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Abstract: Process modeling in pharma is gradually gaining momentum in process development but
budget restrictions are growing. We first examine whether and how current practices rationalize
within a decision process framework with a fictitious investor facing a decision problem subject to
incomplete information. We then develop an algorithmic procedure for investment evaluation on
both monetary and diffusion-of-innovation fronts. Our methodology builds upon discounted cash
flow analysis and Bayesian inference and utilizes the Rogers diffusion of innovation paradigm for
computing lower expected returns. We also introduce a set of intangible metrics for quantifying the
level of diffusion of process modeling within an organization.

Keywords: process modeling; return on investment; diffusion of innovation

1. Introduction

Modeling and simulation (M&S) refers to the R&D (Research & Development) methodology
where mathematical equations (models) are solved numerically or analytically (via simulation) for the
description of physical systems. Such a generic definition captures all different types of representations
of physical systems: Mechanistic, empirical and hybrid. However, in this paper we only focus on
mechanistic and/or hybrid models. Modeling and simulation (M&S) has been gradually adopted by
different industries for the understanding, investigation, optimization and diagnostics of existing
and future processing technologies since the 1960s giving rise to what is commonly referred to as
process modeling.

The pharmaceutical industry constitutes an interesting case. On the one hand, computational
chemistry has long been an indispensable tool in drug discovery and, nowadays, in silico drug
discovery, it is spearheading future developments. On the other hand, the pharmaceutical industry is
among the last ones to join the party since process modeling has only been sporadically utilized despite
advocates preaching for the contrary [1,2]. This thought-provoking conundrum has not gone-by
unnoticed and there is a wealth of efforts devoted to its study [3–6]. A synthesis of the results has
revealed several factors with the most recurring ones being:

(i) Keeping science out of processing. This manifests itself through the continuous and oftentimes
erroneous belief that (a) the complexity of the processes is too high and (b) the maturity of M&S is
too low for the production of fruitful results. This line of thought has been perpetuating though
some recent efforts that hint that blending science-based solutions with engineering approaches
is growing momentum [7]. Moreover, and perhaps more importantly, there is a growing volume
of research efforts (i) corroborating both the pertinence and the efficacy of M&S on both upstream
and downstream [8–10], (ii) offering holistic and industrial-friendly frameworks [11] and (iii)
focusing on even the most novel processing techniques [12].

(ii) Lack of regulatory frameworks. M&S has been notably absent from regulatory frameworks.
However, recent publications [13], betoken that such ideas are cultivating.
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(iii) Domination of empirical/statistical modeling. Processing in pharma has partnered very
well with statistics. Progressively, statistical modeling has been integrated in the core of
R&D methodologies. Proposing alternative methodologies will undoubtedly be subject to
“appeal-to-tradition” reactions.

(iv) Emphasis on drug discovery: From an investment-risk portfolio management point of
view, investments in drug/vaccine discovery are more promising than those in process
development/understanding. Consequently, only the bare minimum has been done to get
the processes economically viable. Even so, investment-related decision making has been
relevant; rationally choosing, for example, between batch and continuous processing has attracted
considerable attention [14].

(v) Shortage of in-house M&S expertise. Accommodation of M&S components that are relatively
new and evolving requires dedicated FTEs (Full Time Equivalent) and building up competencies.
In the absence of an interest towards M&S, such internal expertise is cumbersome to be built
and updated. Consequently, new concepts or breakthroughs, are difficult to detect, digest and
eventually implement.

Nonetheless, process development has started to utilize elements of M&S oftentimes in a systematic
fashion as part of an organizations vision for digitization [15,16] and the accommodation of the quality
by design paradigm [13]. Moreover, given the persistently disappointing figures on return on
investment in pharma and the gloomier predictions [17], and the ever-growing development cost
and risk [18,19], acceleration of development has become a key management target [20], and here
M&S is expected to yield significant results. However, in such an environment which requires a
stricter scrutiny of investments, M&S teams should be prepared to address questions on the business
engineering front. Put simply, the diplomatic immunity granted to M&S has been relinquished.

Designing a business case for M&S is an arduous task because, although M&S costs are
straightforward to compute, outcomes of M&S exercises are laborious to quantify. What complicates
matters more, is the qualitative nature of such outcomes that render relevant efforts even more
challenging. Importantly, the described challenges are not confined within pharma but invariably
extend to other industries which explains the dearth of relevant studies in the literature.

To the best of our knowledge, the first organization that systematically investigated the business
case of M&S and openly archived it is the U.S. Department of Defense. In a series of landmark
publications [21–25], the authors have investigated the evaluation of M&S returns and presented real
case studies. A handful of subsequent studies have adjusted these findings though predominately in a
qualitative direction. With respect to pharma, in particular, we are only acquainted with the study
of [26] where the authors examine the effects of M&S in drug development and time to market and
find a positive correlation in turn backed by the presentation of NPV (Net Present Value) values.

