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Abstract: Many pharmaceutical molecules, fine chemicals, and proteins exhibit liquid–liquid phase
separation (LLPS, also known as oiling out) during solution crystallization. LLPS is of significant
concern in crystallization process development, as oiling out can compromise the effectiveness of a
crystallization and can lead to operational problems. A comprehensive methodology that allows
a process scientist/engineer to characterize the various phase boundaries relevant to oiling out is
currently lacking. In this work, we present a modeling framework useful in predicting the binodal,
spinodal, and gelation boundaries starting from the solubility data of a solute that is prone to oiling
out. We collate the necessary theoretical concepts from the literature and describe a unified approach
to model the phase equilibria of solute–solvent systems from first principles. The modeling effort
is validated using experimental data reported in the literature for various solute–solvent systems.
The predictive methods presented in this work can be easily implemented and help a process
engineer establish the design space for a crystallization process that is affected by liquid–liquid
phase separation.

Keywords: liquid–liquid phase separation; LLPS; oiling out; phase diagrams; phase diagram
prediction; prediction of oiling out; binodal; spinodal; gel boundary

1. Introduction

Solution crystallization is an important unit operation typically practiced in the pharmaceutical and
fine chemical industry to produce solid compounds with desired purity and physical attributes [1,2].
The design of an industrial crystallization process is generally concerned with the control of the
nucleation and growth of solid particles. However, for many organic active pharmaceutical ingredients
(APIs) and biomolecules that form molecular crystals (as opposed to inorganic salts which form
ionic crystals), this task may not be straightforward because these systems can exhibit unusual
phase separation phenomena during solution crystallization. For many APIs and proteins, often the
result of a crystallization attempt may not be the formation of solid particles, but that of metastable
dense liquid phases and gels. These intermediate phases typically occur due to liquid–liquid phase
separation (LLPS—which in the process engineering parlance is known as “oiling out”) of the solute, a
phenomenon that complicates the process development effort. The occurrence of these intermediate
dense liquid and gel phases from oiling out is usually considered undesirable, as these phases can lead
to uncontrollable nucleation, nucleation of metastable crystal forms, impurity entrapment, and other
operational difficulties [3–8]. However, circumstances may exist in which a crystallization mediated
through these phases may be needed to achieve solid particles of special attributes, e.g., clusters
and spherical particles that easily filter downstream [9–11]. Thus, a comprehensive understanding
of the phase behavior of the solute is essential for a rational design and trouble-free operation of a
crystallization process.
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While the solid–liquid equilibrium boundary (solubility curve) is easily determined experimentally
for many solute–solvent systems, a complete characterization of the liquid–liquid and liquid–gel
boundaries remains a daunting task that requires a contextual understanding of the phenomena
and laborious experimentation. Two different oiling out boundaries are commonly encountered in
experiments—the binodal and the spinodal (see Section 2 below). When a process scientist observes an
oiling-out phenomenon in a (typically cooling) crystallization experiment, most likely they are in the
vicinity of the binodal at that process condition. This is because penetrating the spinodal envelope
requires rapid changes in process conditions (quenches) that are typically not achievable in cooling
crystallization that involves solutions of significant volume. Thus, a portion of the binodal curve
may be accessible to experimenters using techniques such as focused beam reflectance measurement
(FBRM) [7,12]. However, a complete experimental characterization of the binodal (including the dense
liquid branch) is rather difficult. Hence a strong need exists among the crystal growth community to
model and predict the liquid–liquid phase boundaries for the solute of interest under process conditions.

The aspect that distinguishes real systems that form various condensed phases from an ideal
gas is the existence of intermolecular interactions. For this reason, the study of phase behavior of
molecules starts with the description of intermolecular interactions. A large body of literature exists in
the condensed matter physics and colloidal science fields that describes methods for the prediction of
various phase boundaries for molecules with well-defined interaction potentials. Theoretical approaches
developed to this end include perturbation methods that describe the liquid structure [13–20], integral
equation approaches [21,22], and the recent density functional methods [23–25], which are considered
more rigorous. In general, the theoretical predictions of these models are validated against the results
obtained from computer simulations (also known as machine calculations) [26–30], the results of which
are regarded as “experimental data” in this context.

Given that the various theories of phase behavior of molecules described above mainly exist in
the computational chemistry and condensed matter physics domains, unless a crystallization process
engineer is well-versed with this literature, they are at a disadvantage with respect to conceiving
a suitable predictive approach. Also, while these theoretical methods have evolved over time to
various degrees of sophistication, as a rule, the computations involved in many of these approaches
are extremely complicated and are tedious to be executed by practicing scientists and engineers in
the context of industrial process development. Hence, in general, these methods remain obscure and
foreign to industrial practitioners of crystallization and process modelers. Moreover, all these models
require the intermolecular interaction parameters (such as the range and strength of interaction) to be
pre-defined. This information is not readily available for systems of industrial interest. To address these
gaps, here, we present a methodology to predict the various phase boundaries of solutes using simple
fluid models. We collate the necessary theoretical concepts from various sources in the literature, and
propose a modeling approach that is simple enough to be implemented readily by process scientists.
Our method derives the necessary molecular interaction parameters from experimental solubility data
and uses these parameters to predict the liquid–liquid and liquid–gel boundaries. Apart from the
availability of an experimentally determined solubility data set, the approach we discuss here requires
only the knowledge of the molecular weight of a compound and the crystal density.

In Section 2, we first outline the theoretical underpinnings of the proposed modeling approach. In
Section 3, we consider a few solute–solvent systems discussed in the literature for which experimental
data on the solubility and binodal are available. In Section 4, we model the solubility data for these
systems, and from that predict the liquid–liquid phase boundaries (binodal and spinodal). This effort
establishes the effectiveness of the method. Section 5 that follows discusses the context and limitations
of the proposed approach. Finally, we summarize the work in Section 6.

