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Abstract: A non-singular terminal sliding mode control based on finite time observer is designed to
achieve speed direct control for the permanent magnet synchronous motor (PMSM) drive system.
Speed and current are regulated in one loop under the non-cascade structure, taking place of the
cascade structure control method in the vector control of PMSM. Based on the second-order speed
function of the PMSM, the disturbance and parameters uncertainties are estimated by the designed
finite time observer (FTO), and compensate to the drive system. The estimated value of the finite time
observer will converge to the actual disturbance value in a finite time. A second-order non-singular
terminal sliding mode controller is proposed to realize the speed and current single-loop, which
can track the reference speed and reference current in a finite time. Rigorous stability analysis
is established. Comparative results verified that the proposed method has faster speed tracking
performance and disturbance rejection property.

Keywords: non-singular terminal sliding mode control (NTSMC); finite-time observer (FTO);
mismatched/matched disturbance/uncertainties; permanent magnet synchronous motor (PMSM)

1. Introduction

By reason of the high-power density, torque-to-inertia ratio and high efficiency, the permanent
magnet synchronous motor (PMSM) are widely used in industrial areas, such as, aerospace, servo
control, numerical control machine and robot [1–5]. In these applications, the dynamic response
performance and disturbance rejection property of PMSM are very important.

In recent years, with the progress of technology, the control periods between the speed loop and
current loop of PMSM gradually decreased, or even vanished [6]; making it possible to realize the
speed-current single-loop of PMSM drive system under the non-cascade structure. Generally speaking,
in the traditional cascade control method for PMSM, the control period of the speed loop is 5–10
times that of the current loop, reducing the real-time control performance of the speed [7–9]. When
the same control algorithm is adopted, different from the cascade control structure, the number of
adjustable parameters is reduced and the speed can be directly controlled. These are the virtues of the
non-cascade control structure [10,11]. Despite its advantages, there is little research on non-cascade
control structures for the PMSM system in recent years. A non-cascade structure control based on model
predictive control is proposed in [12], in which the dynamic performance of the system is improved
and the computational complexity is reduced, compared with the traditional cascade predictive control
method. In [13], under the non-cascade structure, the speed and current are adjusted in one proportion
integration differentiation (PID) controller. Rigorous theoretical derivation and experimental analysis
verified that the proposed method has better dynamic performance and disturbance rejection ability.
Considering the influence of various disturbances on the PMSM system, a new non-cascade structure
controller is established in [14], which can directly control the speed of PMSM. PMSM speed and current
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are adjusted in one loop based on terminal sliding mode and nonlinear disturbance observer under
non-cascade structure control in [15]. However, when without the nonlinear disturbance observer, the
proposed method has a poor ability to deal with the load sudden change. A direct speed control method
based on radial basis function (RBF) is designed in [16], which avoided the control of current, simplified
the control structure and improved the control performance. A model predictive direct speed control
method based on voltage vector control is proposed in [17]. In this method, the voltage vector does
not need to be measured, the computational burden of the system is reduced, and the output current
is constrained within a certain range. A model predictive direct speed controller is proposed in [18],
which overcomes the shortcoming of cascade linear controller in high-speed control, and the results
show that the proposed method has better stability performance. Based on the state-dependent Riccati
equation (SDRE) and Convex constrained optimization, a direct speed controller was proposed in [19],
which can make the PMSM control system achieve high dynamic and accurate stability performance,
and the input voltage and stator current can be constrained.

Due to the nonlinear and strong coupling characteristics of the PMSM drive system, ideal control
results can hardly be achieved in traditional PI controller [20,21]. Many nonlinear control methods
have been applied in PMSM drive systems, such as sliding mode control, model predictive control,
auto-disturbance rejection control, finite time control, etc., [22–26]. Among these methods, it can
converge in finite time and has a better disturbance rejection performance. The terminal sliding mode
is widely used in control systems. In [27], a new terminal sliding mode controller is designed to adjust
the speed of the PMSM servo system, which can make the system reach the reference speed in a finite
time, ensuring a fast convergence performance and a better tracking accuracy of the system. In [28],
a non-singular terminal sliding mode control based on state observer is investigated to realize the
pressure control. In the proposed method, the pressure tracking error can converge to the equilibrium
point in finite time and the chattering of the sliding mode is weakened. In [29] according to euler
discrete technology, a new discrete time fast terminal sliding mode method is proposed and applied to
the control of permanent magnet synchronous linear motor (PMLSM), and the reference position of
PMLSM can be quickly tracked. In [30], a fractional-order terminal sliding mode controller based on
fractional-order disturbance observer is proposed, under which the speed can converge to the reference
speed in a finite time. In [31], a higher speed tracking accuracy can be achieved by a continuous
fast terminal sliding mode control, and the robustness of the PMSM system can be improved when
the disturbance is feedforward to the system by the extended state observer. In [32], a nonsingular
terminal sliding mode based on improved extended state observer is investigated to realize the direct
voltage control for the stand-alone doubly-fed induction generator (DFIG) system, which can achieve a
balanced stator voltage.