The objective of this paper is to examine process modeling in pharma from an investor’s point
of view and bring forward an algorithmic methodology that allows for the development of detailed
business studies. Our methodology is endowed with both tangible and intangible metrics to provide
for a holistic approach to the problem in hand. On the tangible front, we examine M&S under the
prism of discounted cash flow analysis. As in regard to intangible metrics, our analysis draws from
and builds upon the earlier studies of [21–25] but incorporates them into a diffusion-of-innovation
paradigm based on the Rogers innovation curve [27].

2. State of the Art in Decision Making

Pharmaceutical corporations have already invested non-negligible amounts of capital for building
up M&S competency and internal capabilities. We model the current situation and use this framework
as a vehicle to optimize current practices. Let Mr. X be the budget owner of the R&D organization
within a pharmaceutical corporation. Mr. X is endowed with an annual budget of M$ (dollars) that
covers for both recurring (e.g., salary) and one-time costs.
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At some point, Mr. X is visited by a group of managers and/or scientists, henceforth referred
to as “the Group”, who propose to form a M&S team focusing on processing. They require
an upfront investment of M1 < M dollars per year plus M2 < M dollars for one-time costs.
In support of their request, the Group typically offers four anecdotal or poorly tractable quantitative
arguments: (a) Reduction of design/investigation time, (b) enhancement or replacement of real-life
tests, (c) circumvention of limitations of funding, (d) insight into issues unapproachable by alternatives.
Intuitively one expects that these four arguments are to a certain extent true. However, whether the
aggregate effect remains positive or there is a fallacy of composition has yet to be robustly demonstrated.
In layman terms, M&S can positively impact practices in processing but at what cost.

In cash-flow terms, our Group argues that the evolution of cash-flow will initially be negative,
as expected, but it will gradually shift upwards and eventually become positive as pedantically
shown in Figure 1a; In the absence of relevant data, figures in the present conceptual paper are rather
ad-hoc representing the accumulated empirical knowledge and industrial experience of the authors.
Manifestly, they offer a high-order qualitative illustration of the underlying trends and they should
be interpreted as such by the reader. Nonetheless, the same figure has superimposed an alternative
scenario where the cash-flow remains negative for a prolonged period. Given that penetration of a new
technology/method typically follows a Rogers S-shape curve [27] depicted in Figure 1b, the plausibility
of this scenario should not be ignored.

Figure 1. (a) Cash flow of modeling and simulation (M&S) as the time-history of profit, (b) A theoretical
Rogers curve for diffusion/penetration of innovation.

How should our investor react? Mr. X faces an interesting decision problem. Under the assumption
that Mr. X is a rational agent, the whole decision process can be modeled quite nicely, though a detailed
modeling framework of this problem is quite subtle. For the sake of simplicity, herein, we sketch the
basic ideas. In this respect, Mr. X is conditioning decisions on the outcomes of the following profit
maximization problem:

max π = (q−wL) (1)

where π, q, w, L stand for profit, production units in dollars, production units here is more broadly
interpreted, cost per employee, and number of employees. We can generalize this to include physical
capital and/or time but doing so increases complexity without further clarifying the picture. Mr. X
considers that a simplified Cobb–Douglas production function adequately describes the relation
between production units, physical capital and labor so that;

q = A La (2)

with A, a constants determining productivity. Note that, typically, the Cobb–Douglas functions has a
component related to cost of capital but we have neglected this here. The above is a classical paradigm
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that can be solved by Mr. X analytically. Now, the Group claims that the π that Mr. X has computed is
not optimal. They point towards the existence of another group of employees (M&S experts) who can
drive profits upwards. When Mr. X asks the Group to quantify their argument they posit that M&S
experts follow a different Cobb–Douglas production function:

qMS = eb1Lb2 (3)

where b1 and b2 are random variables which reflects the uncertainty that even the Group has with
respect to the quantification of benefits. With this information at hand, Mr. X can actually advance and
solve the corresponding model. However, the accuracy of the predictions depends on the properties of
b1, b2 and, more importantly, on whether these properties are known. Provocatively, a risk averse or
even risk neutral inventive should reject this proposal as non-tractable!

Nevertheless, we have multiple examples where our investor Mr. X succumbs to the demand of
the Group and grants the investment. A possible escape route may be found if we postulate that Mr. X
is not only rational but also informed in the following sense. In the absence of M&S, employees can
use a set of skills/prior knowledge S for the execution of their tasks. Furthermore, the net revenue per
employee in the organization R is p $/employee. Our investor has performed a comparative analysis
with competitors and concludes that p does not reflect the true potential of the organization and that
there is room for improvement. Mr. X goes a step further and theorizes that R = R(S) with R(S)′ ≥ 0
and R(S)′′ ≤ 0. Then, being acquainted with the state of the art in M&S, X makes the informed decision
that augmenting S with the competencies provided by M&S will result in an increase of R(S) though it
is not possible to predict the precise payoffs.

