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Synthesis of feasible heat exchanger networks using attainable regions

Avian Yuen

Department of Chemical Engineering. McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada

Abstract

The attainable region (AR) is a region in a performance space in which all physically realizable reactor network designs

must exist. ARs have been used since the 1960s for solving reactor network synthesis problems. The benefits of these

methods are that the feasibility of a performance target can be assessed prior to running a synthesis routine, the

solutions they give are guaranteed to be physically realizable, and a design can be made robust to uncertainties in feed

and performance targets by assessing whether a solution and the range of its possible values lie within the AR, just to

name a few. In this article, the theory of attainable regions is extended to bring these benefits to the heat exchanger

network (HEN) synthesis problem. Basic properties of the HEN-AR are proven and a synthesis method using the AR is

presented with examples.
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Highlights:

1. The benefits of attainable region based reactor net-

work synthesis, such as being able to assess the fea-

sibility of the problem prior to synthesis, the guar-

antee of physical realizability, and the ease in which

uncertain parameter values are taken into account, is

introduced to the heat exchanger network synthesis

problem.

2. Treating enthalpy exchange as a kind of chemical

reaction allows the notion of an attainable region to

arise for heat exchanger networks.

3. The heat exchanger network attainable region is de-

scribed and its properties are proven.

4. A predictably terminating method is presented which

uses these ARs to generate feasible heat exchanger

networks within the class of design admitting con-

stant thermophysical properties and no stream splits.

Email address: yuenah@mcmaster.ca (Avian Yuen)

1. Introduction and Motivation

The economic and environmental value in reducing ex-

ternal energy requirements in industrial processes needs no

defence. One way to do this is through heat integration—

using complementary heating and cooling duties in a given

process to satisfy both duty requirements via heat ex-

changer networks (HEN). Emblematic of how clear the

value of heat integration is, the famous “pinch analysis”

developed by Bonn Linhoff in 1983—one of the earliest

techniques developed for heat integration—has become highly

cited (Linnhoff and Hindmarsh, 1983).

Since then, with the advent of personal and high-performance

computing, many computer-aided algorithms for heat ex-

changer network synthesis, including those for pinch analy-

sis, have been developed. Mathematical programming ap-

proaches like those of the highly-cited mixed-integer non-

linear programming (MINLP) model of Yee and Gross-

mann are particularly dominant (Yee and Grossmann, 1990).

In fact, among the methods covered in an exhaustive re-
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view by Furman and Sahinidis, 81 of the 461 articles pub-

lished on the subject in the last one hundred years take

the form of a MILP or MINLP (Furman and Sahinidis,

2002). Pinch technology and MILP or MINLP models are

the top two most common solution methods for HENS.

However, among all methods, none have yet been de-

veloped using attainable region theory (ART). ART, orig-

inally conceived by F.J.M Horn for reactor network syn-

thesis (RNS), has some advantages over other synthesis

methods (Horn, 1964). In particular, the knowledge that

it provides about the limits of performance among all pos-

sible reactor types, guarantee of physical realizability, and

ability to handle uncertainties, as well as its amenability

to convex optimization, make it stand out (a good discus-

sion of AR compared to other methods can be found in the

book on the subject by Ming and colleagues (Ming et al.,

2016)). These advantages prompted a flurry of activity at

the end of the 1990s, developing ART to the point where

it has formed its own class of RNS methods (Glasser et al.,

1987; Feinberg and Hildebrandt, 1997; Feinberg, 2000b,a;

Tian et al., 2018). ART is slowly making its way into

other areas of process engineering. To date, it has been

used to tackle problems in solids processing (comminu-

tion), economic optimization, and gasification (Khumalo

et al., 2006; Muvhiiwa et al., 2018; Bedenik et al., 2007).

Hybrid AR-MINLP methods have also been developed to

marry some of the benefits of each together (Pahor et al.,

2000). Part of the appeal of attainable region analysis is

that the geometric interpretation of the design space pro-

vides additional information for where an optimal design

may lie (Mart́ın and Adams, 2019).

Although attainable region theories have dealt with re-

actor networks with heat exchangers in the past (see (Nicol

et al., 1997) and (Nicol et al., 2001)), none have been de-

veloped solely for the HENS problem. Given the strengths

of having an AR to inform the synthesis, it would be ben-

eficial if such a theory of ARs could be articulated for heat

exchanger network synthesis as well. This article seeks to

do just that. Developing a theory of the “HEN-AR” may

bring some of the benefits which come with attainable re-

gion theory to this significant topic.

Our discussion will proceed first with a review of the

“classic” AR theory which applies to reactor networks. It

will then be shown that through the definition of appro-

priate heat exchange reactions a similar AR can be gener-

ated for HENs. Analogous to reactor network attainable

regions (RN-ARs), this HEN-AR is a region in stream-

temperature-space wherein the performance of all feasible

HENs must lie. Then, much like in RN-ART, the HENs

which correspond to these performance states can be de-

rived by identifying an appropriate path through the re-

gion. Thus, the theory introduced here will allow for the

generation of the complete performance space of heat ex-

changer networks, as well as a method to synthesize such

HENs.

In order to more simply introduce the techniques in-

volved, only a subclass of the HENS problem will be con-

sidered here where all thermophysical properties of materi-

als can be presumed constant. Specifically, heat capacity,

heat exchange coefficients, and material phases are kept

constant. For this subclass of problems, properties of the

AR will be deduced and those will be used to devise a

method to generate the AR. For the method that will be

shown, it turns out that the HEN synthesis using the AR

happens in a serial fashion, with non-negative progress to-

wards a feasible solution being made at each step. This

contrasts methods which treat the HENS problem as an

MILP, such as the transshipment model of Papoulias and

Grossmann, wherein some choices of stream matches may

need to be “undone” by an algorithm—going back up the

binary variable branch-and-bound tree—to reach a feasible

solution (Papoulias and Grossmann, 1983). The determi-

nation of whether a particular HEN lies within the AR

may be aided by some properties of the AR, which will be

described and proven.

In sum, this article seeks to accomplish two goals. One,
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to introduce an AR-based algorithm which gives robust

solutions for HENs in which the constant thermophysical

properties assumption is acceptable, and two, to provide

proofs of the basic properties of the HEN-AR which can

aid explorations in extending the AR techniques to a wider

class of HENS problems in the future.

2. Background

The discussion will begin first with a review of RN-

ART, followed by heat exchanger models.

2.1. AR theory for RNS

A reactor network (RN) is the class of all processes

which involves material streams, stream splitters, stream

mixers, and at least one reactor. The attainable region is a

region in a performance state-space (typically the concen-

tration space of all involved species) such that it contains

the outputs of all RNs for the given RNS problem.

The AR is such that all contained states are associated

with at least one RN design. The synthesis of a reactor

network is therefore no more complicated than the selec-

tion of a particular state in the AR. The task is made more

simple if the chosen performance state is on the boundary

of the AR since, it turns out, boundary performance states

are associated with only one RN design. Thus, the maxi-

mization of the performance of RNs—seeking RNs on the

boundary of the AR—helpfully coincides with the genera-

tion of the unique design with that performance state.

The question now becomes how to generate the RN-

AR. Most simply, the AR boundary is composed of mix-

ing tank trajectories and reactor trajectories of the so-

called fundamental reactor types: continuous-flow stirred

tank reactors (CSTRs), plug-flow reactors (PFRs), and

differentially-distributed side-stream reactors (DSRs). These

are called the “fundamental reactors” because it has been

proven that the output of any reactor can be arbitrarily

approximated by an RN containing just these three reac-

tor types (Ming et al., 2016). The common process flow

diagram symbol for each reactor, along with its associated

model equation, are given in Figure 1.

Figure 1: The three fundamental reactors (right) and their equations

(left). There are three: i) the CSTR, ii) the PFR, iii) the DSR.

Reactor trajectories are the performance outputs of a

reactor given inlet feed information, over increasing resi-

dence time τ from zero to the limit of infinite time units

(e.g. seconds). For an AR in concentration space, the

performance is the output concentration C(τ) of chemi-

cal species from the reactors. AR theorems have proven

that the AR is finite and simply connected (Ming et al.,

2016). Thus, the most simple generation of the AR in-

volves starting with an empty AR, adding the feed point,

and adding all subsequent states traversed by the trajec-

tories of CSTRs, PFRs, and DSRs from the feedpoint and

from their own outputs. Because the region is simply con-

nected, the result is guaranteed to be the complete AR.

The RNs corresponding to the AR are derived by deter-

mining which type of reactor trajectory a chosen state be-

longs to.

With these basics of attainable region theory in hand,

let us examine the generation of an AR for a simple RNS

problem.

2.1.1. RN-AR Example

This example, presented below, is from (Ming et al.,

2016).

RNS Problem
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Reaction:

A→ B→ C

2A→ D

Kinetics:

k1 = 1 s−1, k2 = 2 s−1, k3 = 20 L mol−1 s−1

r(C) =


rA

rB

rC

rD

 =


−k1cA − k3c

2
A

k1cA − k2cB

k2cB

k3c
2
A


kmol

m3 s

Feed:

Cf =


cAf

cBf

cCf

cDf

 =


1

0

0

0


kmol

m3

Objective:

qin = 2 m3 s−1, τ =
V

qin

max
τCSTR,τPFR

cB

Additional Constraints:

∀τ ≤ 5 s

For the above, the molar generation rate r is only a

function of cA and cB , and the RNS objective function is

only a function of cB so the AR can be represented by

its projection in R2 ({cA} × {cB} space) without loss of

information.

As a result of some AR theorems regarding two-dimensional

constructions, we can conclude that the boundary of this

AR is composed of only mixing tanks and trajectories of

CSTRs and PFRs. Once generated, two observations can

be made of the resulting AR:

• The optimal solution of the RNS problem is a max-

imum of cB = 0.07 kmol m−3 using a design where

the feed travels through a CSTR, then a PFR, in se-

ries with τCSTR = 0.35 s and τPFR = 0.25 s, respec-

tively. With the stated flow rate of qin = 2 m3 s−1,

these correspond to reactor sizes of VCSTR = 0.7 m3

and VPFR = 0.5 m3.

• If an additional constraint, such as a hypothetical

constraint of cB ≥ 0.08, were added to the RNS

problem, it can be known to make the RNS prob-

lem infeasible since it lies completely above the AR.

Figure 2 shows the resulting AR for the RNS problem.