2. Theory and Model Development

When quenched rapidly, a system that contains a dissolved solute can become unstable with
respect to the existing single phase composition, and may undergo a liquid–liquid phase separation
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through a spinodal decomposition mechanism before it can nucleate crystals [31]. The locus of the
temperature and composition points that define the unstable region of the phase diagram is known as
the spinodal curve. Upon spinodal decomposition, the system typically splits into two liquid phases,
with one phase containing a high concentration of the solute and the other being lean in solute. These
two liquid phases can co-exist in a local equilibrium. The locus of the temperature and compositions
that define this local equilibrium is known as a coexistence or binodal curve. The binodal region
completely envelopes the spinodal region. For molecules experiencing short-ranged interactions, the
region of the phase diagram given by the liquid–liquid coexistence curve (binodal) is metastable with
respect to the solid–liquid coexistence curve [22,28,32]. In such a case, the two liquid phases resulting
from LLPS are expected to produce crystals eventually.

The basis for the phase equilibrium calculations in which we are interested is the thermodynamic
condition that at equilibrium the chemical potentials and pressures of the co-existing phases are equal.
Thus, one needs to obtain expressions for the chemical potential of the solid and liquid phases to be
able to determine the co-existence boundaries. To that end, we start by considering the solute in the
crystallizing solution as a simple fluid and use a square-well potential to describe the intermolecular
interactions. Several studies in the literature have established the effectiveness of the square-well
interaction model in capturing the solution thermodynamics for systems that exhibit liquid–liquid
phase separation [33–36]. The square-well model defines the pair interaction energy, U(r), as a function
of the distance, r, between molecules as:

U(r) =


∞, r ≤ σ
−ε, σ < r ≤ λσ

0, r > λσ
, (1)

in which σ corresponds to the molecular diameter of the species in consideration, and ε and λ denote
the strength and range of the interaction, respectively. Below, we first discuss the liquid (fluid) phase
chemical potential and pressure for a square-well fluid. The chemical potential for a square-well solid
is discussed in the subsection that follows.

2.1. Fluid Phase Thermodynamics

For describing the solution thermodynamics of a square-well fluid, we follow the approach by
Gil-Villegas et al. [37] and Patel et al. [38] in which the molecular liquid phases were described using
the statistical associating fluid theory for chain molecules with attractive potentials of variable range
(SAFT-VR). Detailed derivation of the equation of state for SAFT-VR square well fluids is available in
the original works [37,38]. Here, we limit our discussion to the essential elements needed to understand
the phase diagram calculations.

By considering the hard sphere fluid [39] as a reference fluid, the expression for the Helmholtz
free energy, A, of N particles interacting via the square-well potential can be written using a second
order perturbation theory expansion [18] as:

A
NkT

=
Aideal

NkT
+

Ahs

NkT
+

A1

NkT
+

A2

NkT
, (2)

in which k is the Boltzmann’s constant and T is the absolute temperature of the system. In Equation (2),
the first term on the right-hand side (RHS) of the equality sign (Aideal) is the ideal gas Helmholtz free
energy, the second term (Ahs) is the excess free energy of the hard-sphere (reference) fluid. Thus, the
sum of the first two terms on the RHS gives the free energy of the reference fluid. The remaining two
terms, A1 and A2, express the first order and second order perturbation corrections to the reference
fluid to yield the Helmholtz free energy of the fluid of interest.
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2.1.1. Free Energy of the Reference Fluid

The ideal contribution to the free energy, Aideal, is given by:

Aideal

NkT
= ln

(
ρΛ3

)
− 1, (3)

where ρ = N/V is the molecular number density of the fluid, with V being the volume of the system
and Λ being the thermal De Broglie wavelength. To describe the hard sphere (reference fluid) excess
Helmholtz free energy (Ahs), the Carnahan–Starling expression is used [40,41]:

Ahs

NkT
=

4η− 3η2

(1− η)2 , (4)

in which η = (π/6)ρσ3 is the hard sphere packing (volume) fraction.

2.1.2. First Perturbation Term

The first perturbation term, A1, corresponds to the mean-attractive energy of the fluid, and uses
the radial distribution function (RDF) of the reference hard sphere fluid, ghs(x;η), to approximate the
structure of the square-well fluid as [18]:

A1

NkT
=

2πρ
kT

∞∫
1

dx x2 U(σx) ghs(x; η) = − (ε/kT)12 η

λ∫
1

dx x2ghs(x; η) , (5)

in which x = (r/σ). The mean value theorem [42] can be used to simplify the right-hand side of the
equation above to give [37]:

A1

NkT
= −(ε/kT)12 η ghs(ξ; η)

λ∫
1

dx x2 = −(ε/kT)12 η ghs(ξ; η)
((
λ3
− 1

)
/3

)
, (6)

in which ξ is the value of x, which satisfies the equality:

λ∫
1

dx x2ghs(x; η) = ghs(ξ; η)

λ∫
1

dx x2. (7)

As argued in [37], it is possible to simplify this expression further by assuming that the value of
the hard-sphere RDF at a given ξ and η can be mapped on the contact value of the hard-sphere RDF at
an effective packing fraction, ηeff, defined by:

ghs(ξ; η) = ghs(1; ηeff). (8)

The Carnahan–Starling expression for the contact value of the hard-sphere RDF [43] is then used
to obtain the RHS of Equation (8) as:

ghs(1; ηeff) =
1− ηeff/2

(1− ηeff)
3 . (9)

The resulting expression for the first-order perturbative contribution to the free energy is given by:

