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Abstract: Deep reinforcement learning (DRL) is an area of machine learning that combines a deep
learning approach and reinforcement learning (RL). However, there seem to be few studies that
analyze the latest DRL algorithms on real-world powertrain control problems. Meanwhile, the boost
control of a variable geometry turbocharger (VGT)-equipped diesel engine is difficult mainly due
to its strong coupling with an exhaust gas recirculation (EGR) system and large lag, resulting from
time delay and hysteresis between the input and output dynamics of the engine’s gas exchange
system. In this context, one of the latest model-free DRL algorithms, the deep deterministic policy
gradient (DDPG) algorithm, was built in this paper to develop and finally form a strategy to track
the target boost pressure under transient driving cycles. Using a fine-tuned proportion integration
differentiation (PID) controller as a benchmark, the results show that the control performance based
on the proposed DDPG algorithm can achieve a good transient control performance from scratch by
autonomously learning the interaction with the environment, without relying on model supervision
or complete environment models. In addition, the proposed strategy is able to adapt to the changing
environment and hardware aging over time by adaptively tuning the algorithm in a self-learning
manner on-line, making it attractive to real plant control problems whose system consistency may
not be strictly guaranteed and whose environment may change over time.

Keywords: self-learning; transient response; variable geometry turbocharger; deep reinforcement
learning; deep deterministic policy gradient

1. Introduction

The concept of engine downsizing and down-speeding enables reductions in fuel consumption
and CO2 emissions from passenger cars in order to satisfy the greenhouse gas emission reduction targets
set by the 2015 Paris Climate Change Conference [1,2]. These reductions are achieved by reducing
pumping and friction losses at part-load operation. Conventionally, rated torque and power for
downsized units are recovered by means of fixed-geometry turbocharging [3]. The transient response
of such engines is, however, affected by the static and dynamic characteristics of the fixed-geometry
turbo-machinery (especially when it is optimized for high-end torque) [4,5]. One feasible solution
to this is the use of variable geometry turbocharger (VGT) technology, which is designed to enable
the effective aspect ratio of the turbocharger to vary with different engine operating conditions (see
Figure 1). This is because the best aspect ratio at high engine speeds is very different from the best
aspect ratio at low engine speeds [6]. In engines equipped with VGT, and because part of the exhaust
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energy is used to accelerate the turbine shaft for boosting, engine transient response and fuel economy
can be improved significantly [7].
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difficult to obtain satisfactory results, especially when the state of the control loop is altered [9–13]. 
There are other PID variants that include expert PID control [14], fuzzy PID control [15], and neural 
network-based PID control [16], etc. Although the variants are said to perform better if tuned well, 
those algorithms, respectively, need to acquire expert knowledge, construct fuzzy control decision 
tables, and tune complicated neural network parameters, and thus their widespread use for VGT 
boost control may be prohibited. Meanwhile, for complex industrial systems with high-order, large 
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the other hand, it may not be possible or feasible to develop a first-principle model for complex 
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algorithms (in the absence of a model with high fidelity) to achieve end-to-end learning and 
intelligent control while taking the industrial need of simplicity and robustness into consideration 
may provide an attractive alternative. 

