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Abstract: This paper studies heat transfer in a two-dimensional magnetohydrodynamic viscous
incompressible flow in convergent/divergent channels. The temperature profile was obtained
numerically for both cases of convergent/divergent channels. It was found that the temperature
profile increases with an increase in Reynold number, Prandtl number, Nusselt number and angle of
the wall but decreases with an increase in Hartmann number. A relatively new numerical method
called the spectral homotopy analysis method (SHAM) was used to solve the governing non-linear
differential equations. The SHAM 3rd order results matched with the DTM and shooting, showing
that SHAM is feasible as a technique to be used.

Keywords: spectral homotopy; semi-analytical technique; heat transfer; Jeffery-Hamel; fluid;
boundary value problems; partial differential equations; ordinary differential equations

1. Introduction

In recent years, the study of fluid flow and associated heat transfer phenomena has received
increased attention from researchers and scientists due to many applications in industry and related
areas. Viscous incompressible flow through a converging/diverging channel is commonly known as
Jeffery-Hamel flow [1,2].This is an essential type of flow in the field of fluid mechanics. Applications of
these types of flows include flow through rivers, different engineering processes and in the field of
biology [2]. After the pioneering work of Jeffery and Hamel, many researchers have made contributions
regarding the applications of this type of flow [3–8]. Magnetohydrodynamics (MHD) is the study
of the interaction between a magnetic field and a moving conducting fluid. Applications of MHD
flow include MHD generators, liquid metals, pumps, flow meters and several other engineering
works [9–11]. Some of these applications involve Jeffery Hamel flows and thus motivate our study.

In our study, heat transfer effects in MHD Jeffery-Hamel flow were analyzed by using spectral
homotopy analysis method. A good description of the method can be found in Motsa et al. [12].
Most converging/diverging channel problems do not have a precise analytical solution. It is important
to develop and test new approximate techniques to solve the governing non-linear differential equation
for physical problems. There are several numerical techniques which have been recently used by
researchers to solve non-linear differential equations. For example, the differential transform method
(DTM) [13,14], Adomian decomposition method (ADM) [15–17], homotopy perturbation method
(HPM) [18,19], variational iterations method (VIM) [20–23], homotopy analysis method (HAM) [24–27],
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successive linearization method [28,29], predictor homotopy analysis method (PHAM) [30] and normal
mode method [31].

Motsa et al. [12] used the spectral homotopy analysis method (SHAM) to solve the MHD Jeffery
Hamel problem, but their work did not take into consideration heat transfer. In this paper, we study
heat transfer effects associated with MHD Jeffery-Hamel flow. A local similarity solution is used
to convert the governing partial differential equations into ordinary differential equations before
being solved using SHAM. The effects of various parameters on the temperature profile are discussed.
Thus, the contributions of this paper endeavours to make are: (1) to reveal the behaviour of heat
transfer and fluid flow towards both convergent and divergent channels; (2) to simulate the behaviour
of the pertinent parameters such as Reynolds number, Eckert number, Prandtl number, Hartmann
number, convergent/divergent angles that affect the fluid flow and temperature distributions, and to
critically examine the graphical analysis of the effective parameters on the temperature distribution;
and (3) to use SHAM incorporated with similarity transformations to synthesise chemical systems,
understanding the behavior of the heat transfer and transport process. An accurate solution from the
proposed method could be a stepping stone to establishing mathematical formulations to describe
various microfluidic devices.

2. Mathematical Model

Let us consider incompressible steady two-dimensional viscous fluid flow between non-parallel
plates making angle 2α, as shown in Figure 1. The plates are deemed to be divergent if α > 0 and
convergent if α < 0. Suppose that the flow is along the radial direction and is a function of r and θ only,
that is v = (u (r θ,),0). Heat transfer effects on the flow are considered with T as temperature assumed
to be a function of r and θ. The continuity equation and the Navier-Stokes equations, when written in
polar coordinates, are of the form [12]

ρ

r
∂
∂r

(ru(r,θ)) = 0, (1)

u
∂u
∂r

= −
1
ρ
∂P
∂r

+ v
[
∂2u
∂r2 +

1
r
∂u
∂r

+
1
r2
∂2u
∂θ2 −

u
r2

]
−
σB0

2

ρr2 u, (2)