Figure 2: A visualization of the RN-AR (pink), with feed (centre of

green ring), and the solution to the problem (centre of black ring). Linear

segments on the boundary of the AR are formed by mixing tanks, and the

performance of the CSTRs (blue trajectory) and PFRs (red trajectory)

are shown for increasing residence times.

The example follows the general procedure of AR-based

process synthesis, which proceeds as follows:

1. Generate the AR.

2. Interpret states within the AR to synthesize the cor-

responding designs.

3. Choose the optimal design.

From this, some remarks can be made about the ben-

efits of AR-based RNS. Firstly, because the first step in

AR-RNS is the generation of the AR, if the AR falls out-

side of the feasible region of the optimization problem,

then it is possible to know a priori before running any

synthesis routine that the RNS problem is infeasible. Sec-

ondly, since the AR is generated using reactor model equa-

tions, we know that any solution to this RNS problem is
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physically realizable (insofar as the models reflect reality).

Thirdly, if the solution to the RNS problem corresponds

to a RN design lying on the boundary of the AR, then it

can be known that it is physically impossible to synthesize

a design with better performance. Lastly, were there to be

any uncertainty associated with the reaction parameters,

these can easily be accounted for by introducing a family

of ARs for the possible values of the parameters into the

analysis.

The concludes the review of RN-ART. We will now

move to a review of heat exchanger models, another key

tool on the road towards HEN-ART.

2.2. Heat exchanger models

Heat exchangers can be divided into two large classes

based on their operation: co-current and counter-current.

In the co-current case, the heat from material in one stream

is transferred to material in the other stream such that the

residence times of material pair generally shortest-shortest

to longest-longest, whereupon the material leaves the heat

exchanger. In the counter-current case, the heat from ma-

terial in one stream is transferred to material in the other

stream such that the residence times of the material pair

generally shortest-longest to longest-shortest (whereupon

the material leaves the heat exchanger).

For this work, it is sufficient that only single-stream

idealizations of heat exchangers will be employed. A jus-

tification for why this assumption is permissible will be

given later in the discussion. For now, general familiarity

with the models will suffice.

The models which can be used for both heat exchanger

types are the so-called NTU-effectiveness equations for

single-stream heat exchangers, which are first-principles

models constructed assuming the heat exchanger has a sin-

gle shell and tube and each stream mixes perfectly with

itself (Kays and London, 1984).

Before continuing, a word on notation. Throughout

this article, algorithms will be used for the sake of pre-

ciseness. The output of an algorithm in-text will occa-

sionally be represented using the algorithm name. When

this occurs, the name of the algorithm will be in boldface

with the inputs stated within parentheses. For example,

“function(x1, x2)” stands for the output of the algorithm

named “function” with inputs x1 and x2.

The heat exchanger models will now be presented in

algorithmic form. Starting with the co-current heat ex-

changer, the archetypical diagram and model equations

can be seen in Figure 3 and the algorithm co-currentHX

below.

Figure 3: A diagram of a co-current heat exchanger.

In the algorithm, T(·)in and T(·)out
are the inlet and out-

let temperatures of the streams in ◦C, F(·)in and F(·)out
are

the constant mass flow rates of the streams in kg s−1, cp1

and cp2 are the heat capacities of the material of the first

and second streams in kJ kg−1 ◦C−1, U is the heat trans-

fer coefficient in kJ s−1 m−2, and A is the heat exchanger

area in m2. Next, the archetypical counter-current heat

exchanger and model equations can be seen in Figure 4

and the algorithm counter-currentHX below.

Figure 4: A diagram of a counter-current heat exchanger.

In counter-currentHX, the symbols mean the same

thing as in the co-current model. These NTU-ε equa-
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Algorithm 1: co-currentHX

Input: T1in
, T2in

, F1in
, F2in

, cp1 , cp2 , U , A

Output: T1out , T2out , F1out , F2out

1 if T1in < T2in then

2 Let Tcin := T1in
, Thin

:= T2in
, Fcin := F1in

,

Fhin
:= F2in

, cpc := cp1 , cph := cp2

3 else

4 Let Tcin := T2in
, Thin

:= T1in
, Fcin := F2in

,

Fhin
:= F1in

, cpc := cp2 , cph := cp1

5 end

6 Let Cc := Fcincpc

7 Let Ch := Fhin
cph

8 if Cc < Ch then

9 Let Cmin := Cc, Cmax := Ch

10 else

11 Let Cmin := Ch, Cmax := Cc

12 end

13 Let Cr := Cmin/Cmax

14 Let NTU := UA/Cmin

15 Let ε := (1− exp(−NTU(1 + Cr)))/(1 + Cr)

16 Let qmax := Cmin(Thin
− Tcin)

17 Let q := εqmax

18 Let Thout
:= Thin

− q/Ch
19 Let Tcout

:= Tcin − q/Cc
20 if T1in

< T2in
then

21 Let T1out := Tcout , T2out := Thout ,

F1out
:= Fcin , F2out

:= Fhin

22 else

23 Let T1out
:= Thout

, T2out
:= Tcout

,

F1out := Fhin , F2out := Fcin

24 end

Algorithm 2: counter-currentHX

Input: T1in
, T2in

, F1in
, F2in

, cp1 , cp2 , U , A

Output: T1out , T2out , F1out , F2out

1 if T1in < T2in then

2 Let Tcin := T1in
, Thin

:= T2in
, Fcin := F1in

,

Fhin
:= F2in

, cpc := cp1 , cph := cp2

3 else

4 Let Tcin := T2in
, Thin

:= T1in
, Fcin := F2in

,

Fhin
:= F1in

, cpc := cp2 , cph := cp1

5 end

6 Let Cc := Fcincpc

7 Let Ch := Fhin
cph

8 if Cc < Ch then

9 Let Cmin := Cc, Cmax := Ch

10 else

11 Let Cmin := Ch, Cmax := Cc

12 end

13 Let Cr := Cmin/Cmax

14 Let NTU := UA/Cmin

15 if Cr ≈ 0 then

16 Let ε := 1− exp(NTU)

17 else if Cr ≈ 1 then

18 Let ε := NTU/(1 + NTU)

19 else

20 Let ε := (1− exp(−NTU(1 + Cr)))/(1−

Crexp(−NTU(1− Cr)))
21 end

22 Let qmax := Cmin(Thin
− Tcin)

23 Let q := εqmax

24 Let Thout := Thin − q/Ch
25 Let Tcout

:= Tcin − q/Cc
26 if T1in

< T2in
then

27 Let T1out
:= Tcout

, T2out
:= Thout

,

F1out := Fcin , F2out := Fhin

28 else

29 Let T1out
:= Thout

, T2out
:= Tcout

,

F1out
:= Fhin

, F2out
:= Fcin

30 end
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tions are easily solvable and robust for free choice of inputs

(Kays and London, 1984; Bergman et al., 2011).

It is well known that although the initial rate of heat

transfer in a co-current heat exchanger is greater than that

of a counter-current one of the same heat exchange area,

as area increases the counter-current heat exchanger will

transfer more heat between the streams (Kays and Lon-

don, 1984). For example, for very large heat exchang-

ers (approaching the limit of infinite heat exchange area)

inputs = {T1in
= 95, T2in

= 10, F1in
= 95, F2in

= 10, cp1 =

4.186, cp2 = 4.186, U = 10, A = 400}, a solution of the

co-current heat exchanger model co-currentHX(inputs)

yields T1in = 86.9, T2in = 86.9 (q = 3219.2 kW) whereas

the a solution of the counter-current heat exchanger model

counter-currentHX(inputs) yields T1in
= 86.1, T2in

=

95.0 (q = 3558.1 kW). This is because the limit of heat

exchange in a counter-current exchanger is limited by the

feed temperatures, whereas in a co-current exchanger it is

limited by a state only intermediate to the feed tempera-

tures. Because of this, and because the heat and temper-

ature of a fluid passing through a heat exchanger is con-

tinuous with residence time, any temperature of a stream

attained by a co-current heat exchanger is also attainable

by the counter-current one with the same feed conditions.

Having finished this review of the necessary heat ex-

changer models, the background information for the dis-

cussion is now complete. The concepts for how attainable

region theory may be applied to heat exchanger networks

will now be presented.

3. Heat exchanger trajectories

3.1. Motivation for heat exchanger trajectories

The key building block of the AR in RN-ART are tra-

jectories of its main equipment type, the reactor. To adapt

ART to HENs, it seems pertinent to examine if similar

trajectories can be constructed using the main equipment

type of HENS: the heat exchanger. To do this, two ob-

servations are made about what a suitable trajectory is in

RN-ART. Firstly, trajectories are generated over increas-

ing residence time for all equipment types so that the size

and type of equipment can be deduced from a given tra-

jectory point. Secondly, the trajectory is generated in a

state-space of interest.

For the first observation, it is noted that for constant

thermophysical properties, the design engineer only has

control over the heat exchange area and the geometry of

the heat exchanger. However, regardless of heat exchanger

geometry (e.g. baffles, multiple tube passes, cross-flow,

etc.), the maximum attainable heat transfer is always lim-

ited by the feed conditions. Since the simplified single-

stream counter-current heat exchanger attains this limit,

and the goal of AR generation is simply to demarcate these

limits, geometry can be ignored—changing geometry only

changes the rate at which this limit will be reached. This

is why the assumption of single-stream heat exchangers

was permissible when choosing the models. Furthermore,

we have already established that the counter-current heat

exchanger will always be able to attain the range of tem-

peratures possible from a co-current heat exchanger. Then

(unlike RN-ART), it can be concluded that trajectories of

only one type of equipment need to be considered: that

of the single-stream, counter-current heat exchanger, over

increasing heat-exchange area.

This leads to the second observation about what “states”

are changing within the trajectory. Looking at the counter-

current HX model, the outputs are stream temperature

and flow rate. Since we have assumed flow rate does not

change, the only change is in stream temperature or stream

enthalpy content. However, there are some benefits to

working in the temperature space. For one, heat exchange

is limited by the inlet feed temperature, not by the feed

enthalpy content. Since the goal of AR generation is to de-

marcate the limits of performance, it will be useful to keep

the AR in the stream temperature space. A second benefit

is that the target performance state of HENs is often the

outlet stream temperatures, so the outlet stream temper-
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atures are the state of interest. Therefore, for now, the

trajectories forming the AR will be represented in stream

temperature space.