We now focus on the development and understanding of best practices. Strictly speaking, M&S (as
well as experiments and statistical models) acts as an evaluation mechanism. For instance, an M&S
exercise provides an insight to a phenomenon and as such empowers stakeholders to make informed
decisions. If economics is also put into the equation then, M&S, as an evaluation mechanism, can be
utilized for economically rational decisions. With the above in mind, we may, therefore, ask ourselves:
“To what extent must we model in order to make our next decision?” and provide the following answer:
“To the extent that the corresponding payoff is sufficiently positive” with sufficiently ideally being an
exogenous parameter.

2.1. Tradeoffs

When calculating payoff of M&S, a clear view of the tradeoffs is required to set expectations at
reasonable levels, conditioned on the risk behavior of choice: aversion/neutrality/love. Two important
tradeoffs are fidelity vs. cost and fidelity vs. complexity. Herein, fidelity refers to the quality of the
model in terms of describing the observations and predicting the general behavior of the system for
process design and operation relevant scenarios. A typical situation is plotted in Figure 2a,b.

Figure 2a provides a visualization of fidelity vs. cost in the plane where a typical progress trajectory
is plotted from conception to optimization vs the minimum level of fidelity required for practical
applications. We observe that early efforts in a terra incognita result in high cost and low fidelity.
Progressively, one reaches the minimum level of fidelity (though with high cost) but further increases
in fidelity eventually lead to cost decline and positive cost-effectiveness balance. Consequently,
knowledge of where M&S stands with respect to Figure 2a is imperative for accurate calculations
of payoffs.

Figure 2b depicts fidelity vs complexity lines; the lines should be perceived as a first-order
approximation of the true relation—in reality, complexity vs. fidelity curves have much more
complicated structure. The three lines correspond to early, moderate, and mature M&S in a
counter-clockwise fashion. The change in slopes denotes how the accumulation of expertise and
know-how leads to leaner approaches; for example, via systematic reductions, symmetry considerations,



Processes 2019, 7, 596 5 of 13

dimensional arguments, clever discretization techniques etc. Similarly to the fidelity vs cost case,
the status quo of fidelity vs complexity should be adequately known.

Figure 2. (a) Schematic representation of the relationship between fidelity with cost; (b) Schematic
representation of fidelity vs complexity.

2.2. Decision Flow-Chart

Calculation of payoffs requires an assessment plan of the outcomes of M&S conditioned on the
inputs. The flow chart of this process is plotted in Figure 3. We observe that input parameters are
cost, time and risk. The output is the results that an M&S exercise yields. It is the assessment of
results versus the aggregate effect of cost, time and risk that should drive a go or no go decision for
further investment.

Figure 3. Flow chart of assessment plan for M&S.

For the determination of cost of M&S, we dichotomize models into descriptive and prescriptive ones.
Henceforth, A model here is understood as a triplet (governing equations, numerical algorithm/method,
software) required for simulation. In other words, it is not only a series of mathematical equations.
Descriptive models describe the behavior of existing systems whereas prescriptive models envision to
describe the expected behavior of a hypothetical system. For example, a descriptive model would
be used to model an existing fermentation vessel. A prescriptive model would be used to design
and model a novel fermentation vessel without specific requirements. Descriptive and prescriptive
models share similarities with respect to cost, nevertheless, important differences may also be identified.
In Table 1, we have tabulated the costs associated with each type of models, further partitioned into
upfront (one-time) and recurring costs. One observes the absence of accreditation from prescriptive
models; this is to be expected since such models are spearheading R&D and are neither standardized
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nor subject to systematic upgrades, at least at their early phases of existence. An interesting disparity
is the presence of “temptation” in recurring costs. This explains the danger of getting lost in endless
exploratory studies, where one goes deeper and deeper whilst there is no clear vision or direction
ahead. Cost of temptation may be easy to tame upfront but the lack of a valorization strategy can allow
it to skyrocket and undermine budget considerations. Based on Table 1, we can compute the total cost
of M&S at year N:

Cost(year N) = Costso f t + Costhard + Costtrain + Costsupgrade + #FTEs ·CostFTE (4)

Here, Costso f t and Costhard designated costs related to procurement of software and hardware
whereas Costsupgrade stands for maintenance costs and upgrades. CostFTE is, as usual, the annual
cost of a full-time equivalent while Costtrain is the cost of related trainings. The concepts of design,
implementation, verification, validation, accreditation, and employment are embodied within CostFTE.
For the sake of simplicity, we have assumed that FTEs in M&S have the same cost.

Table 1. Cost description for prescriptive and descriptive models.

