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Abstract: In Pakistan, the utilization of renewable energy sources is increasing in order to reduce the
electricity supply and demand gap. However, concentrated solar power (CSP) generation has not been
considered in the country even though it has gained considerable attention worldwide. This study,
as such, investigates the potential, performance, and economic analyses of four CSP technologies for
different locations in Pakistan. Initially, an assessment of CSP sites, including solar resource, land,
and water availability, was undertaken. Then, performance simulations of CSP technologies for four
different locations of Pakistan, namely Quetta, Hyderabad, Multan, and Peshawar, were examined.
For all cases, highest energy production was achieved in summers and lowest in winters, and CSP
plants with evaporative cooling were found to be efficient compared to air cooling. The results
also revealed that the Quetta and Hyderabad regions were promising for CSP development while
parabolic tough (PT) and solar power tower (SPT) were the suitable CSP technologies for these
regions. Specifically, the SPT plant with air cooling could be a favorable option for energy production
in Quetta. Lastly, economic analyses revealed the financial feasibility of CSP plants in Pakistan since
the levelized cost of energy is found to be significantly low.

Keywords: concentrated solar power; CSP plants; site assessment; performance analyses; economic
analyses; system advisor model; Pakistan

1. Introduction

Nowadays, energy in the form of electricity is considered to be an essential component of modern
life across the globe. However, many countries of the world are facing severe electricity crises, including
Pakistan. In Pakistan, the electricity outage ranges from 8–10 h in an urban area while up to 18 h in
rural areas [1]. The reason behind these outages is the gap between demand and supply. The demand
for electricity in the country is increasing with the increasing population and urbanization; however,
supply is 20%–25% short [2]. The major reason behind a low energy supply is the great dependency on
fossil fuels, which are limited and depleting. In Pakistan, 87.3% of the primary energy supply is based
on fossil fuels; gas (37.9%) and oil (34.4%) have the highest share in the total primary energy supply by
the end of 2016 [3]. However, the energy produced by renewable energy sources (except large hydro)
was less than 1% of the energy mix [3]. Although Pakistan is blessed with renewable energy sources
such as wind, biomass, and solar, share of renewable energy sources in energy production is almost
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negligible. Specifically, an abundant potential of solar energy is available in the country because of
its location in the sunbelt. Solar energy can be utilized in two ways: solar photovoltaics (SPV) and
concentrated solar power (CSP) [4]. SPV systems are used to convert sunlight directly into electricity
whereas CSP systems (also known as solar thermal systems) are used for concentrating and heating a
heat transfer fluid (HTF) for a power cycle. In Pakistan, the installation and development of the SPV
system is growing [4]. Quaid-e-Azam solar park (QASP), which is the first ever power station in the
country consisting of SPV with a capacity of 1000 MW, is under construction [4]. Out of 1000 MW of
QASP, 300 MW has been already added to the national grid. Also, several small to large scale projects
consisting of solar photovoltaics are under operation and construction [4]. However, CSP systems
have not been utilized in Pakistan.