Reinforcement learning (RL), which is considered as one of three machine learning paradigms, 
focuses on how agents should act in the environment to maximize cumulative rewards (see Figure 2) 
[20]. Temporal-difference (TD) learning, which is a combination of dynamic programming (DP) ideas 
and the Monte Carlo idea, is considered to be the core and novelty of reinforcement learning [23]. In 
RL, there are two classes of the TD method—on-policy and off-policy. The most important on-policy 
algorithm includes Sarsa and Sarsa (λ), and one of the breakthroughs in off-policy reinforcement 
learning is known as Q-learning [24,25]. Deep reinforcement learning (DRL) is an area of machine 
learning that combines a deep learning approach and reinforcement learning (RL). This field of study 
was used to master a wide range of Atari 2600 games and its great success on AlphaGo, which was 
the first computer program to beat a human professional Go player, is a historic milestone in machine 
learning research [26]. Deep Q-network (DQN) based on value function and deep deterministic policy 
gradient (DDPG) based on policy gradient are the two latest DRL techniques. The DQN used on 
AlphaGo and AlphaGo Zero [27,28] uses only the original image of the game as input, and does not 
rely on the manual extraction of features. It innovatively combines deep convolutional neural 
networks with Q-learning to achieve human player control (it also achieved great success in Atari 
video games [29]). Although this algorithm achieves the generalization of continuous state space, it 
is theoretically only suitable for tasks in discrete action space. The DDPG strategy proposed by 
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For diesel engines, VGT often interacts with an exhaust gas recirculation (EGR) system (which is
for the engine’s NOx emission reduction). This interaction increases the complexity of the VGT control
problem. Furthermore, the time delay and hysteresis between the input and output dynamics of the
diesel engine’s gas exchange system make it difficult to accurately control the VGT [8]. Traditionally,
the fixed-parameter structure proportion integration differentiation (PID) control is used in industry
for VGT boost control, but the parameter setting processing is complicated and it is difficult to obtain
satisfactory results, especially when the state of the control loop is altered [9–13]. There are other PID
variants that include expert PID control [14], fuzzy PID control [15], and neural network-based PID
control [16], etc. Although the variants are said to perform better if tuned well, those algorithms,
respectively, need to acquire expert knowledge, construct fuzzy control decision tables, and tune
complicated neural network parameters, and thus their widespread use for VGT boost control may be
prohibited. Meanwhile, for complex industrial systems with high-order, large lag, strong coupling,
nonlinear, and time-varying parameters (such as for VGT control systems [17–19]), the traditional
control theory which relies on mathematical models is still immature, and some methods are too
complicated and cannot be directly applied for industrial applications [20–22]. On the other hand, it
may not be possible or feasible to develop a first-principle model for complex industrial processes.
Furthermore, complex engineering systems are rather expensive, with a high requirement for system
reliability and control performance. In this context, “model-free” intelligent algorithms (in the absence
of a model with high fidelity) to achieve end-to-end learning and intelligent control while taking the
industrial need of simplicity and robustness into consideration may provide an attractive alternative.

Reinforcement learning (RL), which is considered as one of three machine learning paradigms,
focuses on how agents should act in the environment to maximize cumulative rewards (see Figure 2) [20].
Temporal-difference (TD) learning, which is a combination of dynamic programming (DP) ideas and
the Monte Carlo idea, is considered to be the core and novelty of reinforcement learning [23]. In RL,
there are two classes of the TD method—on-policy and off-policy. The most important on-policy
algorithm includes Sarsa and Sarsa (λ), and one of the breakthroughs in off-policy reinforcement
learning is known as Q-learning [24,25]. Deep reinforcement learning (DRL) is an area of machine
learning that combines a deep learning approach and reinforcement learning (RL). This field of study
was used to master a wide range of Atari 2600 games and its great success on AlphaGo, which was the
first computer program to beat a human professional Go player, is a historic milestone in machine
learning research [26]. Deep Q-network (DQN) based on value function and deep deterministic policy
gradient (DDPG) based on policy gradient are the two latest DRL techniques. The DQN used on
AlphaGo and AlphaGo Zero [27,28] uses only the original image of the game as input, and does
not rely on the manual extraction of features. It innovatively combines deep convolutional neural
networks with Q-learning to achieve human player control (it also achieved great success in Atari
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video games [29]). Although this algorithm achieves the generalization of continuous state space,
it is theoretically only suitable for tasks in discrete action space. The DDPG strategy proposed by
Lillicrap et al. [30] uses deep neural networks as approximators to effectively combine deep learning
and deterministic strategy gradient algorithms [31]. It can cope with high-dimensional inputs, achieve
end-to-end control, output continuous actions, and thus can be applied to more complex situations with
large state spaces and continuous action spaces. To the authors’ best knowledge, there is no literature
that has applied DRL techniques to boost control problems for VGT-equipped engines. Furthermore,
there seem to be few studies that analyze the DDPG algorithm on sequential decision control problems
for industrial applications.
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Based on the above discussion, it is appropriate to apply the DDPG techniques for the boost
control on a VGT-equipped engine. In this paper, in order to achieve the optimum boost control
performance, first the simulation model of a VGT-equipped diesel engine is introduced. Subsequently,
a model-free DDPG algorithm is built to develop and finally form a strategy to track the target engine
boost pressure under transient driving cycles by regulating the turbine vanes. Finally, the proposed
DDPG algorithm is compared with a fine-tuned PID controller to validate its optimality. The rest of
this article is structured as follows: Section 2 describes the mean value engine model (MVEM) of the
VGT-equipped diesel engine. In Section 3, the DDPG-based framework is proposed to achieve the
optimal boost control of the engine. In Section 4, the corresponding simulations are conducted to
compare the proposed algorithm and a fine-tuned PID controller. Section 5 concludes the article.