Upfront Costs Recurring Costs

Descriptive Design, Implementation, Verification, Validation,
Accreditation, Training, Procurement Employment, Upgrades

Prescriptive Design, Implementation, Verification, Validation,
Training, Procurement Employment, Design, Temptation

It is also interesting to visually look at the evolution of cost in time. A linearized picture for both
prescriptive and descriptive models is shown in Figure 4. The figure depicts how the temptation point
acts as a bifurcation for cost expansion or contraction and how exogenous interventions can act as cost
saving mechanisms.

Figure 4. Linearized cost vs. time plots for prescriptive and descriptive models.

Risk associated with M&S has been well documented. In general, M&S risk comprises (i)
accuracy, (ii) descriptive realism, (iii) uncertainty and (iv) applicability; each of these components is
defined below:

1. Accuracy is defined as the degree to which the predictions are correct (formally, accuracy is
defined with respect to a particular norm.).

2. Descriptive realism refers to the degree that a model predicates upon “true” principles [28].
3. Uncertainty refers to the confidence on outputs, given that some aspects are unknown.
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4. Applicability accounting for the potential that the exploitation of the model for the envisioned
purpose falls short, because the investigated/modeled phenomena do not govern the system in
the a priori expected manner.

Each of these components may be viewed as a normalized function that takes values in the range
[0, 1]. For accuracy and descriptive realism, zero and unity denote the minimum and maximum values,
respectively and the converse is true for uncertainty. We can therefore define the novel aggregate
measure of acceptability according to the following formula:

Acceptability =
1
4
(Accuracy + Descriptive realism + (1− uncertainty) + Applicability) (5)

where L is labor (FTEs + training) and C is physical capital (hardware/software) and a, b are elasticities
with a + b < 1. Acceptability takes values in the range [0, 1]; an idea M&S exercise would have 1
accuracy, 1 descriptive and 0 uncertainty thus giving acceptability its maximum value: Unity. (One can
go a step further and consider a weighted sum of accuracy, descriptive realism and uncertainty.
This preferential aggregate would then reflect a heterogeneous prioritization). For practical purposes,
acceptability assumes values in the open range (0, 1). Indeed, even at the start of a modeling effort it is
unlikely to expect zero acceptability and reaching unity is typically utopic. We take our analysis a
step further and link acceptability to cost. To do so, we consider acceptability as an asset and thus the
outcome of a production function. To fix ideas, we postulate that the production function follows a
Cobb–Douglas form and thus acceptability obeys the following equation:

Acceptability =
1
4
(Accuracy + Descriptive realism + (1− uncertainty) + Applicability) = LaCb (6)

where L is labor (FTEs + training) and C is physical capital (hardware/software) and a, b are elasticities
with a + b < 1.

Proponents of M&S typically invoke time as a competitive advantage. However, the required
time for M&S depends on the complexity of the problem in hand and the evolving technology and
know-how. Figure 5 portrays the trends of time versus complexity for the past decades. As expected,
evolution in hardware/software and physical modeling itself pushes the curve in a southeast direction.
However, despite this rather robust shift, time remains an exponential function of complexity.

Figure 5. Qualitative assessment of required time for M&S. The numbers represent the decades.

Mathematically, progress increases the part of the curve that can be accurately linearized.
This domain is labeled “on board the train” to emphasize that in this area one takes advantage of
the accumulated advancements. It is in this zone where time and complexity correlate in a favorable
manner. On the right of the “on board the train zone” is the “push the frontiers zone” where a linearized
curve changes slope and no longer provides an accurate fit. Here is where innovation mostly occurs.
Risk aversion dictates the avoidance of the purely exponential region and the focus on the “push the
frontiers” one.
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We can further quantify the time required for M&S. Our starting point is the observation that
aggregate time required for a M&S exercise can be written as the following sum:

Ttotal = Tmodel + Tdigitization + Tsimulation + Tinterpretation (7)

where Tmodel, Tdigitization, Tsimulation, Tinterpretation designate the time needed for the development
of a model, digitization of equipment, numerical simulation, post-processing and interpretation.
An order-of-magnitude analysis can be used to provide some estimates which are reported in Table 2.

Table 2. Order-of-magnitude analysis of required time for M&S per component.

Time
Required Tmodel Tdigitization Tsimulation Tinterpretation

~DAYS Reuse Reuse Low & medium
complexity No post-processing required

~WEEKS Reuse/discover Digitize existing system Detailed CFD Meticulous post-processing/big data
~MONTHS Develop Design & digitize system Industrial scale CFD N/A

We remark that in the case of first time used or newly developed models, Tmodel accommodates
the validation phase as well. Experience has shown that, within pharma, this phase can be quite
elongated, as it often involves a chain of actors from non-scientific departments. Thus, one should not
underestimate such exogenous factors when drafting (or predicting) time schedules.