CSP is a promising technology for large scale power production. There are four families of CSP
technology including (i) parabolic trough collectors (PTC), (ii) solar power tower (SPT), (iii) linear
Fresnel reflects (LFR), and (iv) parabolic dish systems (PDs). There are numerous advantages of
CSP, such as renewable, clean, low operating cost, etc. However, one of the issues with CSP is
soiling of mirrors, where dirt is accumulated on the mirrors/reflectors. It causes a reduction in the
electricity production. The soiling effect can be reduced by proper cleaning/washing of the mirrors [5–7].
The commercialization of CSP is increasing. For instance, the CSP global capacity was 400 MW in 2006,
which increased to 4800 MW in 2017 [8]. The global leaders in CSP plants are Spain and the United
States, having a power generation capacity of 2300 MW (48%) and 1738 MW (36%), respectively [8].
However, the rest of the world contributes 762 MW (16%), as shown in Figure 1 [8]. The advent of the
commercialization era has contributed significantly, increasing the research in CSP systems. Recent
research on CSP systems is concerned with site selections, technological evaluations, performance
analysis, economic investigations, and developments in the CSP process and materials.
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Several studies have been conducted on the techno-economic evaluation of CSP plants for a
different region of the world. Hinkley et al. [9] presented a cost comparison analysis of 100 MWe
PT and SPT plants in different areas of Australia using the System Advisor Model (SAM) software.
Purohit et al. [10] investigated CSP potential in Northwestern regions of India using SAM, and the
evaluation was performed for four CSP technologies. SAM was also utilized by Guzamn et al. [11] for
the simulation study of a 50 MWe PT plant in Barranquilla, Colombia. Sundaray and Kandpal [12]
evaluated the techno-economic feasibility of a 100 MWe PT plant for different locations in India using
SAM. Lemmer [13] performed a techno-economic assessment of PT and PD plants in Morocco. The author
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presented a comparison of the two technologies in terms of economic feasibility, and SAM was used
for the assessments. Wagner and Rubin [14] presented the effects of thermal energy storage (TES) on
the performance and economics of a 110 MWe PT plant operating with and without different backups.
The investigation was performed by the authors using SAM. Kasesem et al. [15] conducted a strengths,
weaknesses, opportunities, and threats (SWOT) analysis for four CSP technologies in Saudi Arabia using
SAM. SAM was also utilized by Praveen et al. [16] for the performance assessment and optimization of a
100 MWe PT plant with TES in Abu Dhabi, United Arab Emirates. Belgasim et al. [17] evaluated the
potential of energy generation with a 50 MWe PT plant using SAM in Tajoura, Libya. All of the studies
mentioned above have evaluated CSP potential for different countries worldwide using SAM. However,
research on CSP potential and techno-economical investigations for Pakistan are rarely reported.

The current research is an attempt to investigate potential, performance, and economics of CSP
generation in Pakistan. The investigations have been carried out for different locations in Pakistan,
considering all CSP technologies. The performance and economic evaluations of CSP plants have been
carried out utilizing SAM software. It is pertinent to mention that there are only a few other tools used
for the analysis of CSP plants; however, as reported above, SAM is widely used for the analysis of CSP
plants developed by national renewable energy laboratory (NREL) and that its licensing and support is
quite reassuring. This paper is structured as follows. Section 2 presents an overview of CSP technologies.
Section 3 provides an assessment of CSP sites in the country. Performance analysis is presented in
Section 4, while Section 5 describes economic evaluation. Finally, Section 6 concludes the paper.

2. Overview of CSP Technologies

CSP is an extensive commercial method for electricity generation using solar energy. CSP is
appropriate for the regions where the direct solar radiation and the number of sunshine hours are
high. Generally, a CSP plant comprises of a solar field, TES system, and power block, as shown in
Figure 2. The solar field concentrates the solar radiation onto a specific point or line to heat an HTF.
The heated HTFs can be used directly or indirectly [17]. In the direct case, water is used as HTF for
direct steam generations; whereas in the indirect case, different HTFs such as synthetic oil, molten salt,
and Therminol VP-1 are used to heat water for a steam generation [17]. Although direct HTF is cheaper,
commercial storage for steam is lacking. On the other hand, indirect HTFs are expensive, but they can
be stored. Thus, indirect HTFs are widely used in CSP plants worldwide [15]. The heated HTF from
the solar field flows into the TES system where additional energy is stored for continuous operation.
Consequently, the HTF is used to produce steam in the steam generator, and the steam is used to
drive the power unit to produce electricity. There are four main families of CSP technology which are
classified by the approach how solar radiation is focused and received, as listed in Table 1 [18]. Fixed
receivers remain, static independent of the focusing device, while mobile receivers move together with
it. Besides, line focusing receivers concentrate the solar radiation onto a specific line while the solar
radiation is focused onto a specific point in a point focusing receivers. Detailed overview of each CSP
technology is presented in the following sections.
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Table 1. Classification of CSP technologies [18–20].