2. Mean Value Engine Model Analysis

Mean value engine models (MVEMs) are useful for certain types of modeling where simulation
speed is of primary importance, the details of wave dynamics are not critical, and bulk fluid flow is still
important (for modeling turbocharger lag, etc.) [32]. A mean value engine model essentially contains
a map-based cylinder model, which is computationally faster than a detailed cylinder. The simulation
speed can be increased further by combining multiple detailed cylinders into a single mean value
cylinder. In addition, many of the other flow components from the detailed model can be combined to
create a simplified flow network of larger volumes.

The layout of the VGT-equipped diesel engine is illustrated in Figure 3. The detailed engine
model was converted to a mean value model. As it is not the focus of this article, only a brief process
summary is presented here. The mean value cylinder is defined by imposed values for indicated mean
effective pressure (IMEP), volumetric efficiency, and exhaust gas temperature. These three quantities
are predicted by neural networks (see Figure 4) that depend on seven input variables (intake manifold
pressure and temperature, exhaust manifold pressure, EGR fraction, injection timing, fuel rate, and
engine speed). Note here that each neural network (four in total) is trained using the data generated in
the detailed simulation. The output of this training is an external file which contains the necessary
neural network settings. Once the training has been completed, the neural network file can be called
into the mean value model, which dramatically increases the computational efficiency. In addition,
the friction mean effective pressure (FMEP) of the cranktrain is also calculated by a neural network
dependent on the same seven variables.
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Figure 4. The proposed neural network that maps the mean value cylinder performance as a function
of seven input variables in GT-SUITE.

The intake and exhaust systems are simplified into large “lumped” volumes so that system volume
is conserved (with a loss of detailed wave dynamics). The large volumes allow large time steps to
be taken by the solver. Pressure drops in the flow network are calibrated using restrictive orifice
connections between the lumped volumes. Additionally, heat transfer rates are calibrated using the
heat transfer multiplier in parts where heat transfer is significant (exhaust manifold). The intercooler
and EGR cooler outlet temperatures are imposed, which allows the gas temperature to be imposed as it
passes through the connection. This reduces the amount of volumes required and allows a reduction in
potential for any instability in the solver caused by the high heat transfer rates in the heat exchangers
at large time steps that are typical of mean value models. The mean value model results match the
detailed results well (see Figure 5), and should provide sufficient accuracy for control system and
vehicle transient studies. The mean value model runs approximately 150 times faster than the detailed
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model and runs faster than “real time”, enabling it to be used for real-time hardware-in-the-loop
(HIL) simulation.
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model was initially controlled by a fine-tuned PID controller, and the target boost pressure and the 
P and I gains were both mapped as a function of speed and requested load (implied by accelerator 
pedal position). 

 
Figure 6. The GT-SUITE model layout of the 6 cylinder 3 L VGT-equipped diesel. 
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Test Procedure) drive cycle.

The research engine was a 6 cylinder 3 L turbocharged direct injection (DI) diesel, with its
GT-SUITE model seen in Figure 6. Advanced controllers should be used to dynamically control the
position of the VGT rack in order to achieve the target boost pressure. It should be noted that the
model was initially controlled by a fine-tuned PID controller, and the target boost pressure and the
P and I gains were both mapped as a function of speed and requested load (implied by accelerator
pedal position).
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To analyze the transient behavior, the engine speed was imposed to match the prescribed vehicle
speed profile from the FTP-72 driving cycle (see Figure 7). This transient engine speed profile was
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calculated using a simple kinematic mode simulation which can be seen in Figure 8. The same
simulation provided the required brake mean effective pressure (BMEP) from the engine. Then,
a separate detailed simulation was run with an injection controller to determine and store the transient
pedal position required to achieve the requested BMEP.
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3. Deep Reinforcement Learning Algorithm