Load change, parameters uncertainty and unmodeled dynamics are considered to be important
factors affected the control performance. At present, in order to improve the robustness, the disturbance
will be estimated by state observer and feed forward to the system before it affects the system. In [33],
to improve the robustness in surface permanent magnet synchronous motor, the lumped disturbance
consisted of the external disturbance and mismatched parameters can be estimated by a Luneburg
observer, and compensate to the PMSM system. In [34] the parameters uncertainties and disturbances
in DC-DC converters are considered as lumped disturbance, estimated by a reduced order generalized
proportional integral observer and fed forward to the system, which improves the dynamic performance
of the system. In [35], the lumped disturbance in air-breathing hypersonic vehicles is calculated by a
disturbance observer, and the accuracy of speed and position control is improved when the disturbance
feedforward to the system. In [36], a high-gain generalized proportional integral observer is designed,
to estimate the load change and parameters uncertainties in PMSM. In [37], the disturbance is estimated
and compensated by a nonlinear disturbance observer to improve the disturbance rejection property of
the system. Then, a nonlinear controller is used to control the system, and the semi-global stability
of the designed nonlinear controller and nonlinear disturbance observer is proved. In [38], a robust
nonlinear observer is proposed for the Lipschitz nonlinear system. On the one hand, the new observer
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does not need to be added to small Lipschitz constants; on the other hand, the state estimation error
of the system can quickly approach zero in the face of large additional disturbances. Disturbance
also exists in the PMSM drive system under the non-cascade structure. In order to improve the
anti-disturbance ability, it is necessary to estimate and compensate the disturbance to the system.

2. Preliminaries

2.1. The Mathematical Model of Pmsm

The ideal model of a surface mounted PMSM in the d-q frame can be expressed as follows.
did
dt =

−Rid+npωLiq
L + 1

L ud
diq
dt =

−Riq−npωLid−npωψ f
L + 1

L uq
dω
dt = −Bω

J +
npψ f

J iq −
TL
J

(1)

where, id, iq are the d-axis and q-axis stator currents, respectively; ud, uq are the d-axis and q-axis stator
voltages, respectively; L is the inductor; R is stator resistance; np is the number of pole pairs; ω is
angular velocity; ψ f is rotor flux linkage; TL is load torque; B is viscous frictional coefficient; J is rotor
inertia.

2.2. The Mathematic Model of Speed-Current Single-Loop

Let x1 = ωre f −ω, and its derivative can be expressed as

.
x1 = x2 =

.
ωre f −

.
ω =

.
ωre f + a1ω− a2iq + a3TL. (2)

where, a1 = B
J , a2 =

npψ f
J , a3 = 1

J .
When the parameters uncertainties are considered, the following expression can be obtained.

.
x1 = x2 + d1 =

.
ωre f + a1ω− a2iq + a3TL + d1 (3)

where, d1 = ∆a1ω − ∆a2iq + ∆a3TL is considered as mismatched uncertainties. And a1, a2, a3 are
nominal parameter values, at1, at2, at3 are the actual parameter values. ∆a1 = at1 − a1, ∆a2 = at2 − a2,
∆a3 = at3 − a3.