A1

NkT
= −(ε/kT) 4η

(
λ3
− 1

) 1− ηeff/2

(1− ηeff)
3 . (10)
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For 1.2 ≤ λ ≤ 1.8, Gil-Villegas et al. [37] provide a simple analytical approximation for ηeff as
ηeff = c1η+ c2η2 + c3η3, with the polynomial coefficients, ci, given as functions of λ by:

c1

c2

c3

 =


2.25855 −1.50349 0.249434
−0.66927 1.40049 −0.827739

10.1576 −15.0427 5.30827

 ·


1
λ
λ2

. (11)

Equation (11) presents the coefficients, ci, in a compact matrix product notation that is understood
as c1 = 2.25855− 1.50349 λ+ 0.249434λ2, etc. In a later work, Patel et al. [38] extended the validity

of Equation (10) to the range of 1.2 ≤ λ ≤ 3.0, by defining ηeff =
(
b1η+ b2η2

)
/(1 + b3η)

3
, where the

coefficients, bi, were given by fourth-order polynomials in (1/λ) as:


b1

b2

b3

 =


−3.16492 13.35007 −14.80567 5.70286
43.00422 −191.66232 273.89683 −128.93337
65.04194 −266.46273 361.04309 −162.69963

 ·

λ−1

λ−2

λ−3

λ−4

. (12)

2.1.3. Second Perturbation Term

The second order correction term, A2, in Equation (2) describes changes in the energy due to
compression of the fluid arising from the attractive interaction. This term is approximated using the
local compressibility approximation [14], which yields for the square-well potential [37]:

A2

NkT
= (ε/kT)

1
2

Khs η
∂(A1/NkT)

∂η
, (13)

where Khs is the isothermal compressibility of the hard-sphere reference fluid, estimated by the
Percus–Yevick expression as [18]:

Khs =
(1− η)4

1 + 4η+ 4η2 . (14)

2.1.4. Chemical Potential and Pressure

Calculating phase equilibria requires expressions for the chemical potential, µl, and pressure,
pl, of the liquid phases. These quantities can be obtained from the Helmholtz free energy using the
standard thermodynamic relations:

pl = −(∂A/∂V)T,N , µl = (∂A/∂N)T,V. (15)

The above relations can be written in a more convenient form using the product rule of
differentiation and the definition of Helmholtz free energy as:

pl
ρkT

= ρ

(
∂(A/NkT)

∂ρ

)
T,N

,
µl
kT

=
A

NkT
+

pl
ρkT

. (16)

2.2. Solid Phase Thermodynamics

The required calculations are greatly simplified when one assumes the solid phase to be
incompressible, in which case an expression for the pressure of the molecular solid is not needed.
For the excess chemical potential of a square-well solid, µs, we use the simple expression due to
Asherie et al. [33] and write:

µS = −
ns

2
(ε/kT) − 3 ln(λ− 1), (17)
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in which ns is the number of molecules whose centers lie within the attractive well of a given molecule.
This number is determined by the structure of the crystalline lattice. As a simplification, we follow the
approach of Asherie et al., and assume the solid to be of face-centered cubic (fcc) structure and hence
consider ns = 12, i.e., the attractions in the solid are dominated by the molecules in the first coordination
shell. This model for the chemical potential of a square-well solid has been found to represent the
solid–liquid equilibria of several small molecules and colloidal solutions reasonably well [11,33,44,45].

2.3. Gelation Boundary

The experimental observations of gel phase formation and the resulting coating on the reactor
walls during oiling out also motivate us to present a model to estimate this gelation boundary for a given
solute. For square-well fluids, on the basis of mode-coupling theory arguments, Bergenholtz et al. [46]
have derived a simple expression for the volume fraction, ηg, at which gelation occurs at a given
temperature, T. This model relates ηg to the intermolecular interactions through:

12
π2 ηg(λ− 1)

(
eε/kT

− 1
)2

= 1.42. (18)

Thus, if one has the knowledge of ε and λ, one can determine the gelation region on a phase
diagram by solving Equation (18) for ηg at various temperatures.

2.4. Model Implementation

In obtaining the free energy, A, of a molecular fluid, the calculation of A1 through Equations (5)–(8)
is the most challenging and tedious part. Thanks to the approach conceived by Gil-Villegas [37], this
difficulty is greatly circumvented. One can simply calculate A1 through Equations (10)–(12), and need
not be concerned with obtaining the radial distribution function, ghs, of the reference hard-sphere fluid
and solving Equation (5) numerically. These simplifications make the following approach attractive
and readily implementable with minimal computational time.

2.4.1. Obtaining Molecular Interaction Parameters

To calculate the phase boundaries for the solute–solvent system of interest, the molecular
interaction (square-well) parameters, ε and λ, need to be known. When experimental data on
solid–liquid equilibrium (i.e., solubility data) are available, these parameters can be deduced as follows.
First, one converts the solubility concentrations (typically available in the units of g/L or wt%) to
the number densities, ρ, and from ρ to the volume fractions, η (=(π/6)ρσ3). Here, σ represents the
equivalent spherical diameter of the solute molecule (see Section 3.6). One then proceeds to obtain
the square-well parameters, ε and λ, through the regression of this η vs. T data set to the relation of
µl = µs. Note that the other condition of phase equilibrium, the equality of pressures, is neglected
because the solid phase is considered to be incompressible.

