures 8 and 9. It can be seen that the energy storage units of each microgrid are charged during
the period of excessive photovoltaic output during the daytime, and discharge is completed during the
peak load period, which is in accordance with the scheduling rules. The SOC change trend of each
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energy storage is basically the same, the capacity can be effectively utilized, and the power command
allocation is reasonable.
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The consensus convergence process of the two sections in the continuous simulation process is
selected. The power command is ∆P = −205 kW, ∆P = +210 kW, respectively. The convergence process
curves are shown in Figures 10 and 11.
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As can be seen from Figure 10, the current total power command is negative; the energy storage
device in each microgrid charges to balance the corresponding unbalance amount, of which MG3 bears
the largest regulation power. The reason is that the energy storage device of MG3 has the maximum
capacity and rated power. When the energy storage devices of MG1 and MG2 reach the charge limit
in the iteration process, it is necessary to adopt a regulation approach with a higher regulation cost.
The energy storage device bears the low cost of power regulation. When each microgrid consumes a
consensus regulation cost, MG3 would bear more power regulation.

Similarly, as shown in Figure 11, when the current total power command is positive, each microgrid
should increase its power generation to balance the corresponding unbalance. Each energy storage
device discharges and two diesel generators have been turned on. When the output of ES1 and ES2
reaches the limit, the corresponding DE1 and DE2 gradually increase their output in the iteration
process to promote the consensus regulation cost of each microgrid.

5.3. Comparative Analysis under Different Operation Modes

In order to reflect the advantages of the interconnected operation of microgrid and consensus
power allocation model, the different operation modes of microgrid are compared and analyzed in this
section, including the following three cases.

Mode 1: each microgrid operates independently [35].
Mode 2: the multi-microgrids are interconnected to form a microgrid cluster and each microgrid

gives priority to autonomous operation. When its own power commands are different from the total
power command of the microgrid cluster, it actively exchanges power with the microgrid cluster
system [36].

Mode 3: the multi-microgrids are interconnected to form a microgrid cluster and the power
allocation is based on the real-time cooperative power dispatch model established in this paper.

The three models are simulated continuously throughout the day and the regulation costs of
each microgrid and microgrid cluster are given in Table 4. From the perspective of total regulation
costs, the order is mode 1 > mode 2 > mode 3. Under mode 1, each microgrid operates independently
and can only rely on its own supply for balance. When the generation and load are not balanced,
there will be more abandoned power generation or load shedding, which would lead to the regulation
costs being higher. The interconnection of the microgrids in mode 2 will reduce the regulation
costs, which reflects the advantages of cluster operation of adjacent microgrids to a certain extent.
However, the benefits of clustering operations have not been fully explored due to the priority of
autonomous balance of microgrids. Mode 3 adopts the cooperative power dispatch strategy in which
three microgrids in total are dispatched, and the energy transfer between each microgrid is mutually
beneficial. Each microgrid allocates the regulation power reasonably according to the signal of
regulation costs. Overall, the regulation capability of the microgrid cluster system has been optimized
and the economy has been improved.

Table 4. Regulation costs under the three modes.

Microgrid
Regulation Cost ($)

Mode 1 Mode 2 Mode 3

MG1 597.86 560.29 484.06
MG2 694.19 644.66 498.88
MG3 317.22 338.23 140.76
Total 1609.27 1543.18 1123.70

Figure 12 shows the MG1 power command under the three modes; the PV configuration of MG1
is the largest. It can be seen that the negative power command of MG1 at noon is smaller than that of
the other two modes. Modes 1 and 2 decrease obviously at noon due to the bias towards autonomy.



Processes 2019, 7, 679 15 of 20

Under mode 3, due to the interconnection of each microgrid, the surplus output of MG1 can partly
support the other two microgrids, thus reducing the negative power command in this period.
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5.4. Comparison with Centralized Optimization

From the perspective of engineering applications, this paper compares the optimization of
performance with the centralized optimization method. Aiming at the time section of power command
P = +210 kW, a multiple population genetic algorithm (MPGA) [37] is selected for centralized
optimization, in which the MPGA runs 10,000 times and the results are compared with those of the
proposed consensus algorithm. The CPU (central processing unit) used in the simulation is 3.2 GHz,
with 2 GB memory. A performance comparison of the two optimization approaches is given in Table 5.