The second order differential equation of speed error can be expressed as follows

.
x2 =

..
ωre f −

..
ω =

..
ωre f + a1

.
ω− a2

.
iq + a3

.
TL. (4)

Considering system (1), the (4) can be rewritten as

.
x2 =

..
ωre f + a1

.
ω+ a2b1iq + a2b2ωid + a2b3ω− a2b4uq + a3

.
TL. (5)

where b1 = R
L , b2 = np, b3 =

npψ f
L and b4 = 1

L .
Taking the parameters uncertainties and disturbance into consideration, system (5) can be

expressed as follows
.
x2 = −a1x2 − a2b3x1 − a2b4uq + d2. (6)

where,
d2 =

..
ωre f + a1

.
ωre f + a2b3ωre f + a2b1iq + a2b2ωid + a3

.
TL − ∆a1x2 − ∆a2∆b3x1+

∆a1
.
ωre f + ∆a2∆b3ωre f + ∆a2∆b1iq + ∆a2∆b2ωid − ∆a2∆b4uq + ∆a3

.
TL

.

b1, b2, b3, b4 are the nominal parameter values, bt1, bt2, bt3, bt4 are the actual parameter values,
∆b1 = bt1 − b1, ∆b2 = bt2 − b2, ∆b3 = bt3 − b3, ∆b4 = bt4 − b4.
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The second-order speed regulation system can be expressed as follows{ .
x1 = x2 + d1
.
x2 = −a1x2 − a2b3x1 − a2b4uq + d2

(7)

3. Control Design

Based on the method designed in this paper, the PMSM control structure block diagram is shown
in Figure 1.
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Figure 1. Permanent magnet synchronous motor (PMSM) control system based on the method 
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Figure 1. Permanent magnet synchronous motor (PMSM) control system based on the method designed
in this paper.

3.1. Finite Time Observer

The disturbance is estimated and feedforward to the system based on the finite time observation
method. The stability of the finite time control system is defined as follows.

Lemma 1. [39] the following system is considered

.
x = f (x), x ∈ U ⊆ Rn, f (0) = 0 (8)

where, f : U→ Rn is a continuous function of x in domain of definition. For the equilibrium solution of the
system, x = 0 is defined as finite time stability, which requires the system to be both stable and convergent
in finite time. Finite time convergence means there are ∀x0 ∈ U0 ⊂ Rn and a continuous function T(x):
U0\{0} → (0,+∞) , making the solution x(t, x0) of the system (3) satisfied the following conditions: when
t ∈ [0, T(x0)), x(t, x0) ∈ U0\{0} and lim

x→T(x0)
x(t, x0) = 0 are true; When t > T(x0), x(t, x0) = 0 is always true.

If U = U0 = Rn existed, the system is considered globally finite time stable.

Notation 1. For writing convenience, denote sigβ(x) = sgn(x)|x|β, where x, β ∈ R, and sgn(·) is the sign
function.

Lemma 2. [40] Consider the following system

.
x = f (x) + f̂ (x), f (0) = 0, x ∈ Rn (9)

where, f (x) is a continuous homogeneous vector field, and f (x) has negative homogeneous degree k with respect
to expansion vector (r1, r2, . . . , rn). f̂ (x) is the estimated disturbance of the system, which satisfies f̂ (0) = 0.
x ∈ Rn refers that x is belonged to the n-dimensional vector. Suppose that the asymptotically stable equilibrium
point of system

.
x = f (x) is x = 0 and satisfies the following conditions, ∀x , 0

lim
ε→0

f̂i(εr1 x1, . . . , εrn xn)

εk+ri
= 0, i = 1, 2, . . . , n (10)
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Then x = 0 is a locally finite time equilibrium point of system (9).

Lemma 3. [41–43] Consider the nonlinear system
.
xi = xi+1, i = 1, . . . , n− 1
.
xn = u
y = x1

(11)

where, x = (x1, x2, . . . , xn)
T
∈ Rn are the state variables of the system; u ∈ R and y ∈ R are the input and

output of the system, respectively.
For system (11), the estimated state values (x̂1, x̂2, . . . , x̂n) can converge to the real states (x1, x2, . . . , xn)

of system (11) in a finite time by the following global finite time observer.
.
x̂i = x̂i+1 + λisigβi(x1 − x̂1), i = 1, 2, . . . , n− 1
.
x̂n = u + λnsigβn(x1 − x̂1)

(12)

where, βi > 0, i = 1, 2, . . . , n, it’s a Hurwitz polynomial sn + β1sn−1 + · · ·+ βn−1s + βn.