The strength of interaction, ε, itself is expected to be a function of temperature, which may be
expressed through a simple linear relationship [45] as ε/k = α0 + α1 T. One may choose other forms for
the temperature dependence of ε/k. However, one needs to ensure that the total number of adjustable
parameters in the model does not increase unreasonably. With this linear expression, we have three
parameters (α0, α1, and λ) that need to be fit to describe the solubility data. For this, first one provides
initial guesses for α0, α1, and λ and calculates µs through Equation (17) for each T in the experimental
data set. The equation of µl = µs needs to be solved iteratively by providing an appropriate starting
value for ηm, the volume fraction, η, that represents the predicted solubility (solution of the equation) at
the chosen T. This initial value of ηm enables one to compute the Helmholtz free energy of the reference
fluid by evaluating Equations (3) and (4) for Aideal and Ahs, respectively. The De Broglie wavelength, Λ,
in Equation (3) is neglected, as this term effectively cancels out as an ideal contribution on both sides of
the equality of µl = µs at constant T. One then has a choice of evaluating ηeff using either Equation (11)
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or (12). From ηeff, A1 is obtained using Equation (10), and A2 is obtained by numerically differentiating
A1 and using that derivative in Equation (13). Once the total Helmholtz free energy, A, is obtained for
the guessed ηm, this expression is numerically differentiated to evaluate µl (Equation (16)). Thus, the
relation of µl = µs is solved to yield the value of ηm for each temperature in the experimental data set.
The best-fit model parameters, α0, α1, and λ, are those that minimize the objective function:

f (α0, α1,λ) =

nexp∑
i = 1

(ηm,i − ηi )
2 (19)

i.e., that minimize the sum of squared errors between the predicted ηm and experimental η for the nexp

data points considered.

2.4.2. Practical Considerations

A few practical aspects need to be noted toward implementing the calculation procedure discussed
above. The relation of µl = µs may have up to three solutions (i.e, one, two, or three solutions) for
ηm due to the cubic nature of the µl vs. η curve. The volume fraction, η, is obviously constrained
between 0 and 1, but volume fractions greater than 0.5 are unphysical (for the liquid phase). Hence,
it is desirable to constrain the numerical solution of µl = µs to 0 ≤ ηm ≤ 0.5. Finding the ηm that
corresponds to the minimum of all the possible solutions in this range (which is a guaranteed solution)
ensures that the solution obtained is physically meaningful and the iterative procedure for parameter
estimation converges. Also, one needs to be mindful of the range of λ over which the chosen model
for ηeff (Equation (11) or (12)) is applicable and constrain the search space for λ appropriately during
the regression. The strength of interaction, ε, between the molecules is expected to be in a range of 1
to 5 kT. Hence, one may have to limit the search space for α0 and α1 accordingly during parameter
estimation, so that the values of the resulting ε/k (= α0 + α1 T) fall in the range of 1 to 5 T, where T is
the absolute temperature. The bounds on the possible parameter space and the resulting constrained
error minimization, while help keep the result of the calculation physically relevant, make it hard to
estimate the uncertainties in the parameters.

2.4.3. Calculation of Other Phase Boundaries

Once the square-well interaction parameters (α0, α1, and λ, with ε/k = α0 + α1 T) are known, the
co-existence curve (binodal) may be obtained by solving simultaneously pil = piil and µil = µiil at a
given temperature, T, to obtain the volume fractions, ηi and ηii, of the solute in the two liquid phases I
and II at (local) equilibrium. This solution procedure can be tricky because of the existence of a trivial
solution at ηi = ηii. This complexity is tackled as follows.

First, we determine the critical temperature, Tc, and critical volume fraction, ηc, at which the
binodal and spinodal meet. At this upper consolute temperature (UCST) and composition, the
derivatives of the chemical potential with respect to the volume fraction must vanish. From this
condition, we obtain Tc and ηc by solving (∂µl/∂ η)T = 0 and

(
∂2µl/∂η2

)
T
= 0 simultaneously using

the values of α0, α1, and λ regressed from the solubility data. Once Tc and ηc are obtained, we reduce
the temperature slightly and calculate ηi and ηii at that temperature by using ηc + δη and ηc − δη as
initial guesses for ηi and ηii, respectively, toward solving pil = piil and µil = µiil . Here, δη is a small
value, typically of the order of 0.001. The freshly obtained ηi and ηii are then passed on as initial
guesses for the next temperature, which will be slightly less than the previous one (about 0.5 ◦C). This
procedure results in quick convergence of the iterative numerical computation and will not result in
trivial solutions. The spinodal curve can also be calculated using this procedure. In this case, we need
to solve only (∂µl/∂ η)T = 0 for the two solutions of η at a given temperature.

With known square-well interaction parameters, the calculation of the gel boundary from
Equation (18) is straightforward for a given temperature, T.
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3. Experimental Section — Methods

To demonstrate the effectiveness of the above approach toward modeling different phase
boundaries, we considered experimental data available in the literature for various solute–solvent
systems. We found that experimental studies that report a detailed characterization of the binodal
and/or spinodal for solutes are rare. Among the few studies available in which sufficient data on the
solubility and binodal are reported together, we found five systems for which the necessary information
on the molecular weight of the compound is available. The data on three of these systems are used here
to show the usefulness of the proposed modeling approach, and the other two systems are discussed
in the context of the limitations of the approach. Below, we summarize the experimental methods used
by the authors. For detailed discussion on the experimental aspects of each study, the reader is referred
to the original publications.

3.1. Pyraclostrobin – Isopropanol/Cyclohexane

First, we consider experimental data on the solubility and oiling-out (binodal) curves reported
by Li et al. [4] on pyraclostrobin (form II crystals) crystallizing in 10% (w/w) methanol – 90% (w/w)
cyclohexane mixture. Li et al. determined the solubility of these crystals in the temperature range
of 5 to 35 ◦C using a laser obscuration technique that monitored the solutions for the dissolution
of solids during gradual addition of solute at a constant temperature. The oiling-out data points at
various concentrations were determined using the FBRM/PVM instruments. These authors obtained
the oiling-out data points with multiple cooling rates. Here, we consider the LLPS data set generated
with the slowest cooling rate reported (0.1 K/min), as this data set is expected to be close to the true
equilibrium binodal exhibited by the system.