Model-free reinforcement learning is a technique for understanding and automating goal-directed
learning and decision-making [33]. It differs from most other control algorithms in that it emphasizes on
agents learning through direct interaction with the environment, without relying on model supervision
or a complete environmental model [34]. As an interactive learning method, the main features of
reinforcement learning are trial-and-error search and delayed return [35]. Figure 1 shows the interaction
process between the agent and the environment. At any time step, the agent observes the environment
in order to get the state St and then performs the action At. Afterward, the environment generates the
next time St+1 and Rt according to At. The probability that the process moves into its new state St+1

is influenced by the chosen action and is given by the state transition function. Such a process can
be described by Markov decision processes (MDPs) [36,37]. The goal of reinforcement learning is to
formulate the problem as an MDP and find the optimal strategy [38]. The so-called strategy refers to
the state-to-action mapping, which commonly uses the symbol policy π. It refers to a mapping on
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the action set for a given state s, that is, π(a|s) = p[At = a
∣∣∣St = s] . Reinforcement learning introduces

a reward function to represent the return value at a certain time t, as follows:

Gt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∑
∞

k=0
γkrt+k+1, (1)

where r represents an immediate reward and γ represents a discount factor which shows how important
future returns are relative to current returns. The action–value function used in reinforcement learning
algorithms describes the expected return after taking an action in state St and thereafter following
policy π:

Qπ(st, at) =
∑

ri≥t,si>t∼E,ai>t∼π
[Rt|st, at] (2)

Reinforcement learning makes use of the recursive relationship known as the Bellman equation:

Qπ(st, at) =
∑

rt,st+1∼E
[r(st, at) + γ

∑
at+1∼π

[Qπ(st+1, at+1)]] (3)

The expectation depends only on the environment, which means that it is possible to learn Qµ

off-policy using transitions that are generated from a different stochastic behavior policy β. Q-learning,
a commonly used off-policy algorithm, uses the greedy policy µ(s) = argmaxa Q(s,a). We consider
function approximators parameterized by θQ, which we optimize by minimizing the loss, as follows:

L
(
θQ

)
=

∑
st∼ρβ,at∼β,rt∼E

[
(
Q
(
st, at|θ

Q
)
− yt

)2
] (4)

where
yt = r(st, at) + γQ(st+1,µ(st+1)

∣∣∣θQ)

Recently, deep Q-network (DQN) adapted the Q-learning algorithm in order to make effective
use of large neural networks as function approximators. Before DQN, it was generally deemed that it
was difficult and unstable to use large nonlinear function approximators for learning value functions.
Thanks to two innovations, DQN can use a function approximator to learn the value function in a stable
and robust manner: (a) the network is trained off-policy with samples from a replay buffer to minimize
correlations between samples and (b) the target Q-network is used to train the network to provide
consistent goals during time difference (TD) backups.

The deterministic policy gradient (DPG) algorithm maintains a parameterized actor function,
µ(s|θµ), which specifies the current policy by deterministically mapping states to a specific action. The
critic Q(s,a) is learned using the Bellman equation as in Q-learning. The actor is updated by applying
the chain rule to the expected return from the start distribution J with respect to the actor parameters,
as follows:

∇θµ J ≈
∑

st∼ρβ
[∇θµQ(s, a|θQ)|s=st,a=µ(st |θµ)]

=
∑

st∼ρβ
[∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θ

µ)|s=st ]
(5)