βi = iβ− (i− 1), i = 1, . . . , n, β ∈ (1−
1
n

, 1] (13)

Lemma 4. [44,45] A second-order system can be expressed as follows .
x1 = x2 − λsig

1
2 (x1)

.
x2 = −νsign(x1) + F(t)

(14)

If there is a positive real number f+,
∣∣∣F(t)∣∣∣ < f+ is true, and ν, λ satisfies the following description.

ν > f+,λ >

√
2

ν− f+
(ν+ f+)(1 + µ)

(1− µ)
(15)

where, µ is a constant, 0 < µ < 1. Then the state (x1, x2) of the system (14) will be converged to the equilibrium
point 0 in a finite time, and the system (14) is globally stable in finite time.

Assumption 1. The disturbance d1,d2 in system (7) are second-order and first-order differentiable, respectively.

Let x1 = x1, x2 = x2 + d1, d =
.
d1 + d2 + a1d1, the following system can be derived from system (7)
.
x1 = x2.
x2 = −a1x2 − a2b3x1 − a2b4uq + d
y = x1

(16)

Finite time state observers are designed for the state variables of system (7) and system (14)
according to Lemma 3. 

.

x̂1 = x2 + d̂1 − λ1sigβ1(x̂1 − x1).
d̂1 = −λ2sign(x̂1 − x1)

(17)


.

x̂2 = −a1x̂22 − a2b3x̂11 − a2b4uq + d̂2 + a1d̂1 − λ1sigβ2(x̂2 − x2).
d̂2 = −λ2sign(x̂2 − x2)

(18)
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where, λ1, λ2, λ1, λ2 are the observation gain of the finite time observer, β1, β2 are the fractional power
of the finite time observer, x̂1, x̂2, d̂1, d̂2 are the estimated values of x1, x2, d1, d2. The following function
can be acquired d̂ = a1d̂1 + d̂2, where, d̂ is the estimated value of d.

Proof: The estimated errors are defined as x̃1 = x̂1 − x1, d̃1 = d̂1 − d1. The error equation obtained
by system (7) and system (17) can be expressed as

.
x̃1 = d̃1 − λ1sigβ1(x̃1).

d̃1 = −λ2sigβ2(x̃1) −
.
d1

(19)

From Assumption 1, −L ≤
.
d1 ≤ L can be obtained. When the gain meets (15), the error system can

be reached stability within a finite time. Namely, d̂1 can converge to the true value d1 in finite time.
After this moment, d̂1 ≡ d1, x̂1 ≡ x1 are always true. Then x2 ≡ x2 + d̂1 is true. The proof of the finite
time stability of the error system for the system (17) is the same as above.

In conclusion, the observation state (x̂1, x̂2, d̂1, d̂2) estimated by the finite time observer will
converge to the actual values (x1, x2, d1, d2) of system (7) and system (18) within a finite time.

3.2. Non-Singular Terminal Sliding Mode Control

Consider the following second-order system{ .
e1 = e2
.
e2 = f (e) + u + d(t)

(20)

where, e1,e2 are the state variables, d(t) is the disturbance,
∣∣∣d(t)∣∣∣ ≤ D.

The non-singular terminal sliding mode surface is selected as follows

s = e1 +
1
η

ep/q
2 (21)

where, η > 0, and p > q > 0 are odd.
In order to make the system state converge to the actual value in finite time, the control law can

be designed as

u = −(D + ε)sign(s) − f (e) − η
q
p

e2−p/q
2 (22)

where, ε is the robustness coefficient, ε > 0, 1 < p/q < 2.
In order to prove the stability of the designed system, the Lyapunov function is selected as

V =
1
2

s2 (23)

The derivative of V is as following

.
V = s

.
s

= s(
.
e1 +

1
η

p
q ep/q−1

2
.
e2)

= s[e2 +
1
η

p
q ep/q−1

2 ( f (e) + u + d(t))]

= s[e2 +
1
η

p
q ep/q−1

2 ( f (e) + u + d(t))]

= s[e2 +
1
η

p
q ep/q−1

2 (−(D + ε)sign(s) − η q
p e2−p/q

2 + d(t))]

= s[ 1
η

p
q ep/q−1

2 (−(D + ε)sign(s) + d(t))]

≤
1
η

p
q ep/q−1

2 (−ε)|s|

(24)

where p, q are positive odd integers and 1 < p/q < 2, thus ep/q−1
2 > 0. Then

.
V < 0 is always true.



Processes 2019, 7, 624 7 of 14

According to the above analysis, the control law (22) designed for system (20) can ensure the
system convergence.