It is pertinent now to define more precisely what is

meant by a “stream”. For the purposes of this discussion,

a “stream” is the collection of positions within a unique

channel through which material can flow. We will asso-

ciate temperatures with streams. This definition is chosen

so that changes in temperature can only be due to heat

exchangers, which will greatly simplify the interpretation

of designs from the AR later. For example, if we choose

instead to say that a stream is “a unique material” like

in RN-ART, then the temperature information of streams

with the same material composition will be confounded

with each other.

The above discussion has given the justification for us-

ing trajectories of heat exchangers through stream-temperature

space. Much like in RN-ART, we will form trajectories by

increasing the residence time, or equivalently, the heat ex-

change area of a heat exchanger, to construct the AR. To

generate these trajectories, one may simply record the out-

put of the counter-current HX model over a mesh of heat

exchange areas from 0 to a very large number (an emula-

tion of infinite heat exchange area). In implementations,

since the progress of heat exchange decays exponentially

with heat exchange area (as seen in the NTU-ε model),

the area mesh can be spaced exponentially so as to cover

the range of output states using fewer mesh points. The

task of ”running a heat exchanger trajectory” from a given

feed point is given below as algorithm HXtrajectory.

Line 2 of HXtrajectory indicates that the tempera-

ture, flow rate, and heat capacities are those of the two

streams indicated by streampair. Since streams which

did not enter the heat exchanger do not change tempera-

ture, the outlet temperature of these streams remains un-

changed in the trajectory, hence why the stream tempera-

tures not indicated by streampair are simply copied over

in Line 8 from the feed to each outlet point. In addition

Algorithm 3: HXtrajectory

Input: Tin, Fin, cp, U , Amax, streampair,

trajmesh

Output: trajectory

1 Let trajectory := ∅

2 Let T1in
:= Tinstreampair1

, T2in
:= Tinstreampair2

,

F1in := Finstreampair1
, F2in := Finstreampair2

,

cp1 := cpstreampair1
, cp2 := cpstreampair2

.

3 Let areamesh := an exponentially-spaced mesh of

heat exchange areas having trajmesh meshpoints

from 0 to Amax.

4 for each areameshi in areamesh do

5 Let trajectoryi := {T1out
, T2out

} ⊂

counter-currentHX(T1in
, T2in

, F1in
, F2in

,

cp1 , cp2 , U , areameshi).

6 for each element Tinj in Tin do

7 if neither j = streampair1 nor

j = streampair2 then

8 Add Tinj to trajectoryi.

9 end

10 end

11 Add areameshi to trajectoryi.

12 Add trajectoryi to trajectory.

13 end

14 Add streampair to trajectory.
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to stream temperature changes, the output of HXtrajec-

tory also contains the trajectory meta-data: associated

heat-exchanger area and the stream pairing, which will be

useful later in the discussion.

3.2. Example of a heat exchanger trajectory

To see what a heat exchanger trajectory looks like, con-

sider a process involving three streams of material S1, S2,

and S3 with temperatures 95, 10, and 50 ◦C and flow rates

95, 10, and 50 kg s−1, respectively. Their heat capacities

are each 4.186 kJ kg−1 ◦C−1. The trajectory formed from

putting S1 with S2 together through a heat exchanger

(U=10 kJ s−1 m−2, maximum size 400 m2) with a mesh

of 100 points is HXtrajectory({95,10,50}, {95,10,50},

{4.186,4.186,4.186}, 400, {1,2}, 100), visualized in Figure

5 for a counter-current heat exchanger and a co-current

heat exchanger, for comparison.

Figure 5: Outlet stream temperatures versus increasing heat exchanger

area for the above example in i) a counter-current heat exchanger, and

ii) a co-current heat exchanger.

This figure shows that, as stated earlier, the counter-

current heat exchanger trajectory attains a wider range of

temperatures, including the co-current trajectory range.

Below in Figure 6 is the counter-current heat-exchanger

trajectory in the stream temperature space.

As in the case above, for a trajectory starting from a

state corresponding to unequal stream temperatures, the

trajectory will be of some positive length (i.e. some heat

gets exchanged). For a trajectory starting from a state

corresponding to equal stream temperatures, the trajec-

tory will be of length zero (i.e. no heat is exchanged since

Figure 6: Clockwise from left: The described heat exchanger trajectory

in 3-space, and the projection of the trajectory on the YX plane, the YZ

plane, and the ZX plane.

there is no temperature difference). In all cases, a trajec-

tory can start from any point in the state space. When a

trajectory has reached sufficiently large heat exchange area

such that it approaches the limit of outlet stream temper-

ature change, we will say such a trajectory is “maximal”.

Maximal trajectories represent the heat exchange at in-

finite heat exchange area, but in implementations a very

large heat exchange area can serve as an emulation instead.

4. Properties of the HEN subspaces

Having defined the basic building block of HEN-ARs—

the heat exchanger trajectory—some properties of the AR

will now be described which can be used to inform a method

to generate the AR and to help in the interpretation of AR

states as HEN designs.

For the remainder of the article, the notation nCk sig-

nifies “n choose k”= n!
k!(n−k)! and nPk signifies “n permute

k”= n!
(n−k)!

4.1. The heat exchange and temperature subspaces

The notion of an AR subspace will be introduced by

way of a theorem and a proof rather than starting with
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definitions so that the context for how the notions are used

can become immediately apparent.

Theorem 1. Let the n-stream temperature space be Rn.

Then the AR resides in a stream temperature subspace

T = B−1
H H. Here, B−1

H is a diagonal matrix of heat ca-

pacity rates and H is the corresponding stream enthalpy

subspace H = hf + RHξ, where hf is the n-dimensional

coordinate vector of the feed enthalpies, RH is a matrix of

heat exchange reactions, and ξ ⊂ RnP2

≥0 are nP2-vectors of

heat exchange reaction extents.

Proof. This theorem introduces the notion of the stream

enthalpy subspace. This important object is constructed

in a similar manner to that of a stoichiometric subspace in

reacting systems.

First, recall that the operating principle of heat ex-

changers necessitates a transfer of heat between streams.

Under the constant thermophysical properties assumption,

this can be equated to a transfer of enthalpy between

streams. By the first law of thermodynamics, a unit of

enthalpy is gained by a stream only by the loss of a unit

in another. Drawing a connection to the stoichiometric

subspace, this is analogous to how a molecular species is

only generated by the loss of its reactants. Drawing out

the analogy further prompts us to write the heat exchange

reactions (1).

h1 → h2

...

h1 → hn

h2 → h1

...

hn → h1

...

hn → hn−1

(1)

For n streams, there are nP2 ways that they can be

paired. So, there are nP2 ways that heat can be transferred

between them. The equations (1) therefore represent nP2

reactions. Every possible direction in which heat may be

transferred is accounted for in (1), whether stream 1 is

hotter than stream 2 or vice-versa, stream 1 than stream

3 or vice-versa, and so on. These heat exchange reactions

can be represented in the n× (nP2) heat exchange matrix

RH as

RH =



−1 . . . −1 1 . . . 1 . . . 0

1 . . . 0 −1 . . . 0 . . .
...

0 . . .
... 0 . . .

... . . . 0
... . . . 0

... . . . 0 . . . 1

0 . . . 1 0 . . . −1 . . . −1


(2)

where the rows of RH are the streams and the columns

are the heat exchange reactions. The number of enthalpy

units transferred per unit time (called the enthalpy rate)

in reaction i can be represented by the extent of reaction

ξi. The term RHξ represents the change in enthalpy rates

given a vector of such extents ξ. So

RHξ =



−1 . . . −1 1 . . . 1 . . . 0

1 . . . 0 −1 . . . 0 . . .
...

0 . . .
... 0 . . .

... . . . 0
... . . . 0

... . . . 0 . . . 1

0 . . . 1 0 . . . −1 . . . −1




ξ1

ξ2
...

ξnP2


(3)

for all ξ in RnP2

≥0 . Adding RHξ to the vector of feed-

stream enthalpies hf therefore gives all possible changes

in stream enthalpy rates from the feed; the span of these

changes is the stream enthalpy subspace H = hf + RHξ.

By the thermodynamic relationship between temperature

and enthalpy rate

H1 =F1cp1T1

H2 =F2cp2T2

...

Hn =FncpnTn

(4)
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and the constant thermophysical properties assump-

tion, the temperature-to-enthalpy transform takes the form

of a change of basis matrix BH written as

BH =


F1cp1 0 . . . 0

0 F2cp2

...
...

. . . 0

0 . . . 0 Fncpn

 (5)

such that H = BHT for any T,H ∈ Rn≥0. Then T =

B−1
H H, which is the desired result.

4.2. Temperature subspace dimension

Theorem 2. Let the n-stream temperature subspace be

T ⊂ Rn. Then dim(T ) = n− 1.

Proof. By Theorem 1, the following set of column vectors

bH are columns of the heat exchange reactions matrix RH .

bH =





−1

1

0

0
...

0


,



−1

0

1

0
...

0


, . . . ,



−1

0

0

0
...

1




(6)

Create a matrix whose columns are the elements of bH .

This matrix will have all elements of the first row equal

to −1 and the remaining n − 1 rows being those of the

(n−1)× (n−1) identity matrix. There are n−1 elements

in bH and it is easily seen they are all linearly independent.

Since the matrix formed from bH has the identity ma-

trix from the second row onwards, those elements from bH

form a basis for all columns of RH which have 0 in the first

row. For example, the column [01 − 10 . . . 0]T is created

from the first two elements given in (6).

For the rest of the columns ofRH which involve nonzero

elements in the first row, those are simply an element of

bH multiplied by −1. Therefore, all columns of RH are

linear combinations of the elements of bH . So, bH forms a

basis for the column space of RH . There are n−1 elements

of bH , so rank(RH) = n− 1.

From Theorem 1, the transformation of the extent vec-

tor ξ to T involves only three operations: addition of n×1

vectors, multiplication by RH and multiplication by BH.

It can be easily seen that BH is full rank. Addition of

n× 1 vectors also preserves dimensions. Therefore, multi-

plication by RH is the only transformation which dim(T )

is dependent on. Then, dim(T ) = rank(RH) which was

just shown to be equal to n− 1. So dim(T ) = n− 1

This result of Theorem 2 is consistent with the findings

of Hohmann, who was the first to show that the minimum

number of heat exchangers to reach a target stream is n−1

process stream-process stream heat exchangers (plus any

additional utility-stream heat exchangers) (Hohmann, Ed-

ward Charles, 1971). This n − 1 number is explained by

Theorem 2 as the number of heat exchanger trajectory di-

rections needed to span the stream enthalpy subspace H.