Table 5. Comparison of optimization performance.

MPGA Consensus Algorithmic

Regulation cost ($) optimal 20.35
21.16mean 23.44

Optimization time (s) mean 1.66 0.02
Optimization approach centralized, static distributed, dynamic

From Table 5, it can be seen that the consensus algorithm belongs to distributed optimization
technology, and its convergence time is greatly reduced compared with centralized optimization. As the
scale of the microgrid clusters further increases, its advantages will become more obvious. MPGA is
optimized 10,000 times and the optimal regulation cost is better than that of the consensus algorithm.
It can be seen that the optimization result of the consensus algorithm is not the global optimal solution.
The mean value of 10,000 optimization results obtained by MPGA is slightly lower than that of the
consensus algorithm. According to statistics, the probability that the MPGA optimization result will be
better than the consensus algorithm is about 30.69%. For the comparison of the optimization results
shown in Figure 13, most of the optimization algorithms belong to static optimization, and it is difficult
to solve the real-time dynamic problem.
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The value of time window TS will affect the results, as reflected in the power control of the energy 
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the SOC upper limit. When TS is small (such as TS = 10/60 h), the power command of the energy 
storage device will quickly drop to 0 and stop charging until the SOC reaches the upper limit. If TS is 
large (such as TS = 90/60 h), the energy storage device will start earlier to reduce the charge power. 
This proves that the control of the TS energy storage device tends to be conservative when TS is large, 
i.e., a larger TS can control the SOC of the energy storage device to avoid approaching the limit value. 

However, the larger TS will increase the regulation cost of other controllable units, that is, the 
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can be determined by reference to the type of energy storage battery and the consideration of the life 
of the energy storage battery, as well as the actual application requirements. The recommended value 
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5.5. Impact Analysis of Different TS

The value of time window TS will affect the results, as reflected in the power control of the energy
storage. The reason is that the SOC electricity calculation of the energy storage is related to the length
of the time window. This section compares the impact of different TS.

Taking ES3 as an example, the power curve and SOC curve of ES3 are shown in Figures 14 and 15,
respectively. Figure 14a shows the overall situation throughout the day and Figure 14b,c shows that the
time period has a significant impact under different TS. Between 11:00 and 14:00, because of the high
photovoltaic output at noon, the charge of the energy storage device is close to the SOC upper limit.
When TS is small (such as TS = 10/60 h), the power command of the energy storage device will quickly
drop to 0 and stop charging until the SOC reaches the upper limit. If TS is large (such as TS = 90/60 h),
the energy storage device will start earlier to reduce the charge power. This proves that the control of
the TS energy storage device tends to be conservative when TS is large, i.e., a larger TS can control the
SOC of the energy storage device to avoid approaching the limit value.Processes 2019, 7, 679 17 of 20 
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Figure 14. Power curve of ES3 with different Ts: (a) Description of the Power curve of ES3 with 
different Ts from 0:00 to 24: 00; (b) Description of the Power curve of ES3 with different Ts from 
10:30 to 14: 20; (c) Description of the Power curve of ES3 with different Ts from 18:40 to 22: 20. 

0 4 8 12 16 20 240

20

40

60

80

100

Time (h)

SO
C 

(%
)

 

 

Ts=10/60
Ts=30/60
Ts=60/60
Ts=90/60

 
Figure 15. SOC curve of ES3 with different Ts. 

Table 6. Regulation cost with different Ts. 