3. An Investor’s Approach to M&S

With all the above in mind, we can again call upon our investor, budget owner Mr. X who,
correctly or not, has already invested in a M&S team for some time now, being aware of the uncertainty
that dominates this decision. Mr. X has now to harvest the results of the investment and needs to
define a payoff measure. For a quantitative assessment, Mr. X has to attribute a set of relevant metrics
to the corresponding outcomes. This set of metrics will be decomposed into monetary metrics and
performance metrics. The need (or rationale) behind this decomposition is as follows. The overall
investment has had but a short life and aims in implicitly increasing the net revenue per employee by
enhancing the competences that employees have at their disposal. This is not an instantaneous process
as Figure 1b asserts. In this respect, Mr. X should keep track not only of monetary payoffs but also of
intangible metrics that evaluate the integration of M&S alongside existing R&D practices.

3.1. Monetary Metrics

The first bottleneck is the identification of gains or equivalent the payoff. Three monetary metrics
appear as the most prominent candidates: Cost savings, cost avoidance and increased revenues.
Formally, they are defined as follows:

1. Cost savings = Cost with M&S—Cost without M&S
2. Cost avoidance = Cost of unnecessary/harmful decision.
3. Increased revenues = profit due to changes in margins or production capacity.

Each of the above monetary metrics can have a single or permanent impact on the sector.
Cost savings has a single impact because it refers to gains that do not affect permanently the production
capacity and/or revenue. For instance, they may refer to cost savings in a project that failed and
never reached production. Cost avoidance has also single impact. It concerns multi-lemmas that
once resolved it is for permanent; for example, consider the case where a company needs to decide in
favor of one type of instrument vs another. Finally, increased revenues have permanent impact in the
corporation. This is a result of M&S permanently affecting the profit margin. (Calculating the above
metrics in practice is easier said than done and the typical example is that of knowledge-build projects).
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Having collected the required data, Mr. X proceeds to compute a time-dependent return on
investment as follows. Consider a time interval [t0, tn] uniformly discretized into time instances ti
such that ti − ti−1 = ∆t = constant. ∆t can assume any value, e.g., a month. For each ti calculate the
M&S cashflow:

CMS(ti) = Cost savings(ti − ti−1) + Cost avoidance(ti − ti−1)

+Increased revenues(ti − ti−1) − Investment cost(ti − ti−1 )
(8)

Cost savings(ti − ti−1) denotes the costs savings during the period ti − ti−1 and the same applies
for the other components. Consider that CMS(ti) have been measured from t0 = 0 until present
tpresent = Kpresent∆t. Then, let Nproj ≥ 1 denote the number of projects that M&S personnel have been
working on during this time. Each project has an anticipated duration of T j = K j ∆t, with j = 1, . . . , Nproj
and T j > tpresent ∀ j and is expected to induce an internal rate of return (IRR) IRR j, which is a solution
to the following;

NPV =
∑K j

i=0

E(Ctot
j(ti))(

1 + IRR j
)i = 0 (9)

and obeys the following inequality:
IRR j > RRR (10)

In the above relations, E
(
Ctot

j (ti)
)

stands for the expectation of the total cash-flow of project j at

time instance ti while RRR is the required rate of return which stands for the minimum accepted rate
that renders the investment rationally possible. (This is a rather traditional approach. Alternative
methodologies that use the real option value such as the Datar–Mathews method, and incorporate risk,
may be also utilized) [29].

Next, Mr. X applies a Bayesian inference of the time-series CMS(ti), as duly demonstrated in
Figure 6, and calculates stochastic predictions for the evolution of cashflows from t = tpresent + ∆t
until Tmax = max

{
T j

}
= Kmax∆t. Thus, Mr. X obtains a spatio-temporal probability distribution that

assigns to each possible CMS(ti) a probability. Then, probabilistic estimates of the IRRMS of the M&S
investment can be computed according to;

NPVMS =
∑Kmax

i=0

CMS(ti)

(1 + IRRMS)
i = 0, P(IRRMS) = p (11)

for all possible outcomes enveloped by the Bayesian inference and a graph, like the one reported in
Figure 7 displaying predicted IRRMS against probabilities, can be constructed.

Figure 6. Hypothetical data points of CMS(ti) vs. time, shown with ∗, concatenated with Bayesian inference.



Processes 2019, 7, 596 10 of 13

Figure 7. Predicted IRRMS values vs their probability for three hypothetical cases resulting in three
different probability distributions.