Let us now look at some examples of AR subspaces.

4.3. AR subspace example 1

Consider a HENS problem with feed temperatures TfS =

{95, 10} ◦C, corresponding flow rates F = {95, 10} kg s−1,

and corresponding heat capacities cp = {4.186, 4.186} kJ kg−1 ◦C−1.

Then by Theorems 1 and 2 the subspace is equivalent to

T = Tf + span

 −1
(95)(4.186)

1
(10)(4.186)

 (7)

which will take the form of Figure 7.

4.4. AR subspace example 2

Consider a HENS problem with feed temperatures TfS =

{95, 10, 50} ◦C, corresponding flow rates F = {95, 10, 50}

kg s−1, and corresponding heat capacities cp = {4.186, 4.186, 4.186}

kJ kg−1 ◦C−1. Then by Theorems 1 and 2 the subspace is

equivalent to

T = Tf + span




−1
(95)(4.186)

1
(10)(4.186)

0

 ,


−1
(95)(4.186)

0

1
(50)(4.186)


 (8)

which will take the form of Figure 8.
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Figure 7: Archetype of the temperature subspace for a two-stream

HENS problem. Boundary is in red and inside is in pink.

Note that the temperature subspace in absolute tem-

perature units must lie only in the positive orthant of Rn.

An interesting property of the stream enthalpy/heat

exchange subspace H follows from the presented theorems:

Theorem 3. Let the n-stream stream enthalpy subspace

be H ⊂ Rn. Let v be an n-dimensional vector whose coor-

dinate in each dimension is 1. Then the orthogonal com-

plement of H relative to Rn is (Rn \ H) = span (v).

Proof. By Theorem 1, finding the complement of H rela-

tive to Rn is equivalent to finding the orthogonal comple-

ment of the column space of RH in Rn (consider the first

n columns of RH). By Theorem 2, this is equivalent to

finding the orthogonal complement of the column space of

bH (also in Rn; consider bH having an additional column of

zeros). It is known that the orthogonal complement of the

column space of any matrix is equivalent to the null space

of its transpose (Anton and Rorres, 2010). Therefore, the

orthogonal complement of H relative to Rn is null(bTH).

The null space of bTH is equivalent to the solution of

bTHx = 0, which are the equations

Figure 8: Archetype of the temperature subspace for a three-stream

HENS problem. Boundary is in red and inside is in pink.

−x1+x2 = 0

−x1+x3 = 0

...

−x1+xn = 0

(9)

By Theorem 2, there are n − 1 linearly independent

equations of n unknowns. Therefore, there is one degree

of freedom. Let this degree of freedom be expressed as

x1 = s where s is a scalar constant. Then by (9) x1 =

s, x2 = s, . . . , xn = s is the null space of A, which is

equivalent to span (sv) = span (v).

5. Properties of the HEN-AR

The existence of the heat exchange and stream temper-

ature subspaces have now been proven, along with some of

their properties. These spaces form the “home” of the AR.

But they are, so far, an empty home. In this section, we
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will prove the existence of the AR and further properties

which will be useful later in the discussion.

For all the results in this section, assume we are work-

ing in the n-stream temperature subspace T ⊂ Rn.

5.1. AR existence, boundedness, and connectedness

Theorem 4. For any HENS problem, there is an attain-

able region A ⊂ T such that A is a non-empty region

bounded in all directions whose comprising points are con-

nected to at least one other point.

Proof. Existence of the AR: All HENS problems assume

the feed conditions are attainable. These include the set of

feed stream temperatures TSf = {T1f , T2f , ..., Tnf}. Any

TSf can always be uniquely associated with the coordinate

vector Tf = (T1f , T2f , ..., Tnf ) ∈ Rn. That is, Tf ⊆ A.

Therefore, the attainable region is always non-empty.

Boundedness of the AR: Consider any AR point a =

(a1, a2, ..., an) ∈ A. For real feed stream temperatures

TSf = {T1f , T2f , ..., Tnf} in Kelvin, 0 < T1, T2, ..., Tn <

∞, the operating principle of heat exchangers allows only

min(TSf ) ≤ a1, ..., an ≤ max(TSf ). So any AR point has

all its coordinates bounded. Therefore, A is bounded.

Connectedness of the AR: Only the feed point is as-

sumed to be attainable without any heat exchanger tra-

jectories, so all other points in the AR must be in heat

exchanger trajectories that originate either from the feed,

or from others connected by trajectories to the feed. Since

temperatures change continuously in a heat exchanger, all

heat exchanger trajectories are continuous lines, and there-

fore every point of the AR is connected to at least one other

point.

Having proved the basic properties of existence, bound-

edness, and connectedness, some finer details about the

AR are presented next.

5.2. Trajectory growth directions in T

Lemma 1. Let “direction” mean a vector in Rn or any of

its scalar multiples. Then for a HENS problem with con-

stant thermophysical properties, the heat exchanger tra-

jectories comprising the AR will be straight lines in Rn

parallel to some set of nC2 directions.

Proof. Heat exchanger trajectories will be straight lines:

By Theorem 1, the heat exchanger trajectories only grow

according to changes in one ξi ∈ ξ (since only two streams

are put in a heat exchanger to generate a heat exchanger

trajectory). These changes in ξi are then subjected to

solely linear mappings to Rn. Therefore, each heat ex-

changer trajectory will be a straight line.

Heat exchanger trajectories will be lines parallel to at

most nC2 directions: By Theorem 1, for each column vec-

tor ci of RH , some cj = −ci is also a column vector of RH .

Therefore, changes in ξi and ξj will cause a trajectory to

grow in the same direction, by the definition of direction.

Therefore, only half of the columns of RH are associated

with unique trajectory growth directions. Since there are

nP2 column vectors of RH , there are nP2/2 = nC2 unique

directions a trajectory can grow in.

Corollary 1. If the constant thermophysical properties

assumption holds, then a trajectory between two streams,

represented in their temperature space, will always have

negative slope.

Proof. From the heat exchange reactions (1), we can see

that an increase of enthalpy in one stream is always ac-

companied by a decrease in enthalpy of another stream.

Since heat capacity and mass flow rate are positive quan-

tities, then by (4), an increase in outlet temperature in

one stream is always accompanied by a decrease in outlet

temperature in another stream. This relation describes a

negative slope in the stream temperature space. Since a

trajectory is a representation of this phenomena, it must

be of negative slope.

Note that if the constant thermophysical properties as-

sumption does not hold, then phase change may occur, and

so heat exchange may occur in a heat exchanger without
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a corresponding change in outlet temperature. However,

this case falls outside of the scope of this article.

5.3. Existence of AR edges and vertices

Lemma 2. For a HENS problem of constant thermophys-

ical properties, the AR is a polytope in T whose edges are

heat exchanger trajectories. The boundary of the AR is de-

fined by the end points of its edges, which are its vertices.

Proof. By Theorem 4, all points in the AR must be con-

nected by paths composed of heat exchanger trajectories.

Therefore, the boundary of the AR must also be com-

posed of heat exchanger trajectories. By Lemma 1, all

paths in the AR are composed of straight lines oriented

in a finite number of directions, so segments of the AR

boundary which do not lie completely on a finite number

of planes are impossible (i.e. smoothly curved boundary

surfaces are impossible). Therefore the boundary of the

AR is composed solely of straight line segments; edges.

Since the AR is bounded in all directions by Theorem 4

and can only have planar boundary surfaces, this implies

the AR is a polytope.

Straight edges can be defined by their end points which

are the vertices of a polytope, so the AR has vertices which

also define its boundary.

5.4. Inclusivity of the AR boundary

Lemma 3. Let p be a vertex of the AR with associated

stream temperature set pS. Then a trajectory Q from p

which does not change the value of min(pS) or does not

change the value of max(pS) (that is, does not involve

the streams associated with min(pS) or max(pS)) for every

point in the trajectory) lies completely on the boundary of

the AR.

Proof. There will be a proof for the case where Q is a

trajectory which does not change min(pS) and a proof for

where Q is a trajectory which does not change max(pS).

For the case where min(pS) does not change in Q: Sup-

pose that Q does not lie completely on the boundary of

the AR. Then all q ∈ Q where q 6= p are on the interior

of the AR. Let B be another trajectory on the boundary

of the AR from p. Then all b ∈ B are on the boundary

of the AR and B lies below Q in the dimension associ-

ated with min(pS). Let qS and bS be the associated set

of stream temperatures for q and b respectively. Then

min(bS) < min(qS). But min(qS) = min(pS), and by the

operating principle of heat exchangers, no trajectory from

p can attain temperatures less than min(pS). Therefore,

Q is on the boundary of the AR.

For the case where max(pS) does not change in Q: Sup-

pose Q does not lie completely on the boundary of the AR.

Then all q ∈ Q where q 6= p are on the interior of the AR.

Let B be another trajectory on the boundary of the AR

from p. Then all b ∈ B are on the boundary of the AR and

B lies above Q in the dimension associated with max(pS).

Let qS and bS be the associated set of stream tempera-

tures for q and b respectively. Then max(bS) > max(qS).

But max(qS) = max(pS), and by the operating principle

of heat exchangers, no trajectory from p can attain tem-

peratures greater than max(pS). Therefore, Q is on the

boundary of the AR.

Note that this lemma does not differentiate between

boundary trajectories which are AR edges and those which

are on the boundary but lie strictly within higher-dimensional

faces.

A related property of edges follows from Lemma 3

Lemma 4. If Q is an AR edge from some vertex p to

some vertex q, the trajectory from p to q is one which does

not involve a stream associated with min(pS) or max(pS)

(where pS is the set of stream temperatures associated with

p).

Proof. By Lemma 2, Q is a trajectory lying completely

on the boundary of the AR. By Lemma 1, the direction

of a trajectory is given by the choice of the two streams

involved. So, starting at vertex p, choose two streams

which create a new trajectory P in the same direction as
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Q with the property of Lemma 3 which keeps it completely

on the AR boundary. By Lemma 2, P will end at q since

q is adjacent to p. Since an edge is uniquely defined by

its starting vertex and ending vertex, Q is identical to

P . P has the property that it did not involve a stream

associated with min(pS) or max(pS), so that is also the

case for Q.

5.5. Location of the feed

Lemma 5. Let the n-stream temperature subspace be T ⊂

Rn. Then the point in the temperature space corresponding

to the feed is an extreme point of the AR with respect to

T .