Assume that the system state reaches the sliding mode surface at tr, that is to say s(tr) = 0, then e1 +
1
η ep/q

2 = 0
.
e1 = ηeq/p

1

(25)

The time it takes for the system to stabilize to the equilibrium point can be expressed as

ts =
p

η(p− q)

∣∣∣e1(tr)
∣∣∣1−q/p

(26)

As can be seen from the time function (26), the larger η is, the smaller ts is to the stable state;
However, if η is too large, the effect of switching item will be strengthened due to the change of s
symbol, and the control output will be weakened.

For system (16) (17) (18), the non-singular terminal sliding mode surface function is selected as

s = x1 +
1
η

x̂
p/q
2 (27)

The control law is designed as

uq =
1

a2b4
[−a1x̂2 − a2b3x1 + d̂ + η

q
p

x̂
2−p/q
2 + (D + ε)sign(s)] (28)

Choose the Lyapunov function as

V =
1
2

s2 (29)

Derivation of (29)

.
V = s

.
s

= s(
.
x1 +

1
η

p
q x̂

p/q−1
2

.

x̂2)

= s[x̂2 +
1
η

p
q x̂

p/q−1
2 (−a1x̂2 − a2b3x1 − a2b4uq + d)]

(30)

Consider the control law (28)

.
V = s[ 1

η
p
q x̂

p/q−1
2 (−(D + ε)sign(s) − d̂ + d)]

= s[ 1
η

p
q x̂

p/q−1
2 (−εsign(s) + d− d̂−Dsign(s))]

≤
1
η

p
q x̂

p/q−1
2 (−ε)|s|

≤ 0

(31)

In (31), p, q are positive odd integers and 1 < p/q < 2, thus x̂
p/q−1
2 > 0 is true, and η > 0, so 1

η
p
q |s| > 0

is true, because ε > 0, then 1
η

p
q x̂

p/q−1
2 (−ε)|s| < 0 can be proved.

It can be known from (31) that the second-order PMSM system can reach a stable state in a
finite time based on the composite strategy of finite time observer and non-singular fast terminal
sliding mode.

4. Simulation and Analysis

In order to verify the effectiveness of the proposed method, comparative simulations are built on
the traditional cascade PID, cascade sliding mode, and the proposed method this paper. The simulations
are based on Asus notebook FX503VD, Intel(R)Core i7 7700HQ, CPU@2.80GHz, RAM 7.88GB (Hynix
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DDR4 2400MHz), SanDiskSD8SN8U128G1002(128GB/solid state disk), Nvidia GeForce GTX 1050
(4GB/Asus), 64-bit operating system, matlab 2017b (ASUSTek Computer Inc., Taiwan, China). In order
to ensure the fairness of the comparison, the bus voltage is set to 36 V. The reference speed of PMSM is
set at 1000 r/min. The PMSM parameters used for simulation are shown in Table 1. The parameters of
the traditional cascade PID, the traditional cascade sliding mode control and NTSMC-FTO proposed in
this paper are shown in Tables 2–4, respectively. In cascade SMC controller, SMC and PID are used for
speed loop and current loop, respectively. s = cx1 + x2 is taken as the sliding mode surface of SMC,
and i∗q =

2J
3npψ f

∫ t
0 [c(x2) + Mu× sign(s) + κs]dt as the expression of output.

Table 1. Rated parameters of the permanent magnet synchronous motor (PMSM).

Rated Power PN 200 W

line resistance R 0.33 Ω
line inductance L 9 × 10−4 H
magnetic poles np 4 pairs
torque constant Kt 0.087 N·m/A

rated power UN 36 VAC
rated current IN 7.5 A
rotor inertia J 1.89 × 10−5 kg·m2

rated speed nN 3000 r/min

Table 2. The cascade PID controller.

Description Parameter Value

speed loop proportional gain K1 0.01
speed loop integral gain I1 0.95

speed loop proportional gain K2 50
speed loop integral gain I2 100,000

current loop Id proportional Kp1 2000
current loop Id integral gain KI1 100,000

Table 3. The cascade sliding mode control (SMC) controller.

Description Parameter Value

error gain of SMC c 10.8
switch gain of SMC Mu 100

sliding mode surface gain of SMC κ 12
speed loop proportional gain K2 50

speed loop integral gain I2 100,000
current loop Id proportional Kp1 2000
current loop Id integral gain KI1 10,000

Table 4. The proposed controller this paper.