Next, a lower limit of acceptance (LLA) for the investment is developed. Assume that IRRMS ∼

N
(
µ, σ2

)
. Ostensibly, one could equate LLA with the expected rate of returns RRR. However, we propose

a modification so that the degree of diffusion of M&S within the organization is captured. The diffusion
of a new technology can be satisfactorily described via a sigmoid function (t) = 1

1+e−δt . (The parameter
δ determines the time needed for M&S to completely diffuse, i.e., at which point where the function
equals unity. It can be estimated with the help of the intangible metrics of the next section. Other more
elaborate and asymmetric functions may also be considered.). Then, a reasonable lower limit of
acceptance at time ti is as follows:

LLA(ti) = S(ti)RRR (12)

We can reconcile the stochastic nature of IRRMS with the risk aversion of Mr. X and Equation (12)
as follows. We assign to Mr. X a CARA (constant absolute risk aversion) utility function u(x) = 1− e−Ax

with A being the known risk aversion coefficient, that can be estimated via the methodology of [30],
and we recall the budget of M$. Consider the portfolio allocation problem with one risky asset
(investment on M&S) with random return IRRMS and a riskless asset with fixed return LLAMS(Tmax).
Under rationality, we can explicitly solve this two-asset (one risky and one riskless) portfolio allocation
problem, see for example [31]. This solution asserts that that recourses should be allocated if and
only if;

µ > LLAMS(Tmax) (13)

and that the optimal degree of allocation obeys the following condition:

MMS =
µ− LLAMS(Tmax)

σ2 ·
1
A

(14)

Equations (13) and (14) have practical implications. First, Mr. X determines whether (13) is
satisfied. If yes, then given M1$ have already been invested in M&S, Mr. X can solve (14) in terms of
the expected return µ′, run a sensitivity analysis for σ2 and end up with a range of values

[
µlow,µhigh

]
.

Then, Mr. X can compare how well the predictions compare to their realizations, or equivalently where
µ lies in the range

[
µlow,µhigh

]
.

This is a decision tree with two negative outcomes. First, the realized expected return µ is lower
than the lower acceptable limit, i.e., inequality (13) is violated. Thus, the overall investment rates are
unfavorable. As the distribution of IRRMS is calculated based on Bayesian inference, it is updated as
soon as new data enter the system. Therefore, one should re-evaluate the overall investment at time
instances ti > tpresent and check if violation of inequality (13) is an artifact or not (the generation of
monetary gains might come with a (random) time delay). The second negative outcome concerns
Equation (14) and the range

[
µlow,µhigh

]
. If µ < µlow then the investment in M&S is still worthwhile
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but the expected return is probably overestimated. By contrast, if µ > µhigh then the investment
outperforms expectations.

3.2. Diffusion-of-Innovation Metrics

Diffusion-of-innovation metrics help our investor, Mr. X, to make better informed decisions
when making assessments. The authors of [32] proposed a notoriously high (over 200) number of
metrics that constitute assessment criteria of how well modeling and simulation is deployed within
the US Department of Defense. Therefore, to a first approximation, this pool of metrics can used for
the selection of diffusion-of-innovation metrics that pertain to our case. Of course, it is not only the
impractically large number that renders our task challenging but also the fact that several of these
metrics are bespoke to the army needs. By merging and redefining available metrics, so as to fit
the pharmaceutical world, we have arrived at the following seven (7) performance related metrics,
delineated in Table 3 alongside their numerical value.

Table 3. Diffusion metrics and their numerical value.

Name of Metric Numerical Value (s)

Awareness Relative frequency of different projects utilizing M&S
Coordination Relative frequency of M&S duplicate activities avoided

Congruity Relative frequency of M&S clients correctly interpreting/understanding the results
Guidance Relative frequency of M&S users conforming to existing standards

Proactivity Relative frequency of (early) decisions made by M&S
Empowerment Relative frequency of M&S decision makers attending key meetings

Foundation Relative frequency of foundational competencies covered

As the numerical values increase and approach unity so does the integration of M&S in R&D.
The numerical values of the metrics si, i = 1, . . . , 7 are functions of time, i.e., si = si

(
t j
)

where the values
t j conform to the previous section discussion. Next, consider the sigmoid function 1

1+e−δt which has the

diffusion rate as a free parameter, δ. Also, consider the sum 1
7
∑Kpresent

j=0 si
(
t j
)
. If the sum of the metrics

provides a satisfactory description of the diffusion of M&S in R&D, then it is reasonable to consider the
following approximation:

1
1 + e−δt ≈

1
7

∑Kpresent

j=0
si
(
t j
)
+ u (15)

where u = N
(
0, σ2

u

)
is a white noise term to reflect the fact that the diffusion process is associated with a

certain degree of randomness and can be amenable to random shocks (depending on the strategy that
leadership has developed, the diffusion metrics could be assigned a weight

(
t j
)

with w1
(
t j
)
+ w2

(
t j
)
+

. . .+ w6
(
t j
)
= 1; note that the weights are also functions of time to reflect reprioritizations and changes

in strategy). Then, the constant δ may be estimated via simple regression from the above equation and
directly utilized in Equation (12) of the previous section.

4. Conclusions

Process modeling is gradually gaining momentum within the pharmaceutical industry.
This inevitably attracts attention from higher management and onsets the discussion of cost-benefit
analysis and investment decisions. This paper has examined process modeling from the investor’s
point of view.