0 = −
1
ρr
∂P
∂θ

+ v
2
r2
∂u
∂θ

, (3)

and the energy equation is

ρcpu(r,θ)
∂T
∂r

= k
[
∂2T
∂r2 +

1
r
∂T
∂r

+
1
r2
∂2T
∂θ2

]
+ µ

4(∂u
∂r

)2

+
1
r2

(
∂u
∂θ

)2, (4)

subject to the boundary conditions [27]

u = Umax,
∂u
∂θ

= 0,
∂T
∂θ

= 0, at θ = 0,u = 0, T = Tw, at θ = α. (5)

where ρ is the density, v be the coefficient of kinematic viscosity, B0 be the electromagnetic induction, σ
be the conductivity of the fluid, k is the thermal conductivity, P be the pressure and cp is the specific heat
at constant pressure, Umax is the maximum velocity at the center of the channel (r = 0). Equations (1)–(4)
constitute the governing partial differential equations for the problem under consideration and (5) are
the associated boundary condition. Physically, when uθ = 0, the expression of the velocity in radial
flow is given as [27]

u(r,θ) =
f (θ)

r
, (6)
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where f (θ) is an arbitrary function of θ. Mathematically, Equation (6) can be obtained from Equation (1)
by integrating both sides with respect to r.Processes 2019, 7, x FOR PEER REVIEW 8 of 13 
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Motsa, et al. [12]).

After using Equation (6), Equations (1)–(5) reduce to the form

v f ′′′ + 2 f f ′ + 4v f ′ −
σB0

2

ρ
f ′ = 0, (7)

f
∂T
∂r

=
kr
ρcp

[
∂2T
∂r2 +

1
r
∂T
∂r

+
1
r2
∂2T
∂θ2

]
+

µ

ρcpr3

[
4 f 2 + f

′2]
, (8)

with boundary conditions

f (0) = rUmax, f ′ (0) = 0, f (α) = 0,
∂T
∂θ

(0) = 0,T(α) = Tw. (9)

Now Equations (7)–(9) are converted into non-dimensional form after using the following
dimensionless variables [7],

F(y) =
f (θ)
fmax

, G(y) =
T

Tw
, y =

(
θ
α

)
. (10)

where Tw is the wall temperature, F(y) is the dimensionless velocity parameter which can be obtained by
dividing f (θ) to its maximum value fmax = r Umax. G(y) is the dimensionless temperature. Substituting
Equation (10) into Equations (7)–(9) and after simplification, we have finally

F′′′ + 2αReFF′ + (4−H)α2F′ = 0, (11)

G′′ (y) + EcPr
[
4α2F2(y) + F′2(y)

]
= 0, (12)

subject to boundary conditions
F(0) = 1, F′(0) = 0, F(1) = 0, (13)

G′(0) = 0, G(1) = 1. (14)

where Re = αUmax
v and H2 = σB0

2

ρv be the Reynolds number and square of the Hartmann number
respectively. Also, the Eckert number Ec and Prandtl numbers Pr are defined as [32]
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Ec =
U2

max

cpTw
, Pr =

µcp

k
.

3. Solution by Using Spectral Homotopy Analysis Method

In the next section, the nonlinear boundary value problem describes in Equations (11)–(14) will be
solved by using the spectral homotopy analysis method [12]. In order to apply the spectral homotopy
analysis method to the problem, we suppose the initial guess satisfying the boundary conditions
Equations (13) and (14) for the above problem is

F0(y) = 1− y2, G0(y) = 1. (15)

The problem domain is first transformed from [0, 1] to [−1, 1] using the following mapping from y
to x as

y =
x + 1

2
; x ∈ [−1, 1]. (16)

To convert non-homogeneous boundary conditions into homogeneous form, define the
following transformations

U(x) = F(y) − (1− y2), V(x) = G(y) − 1. (17)

After substituting Equation (17), in Equations (11)–(14) the boundary value problem reduces to
the form

8U′′′ + a1(y)U′ + a2(y)U + 4αReUU′ = ϕ(y), (18)

V′′ (x) + EcPr
[
U
′2
− 2yU′ + α2U2 + b1(y)U + b2(y)

]
= 0, (19)

subject to boundary conditions

U(−1) = U(1) = U′ (−1) = 0, (20)

V′ (−1) = 0, V(1) = 0. (21)

where primes denote the derivatives with respect to x and

a1(y) = 4αRe(1− y2) + 2α2(4−H), a2(y) = −4αRey,
ϕ(y) = 4αRey(1− y2) + 2α2(4−H)y, b1(y) = 2α2(1− y2),b2(y) = α2(1− y2)

2
+ y2.

(22)

For initial approximation, solution of the non-homogeneous linear part of the governing
Equation (18) is obtained by using the Chebyshev pseudospectral method, that is

8U0
′′′ + a1(y)U0

′ + a2(y)U0 + U0 = ϕ(y), (23)

subject to boundary conditions

U0(−1) = U0(1) = U0
′ (−1) = 0, (24)

Here U0(x) is approximated as a truncated series of Chebyshev polynomial as

U0(x) ≈ U0
N(x j) =

N∑
k=0

ÛkTk(x j), j = 0, 1, . . .N, (25)

where Tk is the kth Chebyshev polynomial, Uk are coefficients and x0, x1, . . . , xN are Gauss-Lobatto
collocation points [5] defined as
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x j = cos
(
π j
N