Proof. By Theorem 4, the feed point Tf associated with

stream temperatures TSf = {T1f , T2f , ..., Tnf} is always

part of the AR. By the operating principle of heat exchang-

ers, no trajectory can contain a point p with associated

stream temperatures pS such that min(p) < min(TSf ) or

max(p) > max(TSf ). That is, the feed point lies on the in-

tersection of two (n − 1)-dimensional planes representing

temperature inequality constraints in T . Therefore, the

feed is an extreme point of the AR.

5.6. Convexity of the AR boundary in T

By “convex”, we mean a plane can be drawn through

any vertex of the AR boundary and the rest of the bound-

ary will lie only on one side of the plane.

Theorem 5. Let the n-stream temperature subspace be

T ⊂ Rn. Then the boundary of the AR is convex in T .

Proof. Let a “concavity” be segment of the AR boundary

wherein a vertex lies within the convex hull of the AR. By

this definition then, a figure with no concavities will be

convex.

By Lemma 2, all vertices are connected by at least two

edges, and all edges are between two streams. So all con-

cavities can be represented by its projection in the temper-

ature space T1 × T2 of any two streams, call them S1 and

S2. Furthermore, if a vertex is not in a concavity in any

two-stream projection, then it is not part of a concavity.

The proof will show the boundary of the AR is convex by

showing that all concavities of the AR are impossible.

All trajectories represented in the two-stream space

will be either S1 exchanging heat with S2 (diagonal line)

or S1 or S2 exchanging heat with any third stream (hori-

zontal and vertical line, respectively). There are thus only

these three families of trajectory directions which form the

shape of the AR around each vertex.

A trajectory can move in the diagonal directions only

if it does not lie on the line T1 = T2. Call the region above

the line region A (that is, where T2 > T1). Call the region

below the line region B (that is, where T1 > T2). If a

diagonal trajectory starts in region A, it can only proceed

downwards. If a diagonal trajectory starts in region B, it

can only proceed upwards.

The AR with n = 2 streams is convex, since the AR is

only a diagonal line.

Now for ARs with n > 2 streams. Consider a trajec-

tory lying completely on the AR boundary from vertices

p to q (although not necessarily lying in the convex hull).

This trajectory pq may be in the positive or negative hor-

izontal direction, positive or negative vertical direction,

downwards diagonal direction if beginning in A, or up-

wards diagonal direction if beginning in B. It may also be

completely in A, completely in B, or have parts in both A

and B. Therefore, there are exhaustively sixteen possible

cases that this trajectory can be in, shown in Figure 9.

The terminology we will use is that if xyz is a concavity,

then the AR is in a region which is on a particular side of

trajectories xy and yz such that y is in a concavity. For

example, in Figure 9i), if pqs is a concavity then the AR is

above pq and to the right of qs. Then, q is in a concavity.

That xyz is a concavity also implies that for the vertical

trajectories r and r′, only r is possible from q.

Note that for all cases, both a positive and a nega-

tive horizontal trajectory, or both a positive and negative
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Figure 9: All possible instances of trajectory pq in the temperature

space and the possible trajectories from vertex q afterwards. The state-

ment X → Y means that the trajectory starts at p in region X and ends

at q in region Y . The symbols ∆H + /− mean trajectory pq is in the

positive/negative horizontal direction respectively, ∆V + /− mean tra-

jectory pq is in the positive/negative vertical direction respectively, and

D means the trajectory is in the diagonal direction.

vertical trajectory, cannot come from q in all two-stream

projections since then q would only strictly be an edge

point and not a vertex. Also note that a trajectory from

q cannot be in the same direction as pq in all two-stream

projections since then that would also imply q is only an

edge point. We therefore reject these cases in the analysis.

With all the above considerations in mind, we will show

that q cannot be in a concavity in all of these sixteen cases.

For case i), the concavity pqr is impossible since qr

implies a third stream is warmer than S2 at all points of

pq, so an upwards vertical trajectory could be made on any

point in pq, making it not an AR edge. The concavities

pqs and pqr′ are impossible since a downwards diagonal

trajectory can be made on any point in pq since pq lies

entirely within region A, making it not an AR edge. Since

these are all the possible concavities in the case, q is not

in a concavity in case i).

For case ii), the concavities pqs and pqr are impossible

since an upwards diagonal trajectory could be drawn on

any point in pq, making it not an AR edge. The concav-

ity pqr′ is impossible since qr′ implies there is some third

stream warmer than S2 at all points of pq so a downwards

vertical trajectory can be made on any point in pq, mak-

ing it not an AR edge. Since these are all the possible

concavities in the case, q is not in a concavity in case ii).

For case iv), the concavity pqr is impossible since qr

implies there is a third stream warmer than S2 at some

points of pq so an upwards vertical trajectory can be made

on some parts of pq, making it not an AR edge. The con-

cavity pqs′ is impossible since qs′ implies there is some

third stream warmer than S1 at all points, so a rightwards

horizontal trajectory can be made at all points of pq mak-

ing it not an AR edge. The concavity pqr′ is impossible

since qr′ implies there is some third stream warmer than

S2 at all points of pq so a downwards vertical trajectory

can be made on any point in pq, making it not an AR edge.

The concavity pqs is impossible since qs implies there is

a third stream cooler than S1 at some points of pq so a

leftwards horizontal trajectory can be made on some parts

of pq, making it not an AR edge. Since these are all the

possible concavities in the case, q is not in a concavity in

case iv).

For the remaining cases, their possible concavities can

be identified with the concavities already discussed above,

so similar arguments for cases with the same directions of

possible trajectories from q can be made. For example, by

the directions of trajectories from q, identify case vi) with

case i). Then, identify the concavity pqr′ of case vi) with

concavity pqr in case i) and argue that it is impossible by

an analogous argument as used for pqr in case i). Here,
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it would be that since qr′ implies a third stream is cooler

(instead of warmer) than S2 at all points of pq, a down-

wards vertical trajectory could be made on any point in

pq, making it not an AR edge. So concavity pqr′ of case

vi) is impossible.

Therefore, for cases vi), x), and xiii), a similar argu-

ment as for case i) can be made to conclude q is not a

concavity in these cases either; for cases iii), v), vii), ix),

xi), xiv), and xi), a similar argument as for case ii) can be

made to conclude q is not a concavity in these cases either;

and, for cases viii), xii), and xvi), a similar argument as

for case ii) can be made to conclude q is not a concavity

in these cases either.

This covers all sixteen cases. Since these sixteen cases

are exhaustive, there is no case where q can be in a concav-

ity. Since q can be any vertex of the AR, we must conclude

no vertex of the AR can be in a concavity, so the AR has

no concavities. Therefore, the AR is convex.

The following result follows from this convexity theo-

rem, and shows that every point in the AR is attainable.

Corollary 2. The AR has no handles nor voids.

Proof. If the AR has handles or voids, then the surface

of the handle or void lying strictly in the convex hull of

the AR would contain a concavity of the AR. But by The-

orem 5, it is impossible for the AR to have concavities.

Therefore, the AR has no handles nor voids.

6. HENARG: An AR-generating Algorithm

These AR properties can be used to generate the set

of boundary points of the AR by the following reason-

ing. By Lemma 5 (feed location), the feed is an extreme

point. Then, by Lemma 3 (boundary inclusivity), all the

trajectories incident on the feed which have the necessary

condition to be completely on the boundary can be gen-

erated. Thus, the edges incident on the feed will also be

generated, by Lemma 4. The terminal points of the edges

will be other extreme points, vertices, on which this pro-

cess can again be repeated. Since all edges are adjacent

to other edges on the AR by Lemma 2, the entire AR will

be generated after a finite number of iterations. The gen-

eration of the AR by such a process resembles the growth

of a tree starting from the feed point, whose branches are

the emanating edge trajectories.

The conclusion of this reasoning is stated as the follow-

ing theorem.

Theorem 6. Any method which generates the trajectory

tree of boundary trajectories from the feed point will also

generate all AR edges.

It is this theorem which will serve as the basis for the

method of generating the AR, which we will now discuss

in more detail.

A method which generates a list of all the possible tra-

jectories from a point given the number of streams is the

algorithm completegraph, which takes as input the num-

ber of streams involved in the HENS problem (the “n” of

“Rn”) and returns as output a set of pairs of streams, each

stream being denoted by a number between 1 and n. The

number of elements of this set will be nC2 unique pairs,

which is also known to be the number of edges of a com-

plete graph on n vertices. Algorithm completegraph is

given below.

As an example, consider n = 4. Then, complete-

graph(4) = {{2, 1}, {3, 1}, {3, 2} , {4, 1}, {4, 2}, {4, 3}}.

In order to generate the trajectory tree, we go through

the list of stream pairs specified by completegraph(n)

and generate the “branches”—the trajectories which lie

completely on the boundary—from known extreme points.

The points from which these trajectories were run from are

then moved from the “branching” set to the “branched”

set and the procedure repeats itself on the ends of the new

branches. Let the attained point (branched) set be called

A, the explorable point (branching) set be called E (these

points are “explored” by seeing whether new boundary
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Algorithm 4: completegraph

Input: n

Output: pairs

1 Let the set of pairs pairs := ∅.

2 Let the set of numbers corresponding to each

stream stream be the integers from 1 to n.

3 Let pairnumber := 0.

4 for each element streami in stream do

5 Let s1 := streami.

6 for each element streamj in stream do

7 Let s2 := streamj .

8 if s2 := s1 then

9 break. (Go to next iteration of

outermost for-loop.)

10 else

11 Let pairnumber := pairnumber + 1.

12 Let pairpairnumber := {s1, s2}.

13 Move pairpairnumber into pairs.

14 end

15 end

16 end

trajectories can be generated from them), and the com-

pleted explorable point (branch) set be called C (because

these points are created by completing the generation of

all boundary trajectories on an explorable point). By these

definitions, A ∪ C is the attainable region.

At the end of each iteration, the end point of each

trajectory will be put into C, and then the point from

which the trajectory started will be removed from E and

added to A. All elements of C will then be moved to E and

the next iteration can begin. In this way, the “branched”

points a ∈ A which have been explored are inactivated,

and the “branch” points c ∈ C are points from which new

trajectories will emanate from.