TS (h) MG1 Regulation Cost ($) MG2 Regulation Cost ($) MG3 Regulation Cost ($) Total ($) 
10/60 472.14 493.30 146.29 1111.73 
30/60 484.06 498.88 140.76 1123.70 
60/60 493.24 512.18 141.82 1147.24 
90/60 515.62 532.72 147.83 1196.17 

6. Conclusions 

In recent years, the development of microgrids has attracted interest to its related topics. This 
paper studies the real-time power allocation problem of islanded multi-microgrids. Considering the 
architecture and operational characteristics of islanded multi-microgrids, it is suitable to adopt a 
decentralized control architecture. A real-time cooperative power dispatch framework for islanded 
multi-microgrids is proposed. The microgrid regulation cost is modeled and a consensus algorithm 
is introduced to realize the power allocation. The conclusions are as follows: 

(1) The consensus power allocation algorithm proposed in this paper can allocate power reasonably 
and ensure the real-time power balance of the islanded multi-microgrids. 

(2) Each microgrid is guided by the regulation cost, and rationally optimizes the regulation power 
allocated by each microgrid, thereby improving the overall economics of the microgrid cluster 
system. 

Figure 14. Power curve of ES3 with different Ts: (a) Description of the Power curve of ES3 with different
Ts from 0:00 to 24: 00; (b) Description of the Power curve of ES3 with different Ts from 10:30 to 14: 20;
(c) Description of the Power curve of ES3 with different Ts from 18:40 to 22: 20.

Processes 2019, 7, 679 17 of 20 

11 12 13 14

-100

-50

0

Time (h)
(b)

 

 

Ts=10/60
Ts=30/60
Ts=60/60
Ts=90/60

19 20 21 22

0

50

100

Time (h)
(c)

 

Ts=10/60
Ts=30/60
Ts=60/60
Ts=90/60

0 4 8 12 16 20 24
-100

-50

0

50

100

Time (h)
(a)

En
er

gy
 st

or
ag

e 
po

w
er

 (k
W

)

 

 

Ts=10/60 Ts=30/60 Ts=60/60 Ts=90/60

En
er

gy
 st

or
ag

e 
po

w
er

 (k
W

)

En
er

gy
 st

or
ag

e 
po

w
er

 (k
W

)

 
Figure 14. Power curve of ES3 with different Ts: (a) Description of the Power curve of ES3 with 
different Ts from 0:00 to 24: 00; (b) Description of the Power curve of ES3 with different Ts from 
10:30 to 14: 20; (c) Description of the Power curve of ES3 with different Ts from 18:40 to 22: 20. 

0 4 8 12 16 20 240

20

40

60

80

100

Time (h)

SO
C 

(%
)

 

 

Ts=10/60
Ts=30/60
Ts=60/60
Ts=90/60

 
Figure 15. SOC curve of ES3 with different Ts. 

Table 6. Regulation cost with different Ts. 

TS (h) MG1 Regulation Cost ($) MG2 Regulation Cost ($) MG3 Regulation Cost ($) Total ($) 
10/60 472.14 493.30 146.29 1111.73 
30/60 484.06 498.88 140.76 1123.70 
60/60 493.24 512.18 141.82 1147.24 
90/60 515.62 532.72 147.83 1196.17 

6. Conclusions 

In recent years, the development of microgrids has attracted interest to its related topics. This 
paper studies the real-time power allocation problem of islanded multi-microgrids. Considering the 
architecture and operational characteristics of islanded multi-microgrids, it is suitable to adopt a 
decentralized control architecture. A real-time cooperative power dispatch framework for islanded 
multi-microgrids is proposed. The microgrid regulation cost is modeled and a consensus algorithm 
is introduced to realize the power allocation. The conclusions are as follows: 

(1) The consensus power allocation algorithm proposed in this paper can allocate power reasonably 
and ensure the real-time power balance of the islanded multi-microgrids. 

(2) Each microgrid is guided by the regulation cost, and rationally optimizes the regulation power 
allocated by each microgrid, thereby improving the overall economics of the microgrid cluster 
system. 

Figure 15. SOC curve of ES3 with different Ts.