3.2. Compound Z – Methanol/Water

The next system we consider was recently reported by Bhamidi et al. [11]. This compound
(compound Z) was crystallized in 2% (w/w) methanol – 98% (w/w) water. The solubility data were
determined in the temperature range of 5 to 65 ◦C using the Crystal 16 apparatus at a 0.5 ◦C/min cooling
rate. The oiling-out data were also determined using this apparatus separately at a 1.0 ◦C/min cooling
rate. These relatively fast cooling rates in this case were necessary due to the possible decomposition
of the compound in extended contact with water at elevated temperatures. An additional data point
on the LLPS curve was determined separately using a cold stage microscopy technique, which agreed
with the LLPS data trend obtained with Crystal 16.

3.3. Idebenone – Hexane/Methylene Chloride

A third solute system we consider here is the API idebenone crystallizing in a mixture of 7:1 (by
volume) hexane/methylene chloride, as reported by Lu et al. [5,6]. Lu et al. determined the solubility of
idebenone in the above solvent mixture by a gravimetric method. The oiling-out points reported in [5]
were obtained by cooling the solution of a pre-determined composition at 0.1 ◦C/min. The authors
observed that when the extent of oiling out was small, normal crystallization occurred, presumably
through oil droplets. However, at high degrees of oiling out, the droplets coalesced to form a thick gel
phase, which did not crystallize readily. The authors also observed that for the cases of crystallization
mediated through LLPS, impurity rejection was suboptimal.

3.4. C35H41Cl2N3O2 – Ethanol/Water

Another system we considered was reported by Veesler and co-workers [47–51] for an API with
a molecular formula of C35H41Cl2N3O2 crystallizing in ethanol/water mixtures. The solubility data
of form I and form II crystals for this compound were determined using a temperature bracketing
technique that monitored the growth and dissolution of small particles [47]. The binodal data were
determined using static light scattering to monitor the occurrence of the second liquid phase in the
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solution [50], and also by turbidity and FBRM probes [49]. These authors also report data on the spinodal
boundary extracted from the light scattering intensities through appropriate extrapolations [50]. The
available data for this system are in the temperature range of 10 to 60 ◦C.

3.5. Vanillin – 1-Propanol/Water

The phase behavior of vanillin crystallizing in a 1-propanol/water mixture was reported by
Zhao et al. [52]. These authors obtained the solubility data using a gravimetric method. Oiling out
in their experiments was detected with the help of FBRM/PVM instruments. The oiling-out points
reported in [52] were determined by cooling the solution of a pre-determined composition at 0.1 ◦C/min.
Available data for this solute–solvent system are in the temperature range of 5 to 35 ◦C.

3.6. Data Extraction and Processing

The original data reported in the above publications are available in the form of
temperature–concentration plots for various phase boundaries. These experimental data points
were extracted from the published figures using Engauge Digitizer (v 10.4), a free utility [53]. The
density of the solvent mixture in each case was determined using standard density data for the
solvents [54] and a mixing rule that considers ideal mixing (i.e., volume additivity holds). The volume
fractions of the solutes were estimated using simple mass balance calculations with the known densities
of the solvent (temperature dependent) and solute (temperature independent). For each solute studied,
a consistent value for the molecular diameter (σ) as an equivalent spherical diameter was calculated
by assuming the crystals to be of an fcc lattice with a packing fraction of 0.74, as suggested in [44].
From this consideration, we obtained σ from the solid density and molecular weight using the relation
(πσ3/6 ) = (0.74/ρs ) × (MW/Nav) in which ρs is the density of the crystal, MW is the molecular
weight of the solute, and Nav is the Avogadro number. We implemented all the phase diagram
calculations in Wolfram Mathematica (v11.3, Wolfram Research, Champaign, IL, U.S.A.). While the
curve fits were obtained by considering the errors in solubility in terms of volume fractions, the
modeling results are shown below with concentrations expressed in wt% for convenience.

4. Results

The results of the calculations for the pyraclostrobin – isopropanol/cyclohexane system are shown
in Figure 1. Table 1 lists the fit parameters that best describe the solubility data for this system obtained
through nonlinear regression. Note that in Figure 1, only the solubility curve (curve 1 passing through
the open circles) is a curve fit. The other curves were calculated (i.e., not fit) using the square-well
interaction parameters obtained from the solubility fit (Table 1). The good agreement between the
experimental oiling-out data points and the calculated curve 2 shows that the modeling approach
described in Section 2 captures the essential features of the phase equilibria for this system. We also
note that the various LLPS curves predicted for this system using Equation (11) (dotted lines) and
Equation (12) (solids lines) for ηeff are close to each other and either of those curves can be used as a
guideline in crystallization process development.

Figure 2 shows the results of the modeling effort for the compound Z – methanol/water system.
For this case also, we note a agreement between the LLPS line (the binodal calculated using the
square-well parameters regressed from the solubility data) and the experimental data. Table 2 gives the
best-fit parameters for this case. From Table 2, we note that for this system, even though the estimated
parameters are nearly equal in both the cases of using Equations (11) and (12) for ηeff, the critical
temperatures predicted by the models are significantly different. The critical concentration, however,
is predicted to be about the same.
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Figure 1. Experimental data and model predictions for the pyraclostrobin – isopropanol/cyclohexane
system. The open circles and diamonds indicate the experimental data points for solubility and oiling
out (binodal), respectively, adapted from [4]. Curve 1 represents the model (µl = µs) fit to solubility
data using Equations (16) and (17). The square-well interaction parameters (listed in Table 1) obtained
from this fit were used to further calculate the binodal (curve 2), spinodal (curve 3), and the gelation
(curve 4) boundaries. The dotted lines are the curves obtained using Equation (11) and the solid lines
are those obtained with Equation (12), respectively, for calculating ηeff. The dotted and solid lines for
curve 4 are almost identical.