)
, j = 0, 1, . . . , N. (26)

and s order derivative of U0(x) at this collocation points are

dsU0

dxs =
N∑

k=0

Dkj
sU0(x j), (27)

Here D is the Chebyshev spectral differentiation matrix [5]. Substituting Equations (25)–(27) into
Equations (23) and (24), given

AU0 = ϕ, (28)

subject to boundary conditions
U0(x0) = 0, U0(xN) = 0, (29)

and
N∑

k=0

DN jU0(xk) = 0, (30)

Here

A = 8D3 + a1D + a2,U0 = [U0(x0), U0(x1), . . . , U0(xN)]
T,ϕ = [ϕ(y0),ϕ(y1), . . . ,ϕ(yN)]

T,
a1 = diag([a1(y0), a1(y1), . . . , a1(yN−1), a1(yN)]),a2 = diag([a2(y0), a2(y1), . . . , a2(yN−1), a2(yN)]),
b1 = diag([a1(y0), a1(y1), . . . , a1(yN−1), a1(yN)]),b2 = diag([a1(y0), a1(y1), . . . , a1(yN−1), a1(yN)]),

(31)

where T represents the transpose and diag is a diagonal matrix of order (N + 1) × (N + 1). Now,
we utilise the boundary conditions (29), by deleting the first and last rows and columns of matrix
A and deleting the first and last rows of U0 and ϕ. On the resulting last row of modified matrix A,
the boundary condition (30) is imposed and replacing the resulting last row of the modified matrix ϕ
by zero. Hence [U0(x1), U0(x2), . . . , U0(xN−1)], it can be calculated by

U0 = A−1ϕ, (32)

which is considered as an initial approximation for the solution of Equation (18), using the spectral
homotopy analysis method. Now, define a linear operator as

L[U(x; q)] = 8
∂3U
∂x3 + a1

∂U
∂x

+ a2U, (33)

where q is the embedding parameter, which is defined by the homotopy analysis method and U(x; q) is
an unknown function. So, the zeroth-order deformation equation is given by Makukula et al. [33]

(1− q)L[U(x; q) −U0(x)] = qh
{
N[U(x; q)] −ϕ

}
, (34)

where h is convergence controlling parameter and N[U(x; q)] is a nonlinear operator defined as

N[U(x; q)] = 8
∂3U
∂x3 + a1

∂U
∂x

+ a2U + 4αReU
∂U
∂x

. (35)

The mth order deformation equations are

L[Um(x) − χmUm−1(x)] = hRm(x), (36)

subject to the boundary conditions
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Um(−1) = Um(1) = U′m(−1) = 0, (37)

where

Rm(x) = 8U′′′m−1 + a1(y)U′m−1 + a2(y)Um−1 + 4αRe
m−1∑ m−1∑

n=0

UnU′m−1−n −ϕ(y)(1− χm). (38)

By applying the Chebyshev pseudospectral transformation [5] on Equations (36)–(38), we have

AUm = (χm + h)AUm−1 − h(1− χm)ϕ+ hPm−1, (39)

and
BVm = Ψ, (40)

subject to the boundary conditions

Um(x0) = 0, Um(xN) = 0, (41)

Vm(x0) = 0, (42)

and
N∑

k=0

DNkUm(xk) = 0, (43)

N∑
k=0

DNkVm(xN) = 0, (44)

where
Um = [Um(x0), Um(x1), . . . , Um(xN)]

T, (45)

Pm−1 = 4αRe
m−1∑
n=0

UnDUm−1−n. (46)

Vm = [Vm(x0), Vm(x1), . . . , Vm(xN)]
T, (47)

B = D2, Ψ = −EcPr
[
(DUm)

2
− 2y(DUm) + α2U2

m + b1(y)Um + b2(y)
]
. (48)

Now for boundary conditions (41), the first and last rows of Pm−1 and ϕ, and the first and last
rows and first and last columns of A in (39) are deleted. Also, to incorporate the boundary condition
(42), the first row of Ψ and the first row and column B are deleted. Boundary condition (44) is imposed
on the last row of the modified matrix B, and the last row of the modified matrix Ψ is replaced by zero.
Therefore, the recursive formulas for m ≥ 1, is given by,

Um = (χm + h)A−1AUm−1 + hA−1[Pm−1 − (1− χm)ϕ]. (49)

Vm = B−1Ψ. (50)

Hence by using the initial approximation, obtained by Equation (32), we can find the higher-order
approximation Um(x) and Vm(x) for m ≥ 1, using recursive formula (Equation (49)) and (Equation (50)).
Thus, once Um is obtained, we can calculate Vm from Equation (50). The techniques used in this section
are based on the techniques of spectral homotopy analysis method as described in Motsa et al. [12] and
Motsa et al. [34].
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4. Results and Discussion