However, the larger TS will increase the regulation cost of other controllable units, that is,
the power regulation capability of the energy storage device is restricted in some time periods and the
corresponding parts need to be borne by other controllable units. Table 6 gives the regulation cost
under different values. Generally speaking, TS should not be too large or too small. The value of TS

can be determined by reference to the type of energy storage battery and the consideration of the life of
the energy storage battery, as well as the actual application requirements. The recommended value is
0.5–1.5 h.
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Table 6. Regulation cost with different Ts.

TS (h) MG1 Regulation Cost ($) MG2 Regulation Cost ($) MG3 Regulation Cost ($) Total ($)

10/60 472.14 493.30 146.29 1111.73
30/60 484.06 498.88 140.76 1123.70
60/60 493.24 512.18 141.82 1147.24
90/60 515.62 532.72 147.83 1196.17

6. Conclusions

In recent years, the development of microgrids has attracted interest to its related topics. This paper
studies the real-time power allocation problem of islanded multi-microgrids. Considering the
architecture and operational characteristics of islanded multi-microgrids, it is suitable to adopt a
decentralized control architecture. A real-time cooperative power dispatch framework for islanded
multi-microgrids is proposed. The microgrid regulation cost is modeled and a consensus algorithm is
introduced to realize the power allocation. The conclusions are as follows:

(1) The consensus power allocation algorithm proposed in this paper can allocate power reasonably
and ensure the real-time power balance of the islanded multi-microgrids.

(2) Each microgrid is guided by the regulation cost, and rationally optimizes the regulation
power allocated by each microgrid, thereby improving the overall economics of the microgrid
cluster system.

(3) The communication burden of the control architecture is small. Each microgrid only needs a
small amount of information from the local and neighboring microgrids, which can satisfy the
real-time dynamic power allocation requirements of islanded multi-microgrids.
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Abbreviations and Nomenclature

MG microgrid
MMGs multi-microgrids
CHP combined heat and power
MGC microgrid controller
ICA-GA imperialist competitive algorithm-genetic algorithm
GSO glowworm swarm optimization
PV photovoltaic
WT wind turbine
ES energy storage device
DE diesel engine
IL interruptible load
SOC state of charge
DG distributed generation
MPPT maximum power point tracking
MPGA multiple population genetic algorithm
∆t time interval of power command
SOC(t) current SOC calculated value
SOC(t− ∆t) previous actual SOC value
VES energy storage system capacity
Pmax

ES energy storage system power limits
η energy storage system efficiency
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TS state duration window
∆PES power command of the energy storage device
CES(∆PES) regulation cost generated by power command ∆PES
∆P total power imbalance
∆Si SOC change caused by the SOC area with the
rESi unit regulation cost of ES
Pmax

ES− maximum charge power
Pmax

ES+ maximum discharge power
∆PDE power command of the diesel generator
rDE unit generation cost of the diesel generator
λ unit fuel coefficient of the diesel generator
roil fuel unit cost of the diesel generator
PN

DE rated power of diesel generators
Pmax

DE upper limit of diesel generators output
Pmin

DE lower limit of diesel generators output
∆Pmax

DE upper limit of diesel generator power command
Ru rates of decreasing output of diesel generators
Rd rates of increasing output of diesel generators
∆PDE excess part of the current real-time output
kDE_on start coefficients of the diesel generator
kDE_off stop coefficients of the diesel generator
∆PIL power commands of interruptible load

∆PDG−
power command of distributed generation output
reduction

rIL unit regulation cost of interruptible load

rDG
unit regulation cost of distributed generation output
reduction

Pmax
IL upper limit of interruptible load

Pmax
DG−

upper limit of distributed generation output
reduction

∆PMG microgrid power command
∆PMGi power command of the i-th microgrid
fC(∆PMGi) regulation cost of the i-th microgrid
PLoadi total load of the i-th microgrid

∆Pmax
MGi

upper limit of the power regulation of the i-th
microgrid

∆Pmin
MGi

lower limit of the power regulation of the i-th
microgrid

n number of microgrid
µ error adjustment step size
∆Perror power deviation commands
ε convergence error
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