Because the process always adds more AR edges if it

is possible to, if the AR does not change between succes-

sive iterations then no new points are attainable by heat

exchanger trajectories. By definition, the AR is therefore

complete. It may seem difficult to check whether the AR

really has not changed between iterations, since the AR

generated by this procedure may involve many hundreds

or thousands of trajectory end points (remember, not ev-

ery trajectory generated will be an AR edge). However, by

Theorem 5, we can check whether the AR has changed us-

ing the equivalent condition of checking whether its convex

hull has changed. A convex hull algorithm such as Quick-

hull can be used to return the convex hull (vertices) of the

AR in T , which is stated in simplified form as algorithm

CHull below.

Algorithm 5: CHull

Input: points,dimension

Output: convexhull

1 Let convexhull := convexhull ⊂ points, the

extreme points of the convex hull in a space of

dimension dimension of the set points given by

some convex hull algorithm such as Quickhull.

Note that the convex hull will be in the (n−1)-dimensional

temperature subspace T , so the use of CHull cannot be
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done with points in Rn. This problem can be solved us-

ing the well-known fact that edges and convexity of poly-

topes are preserved in linear transformations from Rk to

Rk (Sanyal and Ziegler, 2010). Since the AR is (n − 1)-

dimensional, simply truncate points to any n − 1 coordi-

nates.

When CHull gives the same output between successive

iterations, the AR has been generated and we stop the

process. Now we will discuss implementation. First, the

mesh for each trajectory can be reduced to just two mesh

points (the beginning and end of the trajectory) since the

vertices completely determine the AR. Second, the test for

whether a trajectory will lie on the AR boundary can be

carried out as in algorithm isbtraj below, whose inputs

are the stream temperature set corresponding to a point

in temperature space and a pair of two numbers denoting

a pair of streams. The output is the truth value of whether

the resulting trajectory lies on the AR boundary. One can

see the test for the boundary edge condition of 4 in the

algorithm.

Algorithm 6: isbtraj

Input: pS , pair

Output: truthval

1 Let pmax := max(pS) and pmin := min(pS).

2 if {pSpair1 , pSpair2} = {pmax, pmin} then

3 truthval = false.

4 else

5 truthval = true.

6 end

Note when the HENS problem involves only n = 2

streams, the minimum and maximum stream tempera-

tures are the only ones available so isbtraj cannot be used.

However, the AR in this case is simply a single trajectory

between the two streams.

With these considerations in mind, the AR-generation

method for n > 2 streams is now presented in more precise

form as algorithm HENARG (Heat Exchanger Network

Attainable Region Generator), found below.

Note that line eleven in HENARG is the reason why

the streampair meta-data is included in each stream tra-

jectory created by HXtrajectory—it prevents the algo-

rithm from re-tracing the trajectory it just ran (pairing

the same streams together at the end of their trajectory).

This is necessary for at least two reasons. First, if the

trajectories are maximal (i.e. maxarea is very large) then

the same stream pair cannot exchange more heat along the

same trajectory by definition, so it would not help in find-

ing new extreme points. Second, if the heat exchange area

is limited by the design engineer to some non-maximal

maxarea (for example, due to capital cost constraints),

then it would probably be unhelpful to generate the AR

where HENARG is allowed to pair up the same two

streams sequentially through many heat exchangers. Of

course, for the cases where one does want to consider these

HEN designs, the algorithm can be modified as needed.

Algorithm HENARG generates the trajectory tree by

the reasoning given in this section. So by Theorem 6, it

generates the AR. Two examples will now be presented to

demonstrate how the algorithm generates the AR.

6.1. HENARG example 1

Consider the three-stream HENS problem in Section

4.4 with maximum heat exchanger areas of 400 m2 and

two mesh points per trajectory (only two mesh points—

the start and end point—are necessary since the AR can be

equivalently defined by its vertices). Then HENARG(Tf ,

F , cp, U , 400, 2) is visualized as Figure 10 and Figure 11

below. Figure 10 depicts the trajectories generated during

the execution of HENARG, and Figure 11 is the output

of HENARG.

6.2. HENARG example 2

Consider a four-stream HENS problem with feed stream

temperature point Tf = (95, 10, 50, 10 ◦C, corresponding

flow rates F = {95, 10, 50, 50} kg s−1, corresponding heat
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Algorithm 7: HENARG

Input: feedpoint, flowrates, heatcaps, U ,

maxarea, trajmesh

Output: AR

1 Let n be the number of elements in feedpoint.

2 Let pairs =completegraph(n).

3 Let AR := feedpoint.

4 Let ARprev := ∅.

5 Let the set of completed explorable points C := ∅.

6 Let the set of attained points A := feedpoint.

7 Let a set of explorable attained points

E := feedpoint.

8 while AR 6= ARprev do

9 for each pi in E do

10 for each pairsj in pairs. do

11 if pairsj corresponds to the stream-pair

used to generate pointi then

12 continue (start next iteration of

inner for-loop)).

13 end

14 if isbtraj(piS,pairsj)=false then

15 continue.

16 end

17 Let trajectory :=HXtrajectory(pi,

flowrates, heatcaps, U , maxarea,

pairj , trajmesh).

18 Copy the final point of trajectory to C.

19 end

20 Move pi from E to A.

21 end

22 Let A := A ∪ E .

23 Let ARprev := AR.

24 Let AR :=Chull(A,n− 1).

25 Move all points from C to E .

26 end

Figure 10: The trajectories generated by HENARG for the three-stream

HENS problem example from the specified feed point (centre of green

ring).

capacities cp = {4.186, 4.186, 4.186, 4.186} kJ kg−1 ◦C−1,

maximum heat exchanger areas of 400 m2 and two mesh

points per trajectory. Then HENARG(Tf , F , cp, U , 400,

2) is 3-dimensional, and the AR can be visualized as a pro-

jection onto the first three stream temperature dimensions,

seen in Figures 12 and 13 below.

From these examples, one may guess that the number

of required iterations to generate the AR is nC2 iterations.

Our examples are consistent for this: for two streams it

takes only 2C2 = 1 iteration to generate the AR, for three

streams it took 3C2 = 3 iterations, and for four streams it

took 4C2 = 6 iterations. However, this is only a conjecture.

This concludes the discussion on how to generate the

AR and some of its relevant properties. The next section

will discuss how to use the AR to synthesize feasible HENs.

7. Synthesis of feasible HENs

The goal of this section is to present a method aided by

the AR to synthesize a feasible HEN. It is important to re-

member that although process synthesis typically involves

the selection of an optimal design among alternatives, op-

timization is not within the scope of this article. Instead,

the goal is simply to synthesize a feasible HEN, one which

1) transforms inlet feed conditions to the target outlet feed
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Figure 11: The output of HENARG—the vertices of the AR from the

n = 3-stream HENS problem example with the specified feed point (cen-

tre of green ring). HENARG terminated on iteration 4.

conditions, while 2) satisfying any additional constraints.

The former task will be discussed first.

The transformation of the feed stream conditions to the

outlet stream conditions corresponds to finding the set of

heat exchanger trajectories which go from the inlet state

to the target temperature state in the AR. However, the

(n− 1)-dimensional AR will almost never contain an arbi-

trary target point in Rn. Therefore, a HEN composed of

solely process-process stream heat exchangers will almost

never be able to transform the feed to the target. This is

why utilities—extra-process sources of heat exchange ma-

terial (e.g. steam and cooling water)—will be required

when synthesizing a HEN regardless of what method is

used. Therefore, all solutions will involve a combination of

process-process stream heat exchangers and process-utility

heat exchangers.

Although solely process-utility heat exchanger trajec-

tories can bring the streams from the feed to the target

stream conditions, this is typically not the only feasible so-

lution considered in a synthesis method since using utilities

for all of the heat transfer is typically expensive. There-

fore, let us consider the more interesting feasible solution

Figure 12: The trajectories generated by HENARG for the four-stream

HENS problem example.

Figure 13: The output of HENARG—the vertices of the AR for the

four-stream HENS problem example. HENARG terminated on iteration

7. Also visible is the feedpoint for reference.

where a combination process-process and process-utility

heat exchangers are used. A method to do this will be

described below.

Consider the example of the family of solutions using

process-process heat exchanger trajectories to bring some

streams to their target state, and then process-utility heat

exchanger trajectories to make up the difference on the

remaining ones. To do this, first generate the AR using

HENARG. Second, project the target stream state onto

the temperature subspace along each one of the n dimen-

sions. Among these images, check if one falls within the
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AR. If an image falls within the AR, navigate to it from

the feed using process-process heat exchanger trajectories,

and then make up the difference using a process-utility

trajectory for the stream along whose dimension the pro-

jection was carried out. If no image falls within the AR,

navigate as close as possible towards the closest point to

the boundary of the AR and then make up the difference

using as many process-utility heat exchanger trajectories

as necessary. Figures 14 and 15 below show typical solu-

tion trajectories for both these cases.

Figure 14: Typical solution trajectory for a target point whose projec-

tion along a dimension lies within the AR.

The procedure always consists of projecting the target

point onto the temperature subspace along one dimension,

navigating to a point within the AR, followed by navigat-

ing off to reach the target point. These steps will now be

described in detail.

7.1. Projection of the target onto T

Since the temperature subspace T is (n − 1) dimen-

sional, it can be represented in Rn as a (n−1)-dimensional

Figure 15: Typical solution trajectory for a target point whose projec-

tions along the dimensions onto the stream temperature subspace do not

lie within the AR.

plane

a1T1 + a2T2 + . . .+ anTn = b (10)

where a1, . . . , an are constants equivalent to a vector or-

thogonal to T . In Equation (10), b is solved by substi-

tuting in a point T = (T1, . . . , Tn) which is known to lie

within T . Once the equation of the plane is determined,

the projection of the target point onto the plane along each

dimension can be done by substituting the appropriate co-

ordinates of the target point into (10) and solving for the

remaining one.

To find a1, . . . , an, a vector u ∈ Rn orthogonal to T

must be found. Let v be an n-vector of ones. Then by The-

orem 3 (complement), the orthogonal vector is simply u =

B−1
H v. Then a1 = (F1cp1)

−1
, a2 = (F2cp2)

−1
, . . . , an =

(Fncpn)
−1

. Now, by Lemma 5 (feed location), the feed

Tf = (T1f , . . . , Tnf ) is a known point in T . Plugging these

into (10) gives the value of b as

b =

n∑
i=1

(Ficpi)
−1
Tif (11)

Then, the kth coordinate k ∈ [1, n] of the projection of a
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point x onto T along the kth dimension is given by

Ck(x) =
b−

∑k−1
i=1 aixi −

∑n
i=k+1 aixi

ak
(12)

which gives the projection Pk(x) of point x onto T as

Pk(x) = (x1, x2, . . . , xk = Ck(x), . . . , xn) (13)

From these calculations we can find the projection of

the target point onto T along each kth dimension.