Deep deterministic policy gradient (DDPG) combines the actor–critic (AC) approach based on
deterministic policy gradient (DPG) [31] with insights from the recent success of deep Q-network
(DQN). Although DQN has achieved great success in high-dimensional issues, like the Atari game,
the action space for which the algorithm is implemented is still discrete. However, for many tasks of
interest, especially physical industrial control tasks, the action space must be continuous. Note that
if the action space is discretized too finely, the control problem eventually leads to excessive motion
space, which is extremely difficult for the algorithm to learn. The DDPG strategy uses deep neural
networks as approximators to effectively combine deep learning and deterministic strategy gradient
algorithms. It can cope with high-dimensional inputs, achieve end-to-end control, output continuous
actions, and thus can be applied to more complex situations with large state spaces and continuous
action spaces. In detail, DDPG uses an actor network to tune the parameter θµ for the policy function,
that is, decide the optimal action for a given state. A critic is used for evaluating the policy function
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estimated by the actor according to the temporal TD error (see Figure 9). One issue for DDPG is that
it rarely explores actions. A solution is to add noise to the parameter space or the action space. It is
claimed that adding to parameter space is better than to action space [39]. One commonly used noise
is the Ornstein–Uhlenbeck random process. Algorithm 1 shows the pseudo-code of the proposed
DDPG algorithm.

Processes 2019, 7, 601 8 of 18 

 

the action space for which the algorithm is implemented is still discrete. However, for many tasks of 
interest, especially physical industrial control tasks, the action space must be continuous. Note that 
if the action space is discretized too finely, the control problem eventually leads to excessive motion 
space, which is extremely difficult for the algorithm to learn. The DDPG strategy uses deep neural 
networks as approximators to effectively combine deep learning and deterministic strategy gradient 
algorithms. It can cope with high-dimensional inputs, achieve end-to-end control, output continuous 
actions, and thus can be applied to more complex situations with large state spaces and continuous 
action spaces. In detail, DDPG uses an actor network to tune the parameter 𝜃  for the policy 
function, that is, decide the optimal action for a given state. A critic is used for evaluating the policy 
function estimated by the actor according to the temporal TD error (see Figure 9). One issue for DDPG 
is that it rarely explores actions. A solution is to add noise to the parameter space or the action space. 
It is claimed that adding to parameter space is better than to action space [39]. One commonly used 
noise is the Ornstein–Uhlenbeck random process. Algorithm 1 shows the pseudo-code of the 
proposed DDPG algorithm. 

 
Figure 9. Actor–critic architecture. 

Algorithm 1. Pseudo-code of the Deep deterministic policy gradient (DDPG) algorithm. 

DDPG algorithm: 
Randomly initialize critic network 𝑄(s, a|𝜃 ) and actor 𝜇(s|𝜃 ) with weights 𝜃  and 𝜃 . 
Inіtіаlіzе target network 𝑄  аnd 𝜇  wіth wеіghtѕ 𝜃 ←𝜃 , 𝜃 ←𝜃  
Initialize replay buffer R 
for episode = 1, M do 

Initialize a random process N for action exploration 
Receive initial observation state 𝑠  
for t = 1, T do 

Select action 𝑎 = 𝜇(𝑠 |𝜃 ) + 𝑁  according to the current policy and exploration noise 
Execute action 𝑎  and observe reward 𝑟  and observe new state 𝑠  
Store transition(𝑠 , 𝑎 , 𝑟 , 𝑠 ) in R 
Sample a random minibatch of N transitions (𝑠 , 𝑎 , 𝑟 , 𝑠 ) from R  
Set 𝑦 = 𝑟 + 𝛾Q (𝑠 , μ (𝑠 |𝜃 )|𝜃 ) 
Update critic by minimizing the loss: L = ∑ (𝑦 − 𝑄(𝑠 , 𝑎 |𝜃 ))  
Update the actor policy using the sampled gradient: ∇ Ｊ ≈ 1𝑁 ∇ Q(s, a|θ )| , ( ) ∙ ∇ μ(s|θ )|  

Update the target networks: 𝜃 ← 𝜏𝜃 + (1 − 𝜏)𝜃  𝜃 ← 𝜏𝜃 + (1 − 𝜏)𝜃  
end for 

end for 

Figure 9. Actor–critic architecture.

Algorithm 1: Pseudo-code of the Deep deterministic policy gradient (DDPG) algorithm.