Description Parameter Value

the power of NTSMC p 37
the power of NTSMC q 35

proportional gain of NTSMC η 5100
switch gain of NTSMC ε 200,000,000,000
the gain of observer1 λ1 1,000,000
the gain of observer1 λ2 10
the gain of observer2 λ1 50,000,000
the gain of observer2 λ2 500

current loop id proportional Kp1 2000
current loop id integral gain KI1 10,000
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There are two groups of comparative simulations, one is the response curve at the phase of
startup, and the other is the response curve when the load torque suddenly changes at a constant
speed stage. It can be found from the comparison results that the NTSMC-FTO proposed in this paper,
which regulate the speed and current of PMSM in one loop, has a better dynamic performance and
disturbance rejection property than the traditional PID and SMC.

Case I: Phase of start. The reference speed of PMSM is set at 1000 r/min, and the motor starts
without load torque. Figure 2a–c are ω, iq, id response curves of startup, respectively. The solid (blue)
line is NTSMC-FTO controller, the dotted (pink) line is PID controller, and the dotted (black) line is
SMC controller. It can be summarized that when the motor starts without speed overshoot, When
the motor starts without speed overshoot, it takes 0.0028 s for NTSMC-FTO to reach the steady state,
compared with the cascade SMC and PID 0.045 s is needed. The cost to reach steady state is reduced
by 0.0422 s. The d-axis and q-axis currents chattering of NTSMC-FTO are smaller than the cascade
SMC and PID controller. The comparative simulation results of startup can be seen in Table 5.

Table 5. The comparative simulation results of start up.

Method Reference Speed Time to Reach Steady State

NTSMC-FTO 1000 r/min 0.0028 s
the cascade SMC 1000 r/min 0.045 s
the cascade PID 1000 r/min 0.045 s

Case II: Load torque is changed suddenly. The load torque has a sudden change from TL = 0 N ·m
to TL = 0.1 N ·m at t = 0.1 s. Figure 3a–c, are ω, iq, id response curves of load torque sudden
change, respectively. When the load torque changed suddenly, the speed of NTSMC-FTO is decreased
by 2.5 r/min (0.25%), while SMC and PID are 87 r/min (8.7%) and 74 r/min (7.4%), respectively.
The recovery time of NTSMC-FTO, SMC and PID to 1000 r/min are 0.0004s, 0.06s and 0.06 s, respectively.
The comparative simulation results of load changed suddenly can be seen in Table 6.

Table 6. The comparative simulation results of load changed suddenly.

Method Reference Speed Decreased Value of
Speed

The Recover Time of
Steady State

NTSMC-FTO 1000 r/min 2.5 r/min 0.0004 s
the cascade SMC 1000 r/min 87 r/min 0.06 s
the cascade PID 1000 r/min 74 r/min 0.06 s
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Figure 2. Performance comparisons under the PID, permanent magnet synchronous motor (SMC) and
NTSMC-FTO at the phase of startup. (a) Speed response curves. (b) d-axis current curves. (c) q-axis
current curves.
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Figure 3. Performance comparisons under the PID, SMC and NTSMC-FTO with sudden load torque
change. (a) Speed response curves. (b) d-axis current curves. (c) q-axis current curves.

Figure 4a,b are disturbance d1 and disturbance d2 curves estimated by the finite time observers,
respectively.

It can be concluded that compared with the traditional SMC and PID, the NTSMC-FTO proposed
in this paper, which put the speed and current in one loop to regulate, has a faster tracking speed and a
better disturbance rejection performance, demonstrating that the proposed method in this paper has
strong robustness.
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Figure 4. The estimated value based on the finite-time observer. (a)The estimated value of d1 based on
the finite-time observer. (b)The estimated value of d2 based on the finite-time observer.

5. Conclusions

In this paper, a novel speed-current single-loop controller for the PMSM drive system has been
proposed. Simulations have verified that compared with the cascade PID and cascade SMC method,
the proposed method has a faster start up response and a better disturbance rejection performance.
The disturbance can be accurately estimated and compensated by the proposed disturbance observer.
Future research can be carried out from the state constraint of the proposed method to reduce the
q-axis transient current and improve the safety of the system.
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