Table 1. Best fit parameters for the pyraclostrobin – isopropanol/cyclohexanone system estimated
through fitting the experimental data of Li et al. [4]. Parameters obtained using both the models for the
first perturbative term of the Helmholtz free energy (i.e., ηeff through Equations (11) and (12)), are listed.
Also given are the estimated critical temperature (Tc) and critical concentration (Wc). The calculations
were performed with σ = 0.896 nm.

α0 α1 λ Tc, ◦C Wc, wt%

Equation (11)
1399.4 −3.3992 1.2866 36.63 37.45

Equation (12)
1399.4 −3.3985 1.2861 37.72 37.63

Table 2. Best fit parameters for the compound Z – methanol/water system estimated through fitting
the experimental data of Bhamidi et al. [11]. Parameters obtained using both the models for the first
perturbative term of the Helmholtz free energy (i.e., ηeff through Equations (11) and (12)) are listed.
Also given are the estimated critical temperature (Tc) and critical concentration (Wc). The calculations
were performed with σ = 0.664 nm.

α0 α1 λ Tc, ◦C Wc, wt%

Equation (11)
713.83 −0.7412 1.3006 117.57 32.24

Equation (12)
713.86 −0.7413 1.3005 121.74 32.66
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Figure 2. Experimental data and model predictions for the compound Z – methanol/water system
showing (a) the complete phase diagram, and (b) magnified view of the experimental data region. The
open circles and diamonds indicate the experimental data points for solubility and oiling out (binodal),
respectively, adapted from [11]. Curve 1 represents the model (µl = µs) fit to solubility data using
Equations (16) and (17). The square-well interaction parameters (listed in Table 2) obtained from this
fit were used to further calculate the binodal (curve 2), spinodal (curve 3), and the gelation (curve 4)
boundaries. The dotted lines are the curves obtained using Equation (11) and the solid lines are those
obtained with Equation (12), respectively, for calculating ηeff. The dotted and solid lines for curve 4 are
almost identical.

The results of the calculations for the ibedenone – hexane/methylene chloride system are shown
in Figure 3. The values of square-well parameters that best describe the solubility data for this case
are given in Table 3. As seen from Figure 3, in this case also, the model captures the trends in the
experimental data very well. Note that for this solute–solvent system, the solubility curve appears to
penetrate the oiling-out region for temperatures greater than 50 ◦C and emerge on the other side. This
aspect of the model predictions is discussed further in Section 5.

Table 3. Best fit parameters for the idebenone – hexane/ methylene chloride (7:1 by volume) system
estimated through fitting the experimental data of Lu et al. [5]. Parameters obtained using both the
models for the first perturbative term of the Helmholtz free energy (i.e., ηeff through Equations (11) and
(12)), are listed. Also given are the estimated critical temperature (Tc) and critical concentration (Wc).
The calculations were performed with σ = 0.872 nm.

α0 α1 λ Tc, ◦C Wc, wt%

Equation (11)
512.93 −0.4744 1.3704 88.16 34.59

Equation (12)
522.23 −0.4830 1.3521 89.81 36.37
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Figure 3. Experimental data and model predictions for the idebenone – hexane/methylene chloride
(7:1 by volume) system showing (a) the complete phase diagram, and (b) magnified view of the
experimental data region. The open circles and diamonds indicate the experimental data points for
solubility and oiling out (binodal), respectively, adapted from [5]. Curve 1 represents the model
(µl = µs) fit to solubility data using Equations (16) and (17). The square-well interaction parameters
(listed in Table 3) obtained from this fit were used to further calculate the binodal (curve 2), spinodal
(curve 3), and gelation (curve 4) boundaries. The dotted lines are the curves obtained using Equation
(11) and the solid lines are those obtained with Equation (12), respectively, for calculating ηeff. The
dotted and solid lines for curve 4 are almost identical.

Now, let us examine the performance of the model in capturing the phase behaviors of
C35H41Cl2N3O2 in ethanol/water mixture, studied by Veelser and co-workers [47–51], and of vanillin
in 1-propanol/water, reported by Zhao et al. [52]. Figure 4 shows the results of the modeling effort
for these systems. Table 4 presents the values of the molecular interaction parameters obtained from
regressing the solubility data for these systems. One notes from the plots in Figure 4 that while the
theoretical framework discussed describes the solid–liquid equilibrium (SLE) aspects of the systems
very well, the resulting molecular interaction parameters fail to capture the experimentally observed
LLE boundaries. This aspect is further discussed below.

Table 4. Best fit parameters for the C35H41Cl2N3O2 – ethanol/water system estimated through fitting
the experimental data of Veesler et al. [48], and for the vanillin – 1-propanol/water system estimated
through fitting the experimental data of Zhao et al. [52]. Parameters obtained using both the models
for the first perturbative term of the Helmholtz free energy (i.e., ηeff through Equations (11) and (12)),
are listed. Also given are the estimated critical temperature (Tc) and critical concentration (Wc). The
calculations were performed with σ = 1.044 nm for C35H41Cl2N3O2 and 0.697 nm for vanillin.

α0 α1 λ Tc, ◦C Wc, wt%

C35H41Cl2N3O2 – ethanol/water
Equation (11)

995.26 −1.9216 1.3002 57.68 33.44
Equation (12)

1001.3 −1.9373 1.2976 59.40 33.97

Vanillin – 1-propanol/water
Equation (11)

1056.0 −2.3813 1.2284 16.15 32.49
Equation (12)

1073.0 −2.4226 1.2188 16.36 31.62
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Figure 4. Experimental data and model predictions for (a) C35H41Cl2N3O2 (form I) – ethanol/water
system [48] and (b) for vanillin in 1-propanol/water [52]. In both (a) and (b), the open circles and
diamonds indicate the experimental data points for solubility and oiling out (binodal), respectively.
In (a), the triangles are the spinodal points reported in [48] obtained through extrapolation of the
light scattering intensity data [50]. Curve 1 represents the model (µl = µs) fit to solubility data using
Equations (16) and (17). The square-well interaction parameters (listed in Table 4) obtained from these
fits were used to further calculate the binodal (curve 2) and spinodal (curve 3) boundaries. The dotted
lines are the curves obtained using Equation (11) and the solid lines are those obtained with Equation
(12), respectively, for calculating ηeff.