Randomly initialize critic network Q(s, a
∣∣∣θQ) and actor µ(s

∣∣∣θµ) with weights θQ and θµ.
Initialize target network Q′ and µ′ with weights θQ′

←θQ, θµ
′

←θµ

Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Select action at = µ(st|θµ) + Nt according to the current policy and exploration noise
Execute action at and observe reward rt and observe new state st+1
Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions (st, at, rt, st+1) from R
Set yi = ri + γQ′(si+1,µ′(si+1|θ

µ′ )|θQ′ )

Update critic by minimizing the loss: L = 1
N

∑
i (yi −Q(si, ai

∣∣∣θQ))
2

Update the actor policy using the sampled gradient:

∇θµ J ≈
1
N

∑
i

∇aQ(s, a|θQ)|a=si,a=µ(si)·∇θµµ( s|θµ)|si

Update the target networks:
θQ′
← τθQ + (1− τ)θQ′

θµ
′

← τθµ + (1− τ)θµ
′

end for
end for

TensorFlow is one of the widely used end-to-end open-source platforms for machine learning.
In order to draw on the research findings of DRL in other research fields, especially to re-use the
existing program code frameworks in machine learning, we used Python compatible with TensorFlow
as the algorithm design language in this study. Meanwhile, in order to apply the DRL algorithm built
in Python to the diesel engine environment, we proposed to use MATLAB/Simulink as the program
interface, so that the two-way transmission among Python, MATLAB/Simulink, and GT-SUITE could be
reached. The specific DDPG algorithm implementation and the corresponding co-simulation platform
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are shown in Figure 10. Key concepts of the DDPG-based boost control algorithm are formulated
as follows.
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The engine speed, the actual boost pressure, the target boost pressure, and the current vane
position were chosen to group a four-dimensional state space. It should be noted here that only a small
number of states were chosen in this study in order to (a) facilitate the training process and (b) showcase
the generalization ability of the DRL techniques. The vane position controlled by a membrane vacuum
actuator was selected as the control action. Immediate reward is important in the RL algorithm because
it directly affects the convergence curves and, in some cases, a fine adjustment of the immediate reward
parameter can bring the final policy to the opposite poles. The agents always try to maximize the
reward they can get by taking the optimal action at each time step because more cumulative rewards
represent better overall control behavior. Therefore, the immediate reward should be defined based on
optimization goals. The control objective of this work was to track the target boost pressure under
transient driving cycles by regulating the vanes in a quick and stable manner. Keeping this objective
in mind, the function of the error between the target and the current boost pressure and the rate of
action change were defined as the immediate reward. The equation for the immediate reward is given
as follows:

rt = e−
[0.95∗|e(t)|+0.05∗|It |]

2

2 − 1, (6)

where rt is the immediate reward generated when the state changes by taking an action at time t.
e(t) and It represent the error between the target and the current boost pressure and the rate of action
change, respectively.

The corresponding DDPG parameters and the illustration of the actor–critic network are shown
in Table 1 and Figure 11. In this study, the input layer of the actor network has four neurons, namely,
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the engine speed, the actual boost pressure, the target boost pressure, and the current vane position.
There are three hidden layers each having 120 neurons. The output layer has one neuron representing
the control action (i.e., the vane position). All these layers are fully connected. For the critic network,
the input layer has an additional neuron, which is the control action implemented by the actor network,
compared to that of the critic network. There is one hidden layer having 120 neurons. The output
layer of the critic network has one neuron representing the value function of the selected action for the
specific state. The network is trained for 50 episodes and each episode represents the first 80% time of
the FTP-72 trips (1098s).

Table 1. DDPG parameters.

Parameters Value

Learning rate for actor 0.0001
Learning rate for critic 0.0002

Reward discount factor γ 0.9
Soft replacement factor τ 0.01

Replay memory size 100,000
Mini-batch size 256

Action randomness decay 0.999995
Initial exploration 10
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4. Results and Discussion