7.2. Navigating to a point within the AR

Since heat exchanger trajectories in temperature space

are straight lines in unique directions, it might seem promis-

ing at first to find the trajectories which go from the feed

Tf to the projected target point Pk(x) using basis vector

decompositions of the displacement vector d = Tf−Pk(x),

treating the nC2 unique trajectories as possible basis vec-

tors. However, this approach does not reliably work for at

least two reasons. First, some vectors which d are decom-

posed into may leave the AR. Second, the vectors which d

are decomposed into may have a length which is physically

impossible. For example, if a trajectory happens to start

very close to the T1 = T2 line for some two streams, then it

may not be able to be as long as what is required to reach

the target point. The basis vector decomposition cannot

take these limitations into account. We therefore desire a

method which can avoid these problems and reliably syn-

thesize feasible heat exchanger networks.

In the following part of the discussion, we will see that

a method using optimization techniques can be used to

carry out the synthesis step. Readers familiar with linear

optimization may have already remarked on how similar

the AR looks to the feasible regions of linear programming

problems. Indeed, we will use some concepts from the

famous “simplex search” optimization method of Dantzig

to solve this problem (Dantzig, 1990). Simplex search is a

method for solving linear optimization problems in which

the optimal state is found by starting at a vertex of a

convex polytope of inequality constraints, and traversing

the edges of the polytope until the optimal point is found.

More information on simplex search can be readily found

in many optimization textbooks (Rardin, 2016).

First, recall that the output from algorithm HENARG

is the set of vertices which denote the AR. The first step

required to use simplex search to solve our problem is to

convert this vertex representation of the AR, called its

V-representation, into a representation of it as an inter-

section of inequality constraints within the temperature

space, called its H-representation. This H-representation

takes the form of a linear system of inequalities

Ax ≤ b (14)

where A is a matrix of real coefficients, x are the state

variables, and b are real constants.

The second step is to introduce a variable for each in-

equality constraint whose value is the displacement of the

projected target point from the inequality constraint. Let

each variable be called aj for the jth row of (above) such

that

Ax+ a = b (15)

This is the same idea as the variables of the simplex search

method from which one can derive the active constraint

set, so the same name—“slack variables”—will be used

here. These variables become 0 when the corresponding

inequality constraint is “active”. That is, when a state

x is on the (n − 1)-dimensional plane denoting the jth

inequality constraint, then aj = 0.

The third step is to draw a line through the desired

point in the AR in one of the nC2 directions corresponding

to a heat exchanger trajectory, and find the two (n − 2)-

faces of the AR which it intersects with. This can be done

by traversing along the line in small steps until one of the

aj slack variables becomes 0. The corresponding inequality

constraint is the intersecting face. Then, solve for the point

of intersection on the face and run the corresponding heat

exchanger trajectory from that point to see if it can reach

the target point. If it can, proceed to the next step. If it
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cannot for either of the two faces which the line intersects

with, repeat with another line of another one of the nC2

directions until it does. Figure 16 below shows this process

for n = 4.

Figure 16: A visualization of the step in the synthesis method where

the projected target in the AR is projected onto an AR facet. The check

mark indicates a trajectory was able to succeed in reaching the projected

target point from its projection on the lower dimensional face, whereas

a cross indicates a failure.

The fourth step begins by realizing that since the AR

is convex, each of it’s facets is convex since they lie com-

pletely on the boundary of the AR (Ziegler, 2012). Then,

for the face in which a heat exchanger trajectory can be-

gin at (call this point q1) and reach the projected target

point, find the vertices of the AR which lie on that face

(i.e. the ones which satisfy the plane equation of the face)

and find the convex hull of those points in Rn−2. Repeat

step 3, except this time for q1 within the face instead of

the projected target point within the AR. This will form

q2, as seen in Figure 17 below.

Steps 3 and 4 will occur k times until qk lies on a 0-face

(i.e. it is an AR vertex). Figure 18 below builds on the

previous figure.

Now we note that, by Theorem (edges), a set edges of

the AR connects qk to the feed point. We want to begin

Figure 17: A visualization of the above step in the synthesis method

where the projected target on the facet is projected onto the next lowest

dimensional AR face, which happens to be an AR edge here. The check

mark indicates a success; a cross, a failure. For simplicity, only one tested

trajectory direction is pictured here.

to find this set in the fifth step, and it is here where the

simplex search becomes useful.

In the fifth step, define an objective function φ(x) such

that φ and the H-representation of the AR form a linear

optimization problem whose solution is qk. Such a φ(x)

can be formed, for example, by using a particle swarm

optimization to find the equation of a ((n−2))-dimensional

plane which intersects the AR only at qk, and creating a

family of planes parallel to this which denote level sets of

φ. Since the AR is convex, such a plane which intersects

only qk will be the furthest such level set one can reach

while staying in the AR, and hence will be the solution to

the optimization problem. Note that for all φ, finding the
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Figure 18: A visualization of the above step in the synthesis method

where the projected target on the edge is projected onto an AR vertex.

The check mark indicates a success; a cross, a failure.

H-representation and creating the optimization problem

can be done in a (n− 1)-dimensional projection of the AR

without loss of information, since the AR is convex and

(n − 1)-dimensional. Figure 19 below shows what such a

φ may look like for the n = 3 case.

For the sixth step, run simplex search to solve this lin-

ear optimization problem starting at the feed point, mak-

ing sure to log which trajectories were used during the

run, to find the ordered set of trajectories which connects

the feed to qk. Since we found a set of trajectories which

brings the feed state to qk in steps five to six, and from

qk to the target point projection in steps one to four, a

series of trajectories exists which brings the feed to the

target point projection. The process-stream to process-

stream part of the heat exchanger network is thus synthe-

Figure 19: The level sets (blue) of φ on the AR, with the feed and qk.

sized. Since simplex search is a “continuously improving”

optimization method, this part of the AR-based synthe-

sis method has the benefit of always making non-negative

progress towards synthesizing the heat exchanger network.

Note that if the AR is composed of maximal heat ex-

changer trajectories, then physically realizable heat ex-

changers will probably not be able to reach qk since reach-

ing qk would require near-infinite area heat exchangers.

This problem will be addressed in a later subsection. In

the next subsection, we will discuss how to bring the target

point projection within the AR to the target point outside,

which will complete the HEN synthesis.

7.3. Navigating off the AR

To navigate from the projected target point in the AR

to the target point is a fairly straightforward task. For

a dimension which qk and the target point have an un-

equal coordinate, use a utility whose temperature makes

the target point intermediate between the utility temper-

ature and the projected target point. In other words, if a

stream needs to be heated, use a utility which is a higher

temperature than the stream needs to be heated to. If a

stream needs to be cooled, use a utility which is a lower

temperature than the stream needs to be cooled to.
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Finally, solve for the heat exchanger area required to

bring the stream in question to the corresponding coordi-

nate of the target point. This can be done using an itera-

tive process on counter-currentHX (e.g. linear search)

or by using the equivalent log-mean temperature difference

equation below.

A =
Q

U∆TLM
(16)

∆TLM ≡
∆T2 −∆T1

ln
(

∆T2

∆T1

) (17)

∆T2 ≡ Tbout − Taout , ∆T1 ≡ Tbin − Tain (18)

where a and b are streams, out and in are the outlet and

inlet states from/to the heat exchanger, respectively, and

the rest of the symbols have the meaning already men-

tioned.

Repeating this process for every unequal coordinate

in qk will complete the process-utility stream part of the

HEN. Often, it is only required for one coordinate since

the AR is (n− 1)-dimensional. Figure 20 below is a visu-

alization of this process.

Figure 20: A visualization for the process of choosing appropriate util-

ities to navigate off the AR and onto the target point.

The HEN synthesis will then be complete, as a set of

heat exchangers will have been found whose trajectories

bring the feed point to the target point.

7.4. Synthesis with Additional Constraints

As discussed before, points on the boundary of the

maximal-trajectory AR are impossible to reach with real-

istically sized heat exchangers. There is, however, a simple

solution afforded by the AR method: simply generate the

AR with those constraints in mind. For example, if there

is a limit to heat exchanger size of 40 m2, then generate

the AR not with maximal heat exchanger trajectories, but

with trajectories of maximum size 40 m2. The same syn-

thesis method can then be used on this AR. Figure 21

below illustrates this concept of a “sub-AR”.

Figure 21: A visualization of the concept of a sub-AR (blue) within an

AR (red) for a particular feed (centre of green ring).

It is assured that heat exchanger trajectories which

connect vertices in this sub-AR will not exceed the max-

imum size constraint nor will they be physically impossi-

ble since it must lie within the maximal-trajectory AR. It

must lie in the maximal-trajectory AR since one cannot

exchange more heat with less heat exchange area, all else

being equal. However, a check will have to be done on

trajectories between any other points to ensure that they

correspond to a feasible heat exchanger. For example, con-

necting two points which are close to the T1 = T2 line may

require a larger heat exchanger than the constraint allows.

It is important to note that all the properties of the

AR described in Sections 4 and 5 apply to the sub-AR as
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well, since the AR properties only assumed that the heat

exchanger trajectories are limited in some way. For the AR

with maximal trajectories, they are limited by the second

law of thermodynamics. For the sub-ARs, they are limited

by the second law of thermodynamics, and something else

(e.g. heat exchanger area).

Sub-ARs are also useful for allowing some steps to be

skipped in the synthesis process. This is the case if the

projected target point lies strictly within the AR. Then, a

sub-AR can be found which has the projected target point

on one of its faces, which allows the synthesis method to

skip some steps where trajectories must be found which

connect the target point projection to an AR vertex (i.e.

we can skip the part of the method described by Figure

16).

This concludes the discussion about the AR-based heat

exchanger network synthesis method. The upcoming sec-

tion presents an example HENS problem and its solution

using the techniques discussed in this article.

7.5. Synthesis example with four process streams

In this section, a complete worked example of using

the AR method to synthesize a heat exchanger network

for four process streams will be presented, starting from

the HENS problem statement.