We have commenced by examining whether current practices conform to a value-based decision
process by using an informed investor as the decision maker. Further, topics like cost, risk and
execution time for M&S exercises have also been thoroughly discussed and, wherever possible,
mathematical expressions for their description have been introduced. We subsequently proceeded
to the development of an easy-to-use methodology that can help an investor evaluate investment
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on M&S that encompasses both monetary and diffusion-of-innovation based aspects. The proposed
methodology builds upon a classical discounted cash flow analysis, infused with elements of Bayesian
inference, while accommodating a sigmoid-description of diffusion of innovation for the calculation of
lower expected returns. Via the introduction of a set of seven intangible metrics we were also able to
quantify the rate with which M&S diffuses within the organization thereby rendering the proposed
methodology tractable.

In the present study, we have limited ourselves to the theoretical presentation of the mathematical
model were emphasis has been placed on clarifying ideas and concepts. A natural next steps involves
exercising the proposed model with either real or simulated data and ideally with both. This step that
we intend to pursue as a follow up to this work will play a pivotal role in assessing the predictive
capacity of our methodological framework and underlying possible weaknesses that need mitigation.

This concept paper comprises different components that can collectively assist with the difficult
task of evaluating M&S. However, herein, we have restricted ourselves to the illustration of these
ideas without emphasis on their connectedness. Consequently, a further direction of future research
concerns the unification of all ideas presented herein in an umbrella framework.

Author Contributions: C.V., M.v.S., S.D. and A.P. were involved in the design of the study. All authors were
involved in drafting the manuscript or critically revising it for important intellectual content. All authors approved
the manuscript before it was submitted by the corresponding author.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the anonymous reviewers for valuable remarks and
suggestions that have substantially improved the quality of the manuscript. Moreover, we thank S. J. E. Evans,
N. Giannelos, A. Khan, U. Krause, G. De Lannoy, M. Sanders and M. Vasselle for fruitful discussions and remarks.

Conflicts of Interest: All authors have declared the following interests: All authors are employees of the GSK group
of companies. S.D. and A.P. report ownership of shares and/or restricted shares in the GSK group of companies.

References

1. Petrides, D.P.; Koulouris, A.; Lagonikos, P.T. The Role of Process Simulation in Pharmaceutical Process
Development and Product Commercialization. Pharm. Eng. 2002, 22, 56–65.

2. García-Muñoz, S.; Luciani, C.V.; Vaidyaraman, S.; Seibert, K.D. Definition of Design Spaces Using Mechanistic
Models and Geometric Projections of Probability Maps. Org. Process Res. Dev. 2015, 19, 1012–1023. [CrossRef]

3. Aboud, L.; Henry, S. New Prescription for Drug Makers: Update the Plants. Leila Aboud & Scott
Henry. The Wall Street Journal. 3 September 2003. Available online: https://www.wsj.com/articles/
SB10625358403931000 (accessed on 4 September 2019).

4. Rogers, A.; Ierapetritou, M. Challenges and opportunities in modeling pharmaceutical manufacturing
processes. Comput. Chem. Eng. 2015, 81, 32–39. [CrossRef]

5. Muzzio, F.J.; Shinbrot, T.; Glasser, B.J. Powder technology in the pharmaceutical industry: The need to catch
up fast. Powder Technol. 2002, 124, 1–7. [CrossRef]

6. McKenzie, P.; Kiang, S.; Tom, J.; Rubin, A.; Futran, M. Can pharmaceutical process development become
high tech? AIChE J. 2006, 52, 3990–3994. [CrossRef]

7. Reklaitis, G.V.; Khinast, J.; Muzzio, F. Pharmaceutical engineering science—New approaches to
pharmaceutical development and manufacturing. Chem. Eng. Sci. 2010, 65, 4–8. [CrossRef]

8. Eberle, L.G.; Sugiyama, H.; Papadokonstantakis, S.; Graser, A.; Schmidt, R.; Hungerbühler, K. Data-driven
Tiered Procedure for Enhancing Yield in Drug Product Manufacturing. Comput. Chem. Eng. 2016, 87, 82–94.
[CrossRef]

9. Casola, G.; Siegmund, C.; Mattern, M.; Sugiyama, H. Uncertainty-conscious methodology for process
performance assessment in biopharmaceutical drug product manufacturing. AIChE J. 2018, 64, 1272–1284.
[CrossRef]

10. Van Bockstal, P.J.; Mortier, S.; De Meyer, L.; Corver, J.; Vervaet, C.; Nopens, I.; De Beer, T. Mechanistic
modelling of infrared mediated energy transfer during the primary drying step of a continuous freeze-drying
process. Eur. J. Pharm. Biopharm. 2017, 114, 11–21. [CrossRef]



Processes 2019, 7, 596 13 of 13

11. Kornecki, M.; Strube, J. Accelerating Biologics Manufacturing by Upstream Process Modelling. Processes
2019, 7, 166. [CrossRef]