5. Discussion

Several experimental studies in the literature have focused on the influence of the rate of cooling
on the observed oiling-out boundary [4,5,7]. The fact that these studies observed the oiling-out
temperatures to be dependent on the cooling rate suggests that oiling out in these experiments was
due to the penetration of a binodal. This is because phase separation between a binodal and a spinodal
occurs through nucleation, which is an activated process similar to solid crystal nucleation. The phase
separation that occurs beyond a spinodal is spontaneous and is usually uncontrollable. The binodal
observed during a cooling crystallization may hence have a cooling rate dependence (similar to a
metastable zone width). However, the true binodal represents a (local) thermodynamic equilibrium,
and hence is not influenced by the rate of generation of supersaturation. The theoretical framework
described in the present work provides one with estimates of the true binodal and spinodal.

5.1. Relevance of the Spinodal and Gelation Lines to Process Development

When LLPS occurs in a crystallizing system, the resulting oil phase may stay suspended to
ultimately produce crystals, or the phase may form thick gels that coat the vessel internals and lead
to operational problems [5,6]. The predictive approach discussed in this work offers guidelines for a
process development scientist in this regard.

As mentioned earlier, the oiling-out boundary observed during cooling crystallization usually
represents a binodal because penetration of the spinodal envelope requires significantly faster cool
down of solutions than is achievable experimentally. However, such deep quenches are possible
during reactive crystallization, in which a fast chemical reaction can rapidly increase the concentration
of the solute in a solvent at a given temperature, such that the solution becomes unstable to a
homogeneous composition [11]. In this case, a spinodal becomes relevant to the process design, as this
boundary sets the limits on the extent of the chemical reaction possible before one loses control over
the crystallization process.

During oiling out, the solute partitions into two liquid phases, one that has a high concentration
of the solute and the other being relatively lean in solute. The relative amounts of each phase are
governed by the “lever rule” [55], i.e., the relative amounts of these phases are inversely proportional to
the difference between the concentration of solute in that particular phase and the concentration of the
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solute before phase separation. Thus, given the shape of the binodal (and spinodal), it is evident that
when LLPS occurs at low temperatures and low solute concentrations, only a small amount of the oil
phase forms as a dispersed phase relative to the continuous lean phase. At high solute concentrations
and low temperatures, LLPS will result in a large amount of the solute-rich phase, which may tend to
become the continuous phase, trapping the lean liquid in pockets. At high temperatures and high
concentrations, the relative amounts of the dense and lean phases are comparable. Whether a coating
on the reactor walls will result from the dense phase formed depends on the solute concentration. If
the solute concentration in the dense liquid phase exceeds the estimated gelation concentration, one
may expect to encounter gel phase formation and resultant operational issues during crystallization.

Thus, a contextual understanding of the spinodal and gelation boundaries greatly helps a process
scientist/engineer in developing a crystallization protocol for solutes prone to oiling out.

5.2. Limitations of the Current Modeling Approach

For the ibedenone – hexane/methylene chloride system (Figure 3), we observed that the solubility
curve predicted by the model extrapolates into the LLPS region and crosses the liquid–liquid equilibrium
(LLE) region at temperatures greater than 50 ◦C. Whether this predicted trend is physical may be
debated. The observation by Lu et al. [5] that at these temperatures, the oiled-out phases never produced
crystals indicates that the predicted phase behavior may be real. Lu et al.’s report suggests that the
system exhibits a stable liquid–liquid equilibrium (LLE) at high temperatures, as observed for the cases
of vanillin – water [56], ethyl-2-ethoxy-3-(4-hydroxyphenyl)-propanoate (EEHP) – cyclohexane [57],
and l-menthol–water [3]. One also notes that the solvents involved in Lu et al.’s work— hexane
and methylene chloride— are low-boilers, and hence a significant amount of solvent would have
evaporated (in an open system) or present in the vapor phase (in a closed system) at temperatures
>50 ◦C. Such high temperatures are not practically relevant in a typical process development exercise.

For C35H41Cl2N3O2 and vanillin (Figure 4), the predicted liquid–liquid phase boundaries do
not agree with the experimental data. Several reasons may be contemplated for these results. Stable
LLE, as seen in Figure 4b for vanillin, typically occurs when the solute molecules interact with
significantly long-range attractions [22,28,32]. Such long-range molecular interactions may not be
captured by a square-well potential sufficiently accurately. The square-well potential provides
a reasonable representation of the short-range intermolecular interactions for which the LLE is
metastable with respect to SLE. Clearly, intermolecular interactions are more complex than captured
by a square-well model.

Another issue is that the theoretical concepts that underlie Equation (17) are different from, and
are less rigorous than, those used to describe the thermodynamics of the fluid phase. For example,
the simple expression used for the solid chemical potential does not account for volumetric changes
in the solid due to changes in temperature. It also fails to adequately describe chemical potential
differences between various polymorphs, which arise from differences in the lattice arrangement
of solute molecules in polymorphic crystals. The simplifying assumptions behind the description
of solid chemical potential can lead to inaccuracies in the calculation of phase equilibria. If one
intends to account for these shortcomings and improve the accuracy of the estimated solid chemical
potential, one needs to bring in the radial distribution function of the solid phase into the calculation
(see [20]), at which point the procedure becomes mathematically complicated and tedious, and loses
its attractiveness.