In this article, the simulations were conducted based on an advanced co-simulation platform
(see Figure 10). In order to validate its performance, the proposed DDPG algorithm was compared to
a fine-tuned gain scheduled PID controller with both its P and I gains mapped as a function of speed and
requested load. Without derivative action, a PI-controlled system may be less responsive, but it makes
the system steadier at steady-state conditions (thus often adopted for industrial practice). It should be
noted here that this PID controller adopted classic Ziegler–Nichols methods [40] to manually tune
the control parameters, which took much effort and thus should be interpreted to represent a good
control behavior benchmark. The US FTP-72 (Federal Test Procedure) driving cycle shown in Figure 7
was employed to verify the proposed strategy. The cycle simulated an urban route of 12.07 km with
frequent stops and rapid accelerations. The maximum speed was 91.25 km/h and the average speed was
31.5 km/h. This transient driving cycle was selected because it mimics the real-world VGT environment
system with large lag, strong coupling (especially with EGR) and nonlinear characteristics and thus,
if a well-behaved control strategy in this environment is established, it should perform well in other
driving cycles with more steady-state regions (such as the New European Driving Cycle (NEDC)).
In this study, the first 80% time driving cycle was used to train the DDPG algorithm and the remaining
data were destined for testing analysis. There are many different measures that can be used to compare
the quality of controlled response. Integral absolute error (IAE), which integrates the absolute error
over time, was used in this study to measure the control performance between the PID controller and
the proposed DDPG algorithm.

Figure 12 shows the control performance using the fine-tuned PID controller. It can be seen that
the actual boost pressure tracks the target boost pressure well at first glance. However, after zooming
in on some operating conditions, a relatively large error can still be seen. This may be due to the
turbo-lag, which cannot be improved from the control point of view (such as the time period from
10 s to 40 s, where although the VGT is already controlled to its minimum flow area for the fastest
transient performance, it still exhibits lack of boost). Nevertheless, for most situations, taking the time
period of 920 s to 945 s for example, there is still some room for the PID control strategy to improve.
We note here that the results in Figure 12 are only a balance between control performance and tuning
efforts, that is, a better control behavior can be achieved if the tuning process is made in a more finely
manner, but more efforts and resources are required. In this research, the emphasis was not put on the
final control performance comparison between PID and DRL theory, due to the fact that the structure
behind each method is different and the control behavior, to a large extent, depends on how the control
parameters are tuned. More focus was put on trying to solve the control problem in a self-learning
manner and showcase good control adaptivity for the DRL approach.

The learning process of the DDPG algorithm can be seen in Figure 13. At the beginning of the
learning, the cumulative rewards for the DDPG agent per episode were extremely low because (1) the
agent (corresponding to the vane position actuator in the VGT boosting controller) only randomly
selects actions in order to complete an extensive search process so as not to fall into local optimum and (2)
the agent has no prior experience of what it should do for a specific state (thus the agent can only select
the actions based on the initial DDPG parameters). After approximately 40 episodes, the algorithm has
already been converged with the cumulative rewards, reaching a high value. This indicates that the
agent has learned the experience to control the boost pressure. It should be noted that the learning
process takes place only by direct interaction with the environment (in this case, the simulation software
serves as the environment), without relying on model supervision or complete environment models,
and a well-behaved control strategy is developed and finally formed autonomously from scratch.
To answer the question of whether the learned controller was good enough, the control performance of
the first 80% FTP-72 driving cycle using the final DDPG controller was compared with the performance
based on the aforementioned fine-tuned PID controller. In Figures 12 and 14, it can be seen that both
the PID and the proposed DDPG algorithm perform well at first glance, but after zooming in on some
operating conditions, a large tracking disparity can still be seen. Although the PID controller seems to
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track the boost pressure with relatively small errors, the control performance based on the proposed
DDPG algorithm outperforms that of the PID controller with almost excellent tracking behavior. The
IAE value of the PID control performance is 41.72, whereas the value based on the proposed DDPG
algorithm can be as low as 37.43.
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This difference is shown better in Figure 15, where the control performance comparison between
the fine-tuned PID and the proposed DDPG from the time period of 920 s to 945 s is made. This time
period was selected because it corresponds to the frequently used engine operating regions.Processes 2019, 7, 601 14 of 18 
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the time period of 920 s to 945 s.