This variation of temperature profile with viscous dissipation under the effects of various
parameters like; Eckert number Ec, Reynold number Re, angle α and Prandtl number Pr are analyzed.
The spectral homotopy analysis method is used to obtain the results for temperature profile G(y) with
different values of parameters as shown graphically in Figures 2–11. Figures 2–6 shows the effects of
parameters on temperature profile by considering diverging channel flow. As shown in Figure 2, which
maps the effects of Reynold number Re on temperature profile, it is evident that temperature increases
with the increase in Reynold number. There is a smooth increase in the temperature profile with varying
Prandtl number Pr and Eckert number Ec, as in Figures 3 and 4. Figure 5 shows that temperature
profile increases when the angle of wall increases. Now, the case is quite the opposite for Hartmann
number in the diverging channel, that is, with the increase in Hartmann number H, temperature profile
decreases. This is clear from Figure 6. Figures 7–11 show the effects of this parameter on temperature
profile when converging channel flow is under consideration. It is worth noting in Figure 7, with the
increase in Reynold number Re, temperature profile decreases but does not show similar behaviour to
the case of diverging channel flow. However, Figure 8, shows the behaviour of Prandtl number Pr
on temperature profile is very similar to the case of diverging channel flow. Temperature profile also
increases in the case of increasing Eckert number Ec shown in Figure 9, as in the case of the diverging
channel flow profile. In the case of converging channel flow temperature profile is quite opposite to
that of the converging channel with the increasing magnitude of wall angle α depicted in Figure 10.
Also, Figure 11 shows the effects of the Hartmann number H on the temperature profile. With the
increment of the Hartmann number, there is a slight decrease in the temperature profile. Tables 1 and 2
show the effects of magnetic field on skin friction and Nusselt number taken for different values of
Hartmann number H. Numerical values obtained by SHAM are also calculated using an approximate
analytical technique known as the differential transform method (DTM) and a traditional numerical
technique, known as the shooting method.
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The comparison of SHAM results up to third-order SHAM with both of the techniques showed
excellent agreement up to six decimal places.
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Table 1. Comparison of the differential transform method (DTM) and shooting results with the spectral
homotopy analysis method (SHAM) approximate results for F′′ (0) when α = 5, Re = 50, h = −0.95 for
increasing values of H.

H 1st Order 2nd Order 3rd Order DTM Shooting

0 −3.539430 −3.539411 −3.539415 −3.539415 −3.539415

100 −3.321491 −3.321498 −3.321499 −3.321499 −3.321499

200 −3.118488 −3.118486 −3.118485 −3.118485 −3.118485

300 −2.929291 −2.929295 −2.929295 −2.929295 −2.929295

400 −2.752923 −2.752927 −2.752927 −2.752927 −2.752927

500 −2.588440 −2.588448 −2.588448 −2.588448 −2.588448

600 −2.434932 −2.434999 −2.434997 −2.434997 −2.434997

700 −2.291726 −2.291771 −2.291775 −2.291775 −2.291775

800 −2.158010 −2.158041 −2.158042 −2.158042 −2.158042

Table 2. Comparison of the DTM and shooting results with the SHAM approximate results for. G′ (1)
when α = 5, Re = 50, Pr = 5, Ec = 0.5, h = −0.95 for increasing values of H.

H 1st Order 2nd Order 3rd Order DTM Shooting

0 −2.885879 −2.885886 −2.885885 −2.885885 −2.885885

100 −2.918780 −2.918780 −2.918782 −2.918782 −2.918782

200 −2.961804 −2.961804 −2.961804 −2.961804 −2.961804

300 −3.013646 −3.013659 −3.013659 −3.013659 −3.013659

400 −3.073033 −3.073031 −3.073035 −3.073035 −3.073035

500 −3.138154 −3.138962 −3.138960 −3.138960 −3.138960

600 −3.210500 −3.210512 −3.210511 −3.210511 −3.210511

800 −3.367243 −3.367331 −3.367336 −3.367336 −3.367336

1000 −3.538100 −3.538122 −3.538120 −3.538120 −3.538120

5. Conclusions

In this study, heat transfer effects were analyzed in MHD converging/diverging channel flows.
These effects are shown graphically in Figures 2–11 and numerically in Tables 1 and 2. A newly
developed spectral homotopy analysis method (SHAM) by Motsa et al. [12] was used to calculate the
results. The numerical values for skin friction and Nusselt number for varying Hartmann number are
depicted in Tables 1 and 2. They were also calculated using the DTM and the shooting method. SHAM
third-order results matched with the DTM and the shooting method, showing that SHAM is feasible as
a technique to be used.

6. Future Work

The present study has ignored the effect of nanofluid and porous medium, which are also relevant
to various chemical dynamical systems. Future studies will aim to examine hybrid nanofluid over a
thermoelastic porous medium [31,35,36].
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