12. Metta, N.; Ghijs, M.; Schäfer, E.; Kumar, A.; Cappuyns, P.; Van Assche, I.; Singh, R.; Ramachandran, R.;
De Beer, T.; Ierapetritou, M.; et al. Dynamic Flowsheet Model Development and Sensitivity Analysis of a
Continuous Pharmaceutical Tablet Manufacturing Process Using the Wet Granulation Route. Processes 2019,
7, 234. [CrossRef]

13. Chatterjee, S.; Moore, C.; Nasr, M. An Overview of the Role of Mathematical Models in Implementation of
Quality by Design Paradigm for Drug Development and Manufacture. Food Drug Adm. Papers 2017, 23.

14. Matsunami, K.; Miyano, T.; Arai, H.; Nakagawa, H.; Hirao, M.; Sugiyama, H. Decision support method
for the choice between batch and continuous technologies in solid drug product manufacturing. Ind. Eng.
Chem. Res. 2018, 57, 9798–9809. [CrossRef]

15. Rantanen, J.; Khinast, J. The Future of Pharmaceutical Manufacturing Sciences. J. Pharm. Sci. 2005, 104,
3612–3638. [CrossRef]

16. Gernaey, K.V.; Woodley, J.; Sin, S. Introducing mechanistic models in Process Analytical Technology education
(Research Highlight). Biotechnol. J. 2009, 4, 593–599. [CrossRef]

17. Deloitte Center for Health Solutions. A New Future for R&D? Measuring the Return from Pharmaceutical
Innovation; Deloitte Centre for Health Solutions: Deloitte, UK, 2017.

18. DiMasi, J.A.; Hansen, R.W.; Grabowski, H.G. The price of innovation: New estimates of drug development
costs. J. Health Econ. 2003, 22, 151–185. [CrossRef]

19. Grabowski, H.; Vernon, J.J. A new look at the returns and risks to pharmaceutical R&D. Manag. Sci. 1990,
36, 804–821.

20. David, E.; Tramontin, T.; Zemmel, R. Pharmaceutical R&D: The road to positive returns. Nat. Rev. Drug Discov.
2009, 8, 609–610.

21. Carter, J., III. A Business Case for Modeling and Simulation; SPECIAL REPORT-RD-AS-01-02; Aviation and
Missile Research, Development, and Engineering Center: Redstone Arsenal, AL, USA, 2001.

22. Oswalt, I.; Cooley, T.; Waite, W.; Waite, E.; Gordon, S.; Severinghaus, R.; Feinberg, J.; Lightner, G. Calculating
Return on Investment for U.S. Department of Defense Modeling and Simulation; Defense Acquisition Univ. ft.
Belvoir VA: Fort Belvoir, VA, USA, 2011.

23. Brown, D.; Grant, G.; Kotchman, D.; Reyenga, R.; Szanto, T. Building a business case for modeling and
simulation. Acquis. Rev. Q. 2000, 24, 312–315.

24. Smith, J.M. A Business Case for Using Modeling and Simulation in Developmental Testing; Thesis Naval
Postgraduate School; Storming Media: Washington, DC, USA, 2001.

25. Gordon, S.; Oswald, I.; Cooley, T. Why Spend One More Dollar for M&S? Observations on the Return of
Investment: Discipline, Ethics, Education, Vocation, Societies, and Economics. In The Profession of Modeling
and Simulation; Chapter 14; John Wiley & Sons: Hoboken, NJ, USA, 2017.

26. Glass, H.E.; Kolassa, E.M.; Muniz, E. Drug development through modeling and simulation-The business
case. Applied Clinical Trials. 25 July 2016. Available online: http://www.appliedclinicaltrialsonline.com/drug-
development-through-modeling-and-simulation-business-case (accessed on 4 September 2019).

27. Rogers, E. Diffusion of Innovations, 5th ed.; Simon and Schuster: New York, NY, USA, 2003.
28. Meyer, W.J. Concepts of Mathematical Modeling; McGraw-Hill Book Company: New York, NY, USA, 1984.
29. Mathews, S.H.; Datar, V.T.; Johnson, B. A practical method for valuing real options. J. Appl. Corp. Financ.

2007, 19, 95–104. [CrossRef]
30. Babcock, B.A.; Choi, E.K.; Feinerman, E. Risk and probability premiums for CARA utility functions. J. Agric.

Resour. Econ. 1993, 18, 17–24.
31. Back, K.E. Asset Pricing and Portfolio Choice Theory; Oxford Univeristy Press: Oxford, UK, 2017.
32. AEgis Technologies Group. Metrics for Modeling and Simulation (M&S) Investments; Naval Air Systems

Command Prime Contract No. N61339-05-C-0088; The Aegis Technologies Group, Inc.: Huntsville, AL,
USA, 2008.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