In order to showcase the generalization ability of the proposed DRL techniques, the control
performance for the end 20% FTP-72 driving cycle based on the trained DDPG parameters was
simulated. It can be seen in Figure 16 that although the control parameters were not trained based on
this part of the driving cycle (i.e., some of the states may not have been visited in the previous training
process), the performance still exhibits good control behavior. Compared to the same time period
using the fine-tuned PID controller (already optimized for this time period), the control performance
based on the proposed DDPG clearly performs better and the IAE of the PID and the proposed DDPG
are 10.17 and 8.35, respectively.
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As the control strategy based on the proposed DDPG algorithm is able to achieve (or improve,
depending on the tuning efforts of each algorithm) the control performance compared to a fine-tuned
PID benchmark controller, it could replace the traditional PID controller for boosting control in the
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near future. Compared to the benchmark PID controller whose parameters traditionally require
manual adjustment (thus the tuning efficiency is low), the control strategy based on DDPG is able
to adaptively adjust the algorithm strategy in the learning process, which not only can save a lot of
manpower resources, but also adapt more to the changing environment and hardware aging over time
(thus being unbiased by modelling errors). To prove this, another simulation model with a different
combustion and turbocharger model was used. This was a simplified replication of a real engine
plant whose transient performance could be diverged from the simulation prediction mainly due
to combustion and turbocharger modelling inaccuracy. Figure 17 shows the control performance
using both the pre-trained algorithm (which indicates the off-line behavior) and the strategy after
continuing on-line learning in the “real engine” simulation model. It can be seen that the off-line policy
is able to achieve a relatively good control behavior and can be improved further by continuing its
learning from the interaction with the new environment on-line. Thus, different from other studies
whose control parameters optimized in the simulation platform, for most cases, are no longer valid
in the experimental test, the control strategy based on the proposed DRL techniques can combine
the simulation training and the experimental continuing training together in order to fully utilize the
computational resources off-line and refine the algorithm in the experimental environment on-line.
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Furthermore, because the learning process of the proposed DDPG algorithm distinguishes itself
from other approaches by putting its emphasis on interacting with the transient environment, the final
control performance is able to outperform that of the other approaches whose techniques are only
based on the steady-state simulation or experimental control behavior. The most obvious example
would be its capability to exceed the classic feedforward control which only responds to its control
signal in a pre-defined way without responding to how the load reacts. It is known that most of the
pre-defined map in a controller with feedforward function is calibrated in a steady-state environment
in industry and is fixed for the entire product lifecycle. The proposed DDPG algorithm, however,
because the control action adapts to the environment, is equivalent to the concept of the so-called
automatic transient calibration.

5. Conclusions and Future Work

In this paper, a model-free self-learning DDPG algorithm was employed for the boost control
of a VGT-equipped engine with the aim to compare the DDPG techniques with traditional control
methods and to provide references for the further development of DDPG algorithms on sequential
decision-control problems with other industrial applications. Using a fine-tuned PID controller as
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a benchmark, the results show that the control performance based on the proposed DDPG algorithm can
achieve a good transient control performance from scratch by autonomously learning the interaction
with the environment, without relying on model supervision or complete environment models.
In addition, the proposed strategy is able to adapt to the changing environment and hardware aging
over time by adaptively tuning the algorithm in a self-learning manner on-line, making it attractive
to real plant control problems whose system consistency may not be strictly guaranteed and whose
environment may change over time. This indicates that the control strategy based on the proposed DRL
techniques can combine the simulation training and the experimental continuing training together in
order to fully utilize the computational resources off-line and refine the algorithm in the experimental
environment on-line. Future work may include applying DRL-based parallel computer architecture to
boost the computational efficiency for the control problem with high-order, large lag, strong coupling,
and nonlinear characteristics. Another interesting direction could be combining some look-ahead
strategies with the proposed DRL techniques to accelerate the training process and improve the final
control performance. The stability control between multiple reinforcement learning-based controllers
will also be studied, which includes distributed RL and hierarchical RL.
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Nomenclature

AC Actor critic
BMEP Brake mean effective pressure
DQN Deep Q-network
DDPG Deep deterministic policy gradient
DI Direct injection
DP Dynamic programming
DRL Deep reinforcement learning
DPF Diesel particulate filter
DOC Diesel oxidation catalyst
EGR Exhaust gas recirculation
FMEP Friction mean effective pressure
FTP Federal Test Procedure
FTP-72 Federal Test Procedure-72
HIL Hardware-in-the-loop
IAE Integral absolute error
FMEP Friction mean effective pressure
IMEP Indicated mean effective pressure
MDP Markov decision process
MVEM Mean value engine model
NEDC New European Driving Cycle
PID Proportion integration differentiation
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