Consider the HENS problem where a process involving

four streams of material labelled S1, S2, S3, and S4 have

temperatures 95, 10, 50, and 10 ◦C and flow rates 95,

10, 50, and 50 kg s−1, respectively. Their heat capacities

are each a constant 4.186 kJ kg−1 ◦C−1. The temperature

target is for S1, S2, and S3 to have temperatures 60, 25,

and 60 ◦C, respectively, and S4 can be at any temperature.

The tolerance for the final temperature of the streams is

±2◦C. Available to us are heat exchangers with a constant

heat transfer coefficient of 10 kJ s−1 m−2 and a maximum

heat exchange area of 40 m2. This concludes the HENS

problem statement. In reality, such a problem may come

about, for example, if S4 is a process fluid which is safer to

handle at elevated temperatures than the others, or if S4

is a utility fluid which is being reused from an upstream

part of the process.

To start solving the HENS problem, we first use algo-

rithm HENARG to generate the set of vertices compos-

ing the AR of the problem, noting that the AR will be a

sub-AR since there is a constraint on the maximum heat

exchanger size. Since only the vertices are needed to de-

fine the AR, we use two heat exchanger trajectory mesh-

points to get the beginning and end of each trajectory.

In this case, the inputs into HENARG are feedpoint =

(95, 10, 50, 50), flowrates = (95, 10, 50, 50), heatcaps =

(4.186, 4.186, 4.186, 4.186), U = 10, maxarea = 40, and

trajmesh = 2. Since the temperature of S4 is irrelevant,

the AR can be represented by its projection onto the tem-

perature space of S1, S2, and S3 without loss of pertinent

information. The output of the HENARG onto this space,

along with the feed and target points, is shown below in

Figure 22.

Figure 22: The output of HENARG with the feed point (centre of green

ring) and target point (centre of magenta ring).

As can be seen, the target point lies within the AR, so

no utilities will be necessary. The next part of the synthesis

process is to find a path of heat exchanger trajectories

which connects the feed to the target point. The first step

of this is to connect a point on one of the faces of the
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AR to the target point using a trajectory. Two methods

have been presented to do this. The first is to use a heat

exchanger trajectory to go from a face of the AR to the

target point. The second method is to find a “sub-sub-

AR” which lies within this (sub)AR and has the target

point intersecting one of its faces. The second method

will be used here. Using binary search on the parameter

maxarea in HENARG with 0 < maxarea < 40, the sub-

sub-AR which has the target point intersecting one of its

faces has edges composed of heat exchanger areas of 22

m2, as seen in Figure 23.

Figure 23: The sub-sub-AR inside the previously generated sub-AR.

Notice the target point is visible on the surface of the smaller AR.

We will clean up the HENARG output of the sub-sub-

AR for the sake of clarity in this example by picking ran-

dom points and eliminating others which are a very small

distance away (so we know they are not distinct vertices).

This gives the result in Figure 24.

Putting this sub-sub-AR into its H-representation al-

lows us to see that the target lies within tolerance to the

plane corresponding to the inequality constraint 48/7x +

y ≤ 2950/7, a 2-face. We now seek to find trajectories

which connect the target point to lower dimensional faces

until we reach a 0-face (an AR vertex).

We will start with finding a heat exchanger trajectory

which connects a point on a 1-face to the target point on

Figure 24: The sub-sub-AR vertices, after filtering. Edge trajectories

have also been added to clarify the shape of the AR.

the 2-face. Deducing from the directions of the edges of

this face, we can see the current face corresponds to the

family of trajectories from pairing S1 and S2 in a heat

exchanger, or S3 and S4. Trying the direction correspond-

ing to S3 and S4, we see that a trajectory starting from

an edge on this face must start at either (60,25,76,52) or

(60,25,56,67.7). A heat exchanger trajectory using S3 and

S4 from (60,25,76,52) reaches the target point with a heat

exchanger of size 42 m2. However, since this is beyond

the maximum heat exchanger size, we back off to size 40

m2 which leaves S3 at 59 ◦C, which is within tolerance.

Therefore, the next point is (60,25,76,52).

The next step is to connect the point on the 1-face to

the point on the 0-face of the AR. Since we know a heat

exchanger network between S3 and S4 was used previously,

and the face is a 2-face, we know that in order to move

in a different direction in the face we need the only other

heat exchanger pair possible in this face, which is the one

between S1 and S2. Trying the direction corresponding

to S1 and S2, we see that a trajectory starting from a

vertex on this face must start at either (60,10,76,52) or

(54,58.7,76.3,52). Only a heat exchanger trajectory using

S1 and S2 from (60,10,76,52) reaches the target point (ac-

tually, it reaches (58.5,25,76,52), within tolerance) with a

heat exchanger of size 1.5 m2. Therefore, the next point

is (60,10,76,52). The point (60,10,76,52) is a 0-face of the
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AR, so this part of the synthesis is complete; we have con-

nected the target point in the AR to a vertex of the AR

using heat exchanger trajectories.

The next step is to find an objective function in the

temperature space to create an optimization problem whose

constraints are the AR and whose solution is this vertex.

To do this, we will use a particle swarm optimization to

find a vector of fixed length whose tail is at this vertex,

and whose tip points as far as possible from all vertices

of the AR. This vertex denotes the normal of a 3-plane (a

flat sheet in R3 which touches the AR only at this vertex).

We will set this plane to denote a level set where only this

vertex is the solution of an optimization problem, and de-

fine a family of parallel planes making up the other level

sets of the objective function. The results of the particle

swarm optimization to create this plane are seen below in

Figure 25.

Figure 25: The paths of particles (magenta) throughout the particle

swarm optimization. The particles roam the surface of a sphere of radius

fifty whose centre is the desired AR vertex.

The solution of the particle swarm optimization is (47.6,-

31.0,101.72) so the normal vector to the plane is (47.6,-

31.0,101.72)-(60,10,76)= (-12.4,-41,25.72). The equation

of the solution plane who has this normal vector and touches

this vertex is therefore

−12.4T1 − 41T2 + 25.72T3 = 800.72 (19)

To find out whether this function is maximized or mini-

mized at the vertex, we substitute in another point, say the

feed, and look at the value on the right hand side. Since

we know this vertex is the solution, if the right hand side

is larger, then it is a minimization problem; if smaller, it

is a maximization problem. Substituting in the feed point

gives -302. We see −302 < 800.7. So, the objective func-

tion is

max (φ = −12.4T1 − 41T2 + 25.72T3) (20)

The next step is to solve the linear optimization prob-

lem using simplex search. Since the AR has thirteen facets,

there are thirteen slack variables and three state variables.

All iterations of the simplex search can be seen below in

Figure 26.

Figure 26: The results of the simplex search. On the first iteration,

there will be three evaluations of the objective function: S3-S4=-829.2,

S1-S3=540.3, S2-S3=-2127.3. S1-S3 will be the solution of this iteration.

On the second iteration, there will be two evaluations of the objective

function: S1-S4=800.7, S2-S4=-2078.1. S1-S4 will be the solution of

this iteration. On the third iteration, there will be two evaluations of

the objective function: S1-S2=-1113.9, S3-S4=276.7. Since there is no

improving direction, the algorithm will stop.

Since a series of heat exchanger trajectories was found

which brings the feed state to the (sub-sub-)AR vertex,

and the vertex to the target point, this concludes the HEN

synthesis.

Interpreting these trajectories appropriately gives the

following heat exchanger network. First, S1 and S3 are

put through a counter-current heat exchanger of area 22

m2. Second, S1 and S4 are put through a counter-current

heat exchanger of area 22 m2. Third, S1 and S2 are put
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through a counter-current heat exchanger of area 1.5 m2.

Lastly, S3 and S4 are put through a counter-current heat

exchanger of area 40 m2. The process flow diagram of this

heat exchanger network is seen below in Figure 27.

Figure 27: The final result of the AR synthesis method—a feasible

solution to the HENS problem.

Note how the solution found by the synthesis method

matches with intuition: because stream 1 has such a high

temperature and heat capacity rate, all cooler streams are

first brought in to lower its temperature, starting with the

second warmest stream and ending with the coldest stream

with the lowest flow rate. Then, the smaller amounts of

heat transfer required among them are done.

7.5.1. Handling Uncertainties

One can also design heat exchanger networks taking

uncertain system parameters into account using the AR

method.

For example, suppose there is some uncertainty with

the feed flow rates. Then, generating an AR for each con-

fidence level of the flow rate can tell us whether any of

them still contain the target point, and therefore whether

the problem is still feasible or not for some confidence level.

As another example, if there is some uncertainty in the

target point temperature, then it can be checked whether

an AR contains the range of the possible values that the

target point can take.

Thus, synthesis with uncertain parameters is done in

a similar fashion as for known parameter values, but for a

family of ARs representing the uncertainty instead of just

a single AR. The check can be done especially quickly if

the ARs have been converted into their H-representation,

since containment can be checked by going through the

finite list of inequality constraints. Again, we have the

benefit that all this information can be obtained from the

AR prior to carrying out any part of the synthesis step.

7.6. Improvements to the Method

There are opportunities for future theoretical and ap-

plied work which can improve the AR synthesis method.

For example, finding a sufficient condition for a trajectory

to be an edge of the AR would greatly reduce the compu-

tation time required to generate the AR from edges. Using

Lemma 3 generates the AR edges, but also other trajec-

tories, and trajectories starting at non-vertex points have

no guarantee of landing on a vertex point or even staying

on the boundary by this Lemma.

Opportunities for future applied work will be to ex-

tend the AR synthesis results to cover a larger class of

HENS problems (for example, non-constant thermophysi-

cal stream properties), or incorporate them into a method

to find cost-optimal HENs.

8. Conclusion

We have introduced a method for synthesizing feasi-

ble heat exchanger networks under uncertainty using at-

tainable regions. The discussion has shown how an AR

theory of heat exchanger networks can be used to synthe-

size feasible HENs within the class of designs which uses a

combination of process-process and process-utility heat ex-

changers, under constant thermophysical properties, and

no stream-splits. A region in the stream temperature space

is created in which all HEN designs in this class must lie—

the HEN-AR. From the properties of the HEN-AR proven

in this article, a path can be constructed through the AR

which connects the stream feed state to the target state.

Due to a correspondence between the path and particular

sizes and connections of heat exchangers, a feasible HEN is
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derived. Particular strengths of this AR method lie in its

ability to determine whether a HENS problem is feasible

prior to carrying out any synthesis, its guarantee that any

solution that it does give is physically realizable, and its

ability to give solutions taking into account uncertainties

in stream parameters.
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