Type of Receiver
Type of Focus

Line Focusing Point Focusing

Fixed Linear Fresnel reflectors (LFR) Solar power tower (SPT)
Mobile Parabolic troughs (PT) Parabolic dishes (PD)

2.1. Parabolic Trough Systems

Parabolic trough (PT) systems are the most mature technologies used for CSP
generation [15,17,20,21]. This is the reason that the PT plants are widely commercialized compared
to other configurations of CSP [15]. Figure 3 illustrates a schematic diagram of a PT system. The PT
system consists of an array of parabolically curved mirrors/collectors and receivers. The collectors
concentrate the solar radiation on the receivers which are filled with the HTF. The heated HTF is
directed to the power unit for energy production via thermal storage. Generally, PT collectors consist
of a single-axis tracking system to follow the solar radiation from east to west. The single tracking
system leads to the reduction of material demand and land use factors. This is the reason that the
initial cost of the PT plant is lower than dual tracking systems [15]. Generally, the power block in a
CSP plant uses a Rankine cycle consisting of a boiler/steam generator to produce electricity. Therefore,
CSP plants have the flexibility to integrate with conventional power plants [15]. Further characteristics
of PT systems are summarized in Table 2.
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Table 2. Cont.

Characteristic Unit
Parabolic
Trough

Collectors

Solar Power
Tower

Linear Fresnel
Reflectors Parabolic Dish

Concertation ratio - 70–80 300–1000 25–100 1000–3000

Optical efficiency % 80 73 65–75 94

Peak efficiency % 20 19–23 10 29.4

Annual net
Efficiency (solar to

electric)
% 15 25–35 8–10 25–30

Cycle - Rankine Rankine/Brayton Rankine Sterling/Rankine/Brayton

TES system H 1–12 7–15 1–12 NA

Land occupancy m2/MW 40,000 83,600 18,000 16,000

Cooling method - Closed circuit Closed circuit Closed circuit Direct

Evaporative
Cooling water
requirements

m3/MWh 3.0 2.0–3.0 3.0 0

Dry Cooling water
requirements m3/MWh 0.3 0.25 0.2 0

Applications - On-grid On-grid On-grid On-grid/ Off-grid

Commercialization - High Medium Medium Low

Capital cost $/kW 3972 >4000 - 12,578

Capital cost $/m2 424 476 234 -

Outlooks for
improvement - Limited Very Significant Significant High

2.2. Solar Power Tower System

The solar power tower (SPT) system (also known as the central receiver system) is a type of point
focusing system which consists of a number of circular two-axis tracking arrays. An array consists
of numerous flat or slightly curved mirrors known as heliostats. The heliostats concentrate the solar
radiation on a fixed point, which is a central receiver on top of a tower. The HTF is heated in the
tower and then the HTF is directed to power block for energy production. A schematic diagram
of the SPT system is presented in Figure 4. The concentration ratio of SPT ranges from 300–1000,
which leads to higher working temperatures [17,18,22,23]. This is the reason that the SPT plant has
higher efficiency (20%–35%) compared to other CSP configurations [17,18,22,23]. However, due to
dual tracking and relatively large land requirements, the initial/capital cost of the SPT plants is high.
Nevertheless, numerous SPT plants are commercially demonstrated including the world’s largest CSP
plant (Ivanpah) with a capacity of 392 MW in California, United States of America. It is important
to mention that SPT systems continued to dominate the CSP market after PT systems [8]. Further
characteristics of SPT systems are presented in Table 2.