Also, we note that the model treats the solute as a simple fluid acting alone and ignores the
presence of the solvent. Thus, in essence, the ε and λ we obtain by regressing the solubility data
represent an “effective” strength and range of interaction with solvent molecules in the background.
This aspect may become significant when the LLPS results in a change in solvent composition in the
resulting liquid phases. For a mixed solvent system, if one solvent selectively partitions into one of the
liquid phases upon LLPS, the nature of the molecular interactions cannot remain the same in both
the phases due to a change in the solvent backdrop experienced by the solute molecules. In other
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words, one cannot describe the chemical potential of the two liquid phases using single values for ε
and λ. Indeed, such selective solvent partitioning has been reported for these systems through the
ternary equilibria determined for C35H41Cl2N3O2 [50] and for vanillin [58]. This solvent partitioning
effect may be significant for solvents that readily associate, such as alcohol(s) and water. Thus, the
LLPS model discussed here may have a limited use in systems that contain a mixture of solvents
(that associate readily), with each solvent being in considerable proportion. For solvent mixtures in
which the component solvents are organic and/or non-associative, or if one component solvent is
present in a small portion, the modeling approach may work better. This thought is supported by
Figures 1–3, in which the model captured the physics of the systems very well despite a mixture of
solvents being present.

6. Concluding Remarks

While the phenomenon of oiling out in solution crystallization is well known, most studies that
focus on the development of crystallization processes approach this problem somewhat empirically.
Typically, the temperature at which a homogeneous solution with fixed composition oils out during
cooling is determined (sometimes as a function of the cooling rate) experimentally. The thermodynamic
relevance of this experimental LLPS (oiling out) boundary in relation to the possible binodal and
spinodal curves is not usually emphasized and, in some cases, is completely missed. This work aims
to demystify the oiling-out phenomenon often found daunting by some process engineers by placing it
in its thermodynamic context. This work also introduces a broad class of literature on phase diagram
modeling from first principles to a reader who may be unfamiliar with the approach.

The solubility and binodal boundaries of compounds are typically modeled through activity
coefficient methods, in which the general solubility relation (van’t Hoff equation) is used in conjunction
with activity coefficient models (e.g., NRTL, PC-SAFT models) [56,59]. In addition to the solubility
(SLE) data, this approach requires the knowledge of a few physical properties of the solute and
solvent systems, such as the melting point and enthalpy of fusion of the solute, the difference in
the heat capacity of the solute in liquid and solid phases at the melting point, etc. This information
typically is not available readily and one is required to perform additional solid-state characterization
for the solute crystals. Moreover, while these activity coefficient models can predict a liquid–liquid
co-existence boundary, prediction of the spinodal and gelation boundaries using these methods is
difficult. The method we presented here adopts a more fundamental approach to the characterization
of LLPS boundaries than considered by the (semi-empirical) activity coefficient models. It uses only
the solubility data (which can be easily obtained experimentally) to extract the molecular interaction
parameters necessary to estimate the other phase boundaries.

The method discussed here falls under the general category of “equation of state” (EOS) models,
in which expressions for the Helmholtz free energy and compressibility factor (Equations (2) and
(16)) are derived starting from suitable expressions for the intermolecular potential. The ensuing
procedure of equating the chemical potentials and pressures of the phases in coexistence to calculate
the phase boundaries follows standard thermodynamic concepts. The real challenge in executing
these calculations often arises from the theoretical formalism used in the definition of various terms in
Equation (2). The procedure described here using a square-well interaction model can also be readily
adapted to other molecular potentials, such as a Yukawa interaction model or a Lennard–Jones model
(for example, see [19] and [20]). Note, however, that we are interested in an LLPS that is metastable
with respect to the crystalline phase. Such behavior is not captured by all molecular potentials. For
example, a Lennard–Jones fluid does not exhibit a metastable LLPS [28]. In the end, all these molecular
potential models are abstractions of convenience to represent the real interactions between molecules.
An appropriate choice for the pair potential is the one that can capture the observed thermodynamic
features of a real system of interest and makes the resulting calculations tenable.

Clearly, the choices of the intermolecular potential and the perturbation scheme influence the
predicted SLE and LLE boundaries. The various theoretical formalisms developed over the decades have
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attempted to improve the accuracy of model predictions by incorporating increasingly sophisticated
theoretical arguments. Many such advanced theories are still being actively developed. In the context
of industrial process development, one is more interested in a readily usable and reasonably accurate
modeling approach than a hard-to-execute, but more sophisticated, calculation procedure. Our choices,
of the square-well potential to represent the intermolecular interactions (Equation (1)), the SAFT-VR
model for the Helmholtz free energy (Equations (10)–(14)), and the simple equation for the chemical
potential of a square-well solid (Equation (17)) are all influenced by this philosophy. Similarly, the
choice of a linear relationship between ε/k and T is also arbitrary and is based on the values of ε/k
for ibuprofen crystallizing in ethanol/water mixtures tabulated in [45]. These choices influence the
predicted phase boundaries, and the accuracy of any prediction with these or other choices can only be
established through extensive experimentation.

Note that the goal of this paper is not to present an accurate and original theoretical model
for the prediction of oiling-out boundaries. Our objective is to provide an industrial scientist the
thermodynamic context of oiling out and related phenomena and a practical approach to estimate
the phase boundaries. To the best of our knowledge, a unified approach based on thermodynamic
first principles that allows a process scientist to predict the binodal, spinodal, and gelation boundaries
for solutes has not been presented before. Through this work, we have attempted to bridge this gap.
We readily recognize the limitations of the theoretical concepts that underlie the model equations
discussed. Given the simplicity of the modeling approach, one is advised to obtain a few oiling-out
data points experimentally when relevant and employ the calculation procedure judiciously to obtain
working models for various phase boundaries for the systems of interest.
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