2.3. Linear Fresnel Reflector System

A linear Fresnel reflector (LFR) system consists of an array of mirrors which concentrates the
solar radiation on a fixed central receiver mounted on the top, as depicted in Figure 5. Generally, LFR
systems are considered a modified form of PT. The LFR systems are well known for their simplicity.
LFR systems have almost flat or slightly concaved mirrors. In LFR systems, the receiver is separated
from reflectors unlike in PT systems, thus reducing material demand and need of high pressure rotating
components. In addition, the land use factor is also lowest for LFR systems. The simplicity of the
mirrors, lowest material demand, and lowest land use factor leads to the reduction of the cost of the
LFR system [17]. However, the simplicity of the mirrors leads to low optical efficiency. This could be
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the reason that a few large scale LFR plants are installed worldwide. Further characteristics of LFR
systems are summarized in Table 2.
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2.4. Parabolic Dish System

The parabolic dish (PD) system is a two-axis point focused system which concentrates the solar
radiation on a focal point of the dish, as shown in Figure 6. The focal point/receiver is filled with HTF.
Generally, fluid or gas is used as HTF in parabolic dish systems. HTF systems are generally heated up
to 1000 ◦C due to highest concertation ratio of the PD systems. Then, the HTF is directed to either the
Stirling engine or gas turbine which convert the thermal energy of the fluid to electrical energy. Highest
concentration ratio and optical efficiency result in higher energy production and low cost. However,
the limited size of the PD systems limits the installation of large plants. Moreover, most of the existing
PD plants are off-grid, and their capital cost is high [15,17]. This is the reason that PD systems are
rarely commercialized. A summary of the characteristics of PD systems is presented in Table 2.
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3. Assessment of CSP Sites in Pakistan

There are several technical parameters which should be considered for the site selection of a CSP
plant. Specifically, solar energy potential, land, and water availability should be cautiously considered
while designing a CSP plant. Therefore, this section presents an overview of solar resources, land, and
water availability in Pakistan.

3.1. Solar Resource Availability

Pakistan is situated between latitude 30.3753◦ N and longitude 69.3451◦ E. Pakistan is divided
into four provinces and four federal administered territories, as shown in Figure 7 [22]. The provinces
are named Khyber–Pakhtunkhwa (KPK), Punjab, Sindh, and Baluchistan. Providentially, Pakistan is
located in the sunbelt, which means that the potential of solar energy in the country is high with long
sun shining hours. The distribution map of average annual global horizontal irradiation (GHI) and
direct normal irradiation (DNI) across Pakistan is presented in Figures 8 and 9, respectively [25]. In
Figure 8, it can be seen that the average GHI is 1800 kWh/m2 in northern regions (KPK and northern
parts of Punjab province), and 2100 kWh/m2 in southern regions (Sindh province). However, the
highest average GHI is over 2200 kWh/m2 in the western region, i.e., Baluchistan province. On
the other hand, the average DNI is 1300 kWh/m2 in the northern region, and it is 1700 kWh/m2 in
southern regions. However, the highest average DNI is over 2100 kWh/m2 in the western region.
Generally, CSP plants are considered economically feasible for the locations with DNI above 1800
kWh/m2/year [17]. Based on this fact, the western region (Baluchistan province) and most of the parts
in the southern region (Sindh and few parts of Punjab province) of Pakistan are very promising for
electricity production using CSP plants. Specifically, Quetta region and Kharan Desert in Baluchistan
province, Hyderabad region and the Thar Desert in Sindh province, and Bahawalpur region and the
Cholistan Desert in Punjab province are favorable places for CSP plants. However, soiling of mirrors
could be a major issue in desert and arid regions.
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3.2. Land Availability

In addition to the potential of solar energy, site selection based on land availability is an important
activity related to planning and designing a CSP plant. Land occupancy of CSP technologies varies
from 16,000 to 83,600 m2/MW depending on configurations [10]. For instance, the land occupancy of
a PT plant is 40,000 m2/MW [10]. Therefore, a large area is required for a CSP plant. It is important
to note that high agricultural and residential areas should be avoided for the installation of a CSP
plant [17]. Thus, remote and deserted areas represent the most suitable sites for CSP development [17].
However, essential infrastructure, such as accessibility and connectivity, should also be considered.

Geographically, Pakistan is divided into three areas: the Northern Highlands (KPK and northern
parts of Punjab province); Baluchistan plateau (Baluchistan province in the west region); and Indus River
plain (consists of Sindh province and major subdivisions of Punjab province) [26]. A topographical
map of Pakistan is shown in Figure 10 [25]. As shown, northern highlands consist of mountains
hence large flat land in that region is rear. However, the Indus River plain consists of mostly flat land.
Major areas in the Indus River plain include Karachi, Hyderabad, Thar Desert, Sukkur, Bahawalpur,
Cholistan Desert, and Multan. Thus, most of the Indus River plain is suitable for CSP development.

On the other hand, the Baluchistan plateau consists of upper highlands, lower highlands, plains,
and deserts. The upper and lower highlands comprise of higher and lower mountains, which may not
be suitable for CSP plants. However, plains and deserts such as the Kharan desert have flat areas which
could be suitable for CSP development. It can be concluded that most of the areas with higher potential
of solar energy such as the Indus River plain and Baluchistan plateau have flat land availability. Thus,
it would not be a significant restriction for the establishment of CSP plants in Pakistan.
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3.3. Water Availability 

Water availability is an essential parameter for the operation of either a conventional or CSP 
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for a few areas. Thus, the CSP plant with dry cooling could be a better option. 
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3.3. Water Availability

Water availability is an essential parameter for the operation of either a conventional or CSP plant.
Generally, water is required to fulfill three purposes in a CSP power plant: (i) steam generation for
power block cycle, (ii) cooling the power cycle, and (iii) mirror washing to reduce soiling effect. Water
requirements of CSP plants ranged from 3.0–3.5 m3/MWh [17]. However, almost 95% of water is used
for cooling whereas the remaining is used for mirrors washing and as working fluid [17]. Water cooling
(also known as wet or evaporative cooling) is an efficient cooling technology. Water cooling technology
is usually employed at the region which has abundant water sources. On the other hand, dry cooling
(also known as air cooling) can be employed in arid region or regions where water availability is not
adequate. Although dry cooling increases the capital cost, it reduces the efficiency of the plant, and
increases the levelized cost of energy (LCOE) [15,17]. Nevertheless, it can be employed to run the
plants in an arid region and produce energy.

Rivers are the major source of water in Pakistan. A map of rivers and lakes in Pakistan is presented
in Figure 11 [27]. It is important to mention here that most of the existing conventional power plants in
Pakistan are located near rivers, specifically the Indus River. It can be seen in Figure 11 that Pakistan
has uneven water distribution. The Indus River plain (Sindh and Punjab province) have a wide
network of rivers which makes this region most suitable for power plants with wet cooling. On the
other hand, the Baluchistan plateau does not have many networks of rivers except for a few areas.
Thus, the CSP plant with dry cooling could be a better option.
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4. Simulations of CSP Plants in Pakistan

The performance analysis of CSP plants at typical climate conditions in Pakistan have been
presented in this study. Based on the potential of solar energy, land, and water availability, four
locations from four provinces of Pakistan were selected for the proposed study. The sites selected for
the proposed work are as follows:

(i) Quetta (Province: Baluchistan; Region: Baluchistan Plateau)

This region has the abundant potential of solar energy, and flat land availability is not a concern
specifically in plains and deserts. However, water availability is a major issue in the region.

(ii) Hyderabad (Province: Sindh; Region: Indus River plain)

The region has a good potential of solar energy, and availability of flat land and water is not an
issue in the region since it is a part of Indus River plain.

(iii) Multan (Province: Punjab; Region: Indus River plain)

The region has a fair potential of solar energy, and availability of flat land and water is not an
issue in the region.

(iv) Peshawar (Province: Khyber Pakhtunkhwa; Region: Northland highland)

Solar energy availability is not high and flat land is rare in the region. However, water scarcity
is not an issue in the region. Therefore, the purpose of selecting Peshawar is to evaluate the CSP
generation potential in KPK province and northland highlands region.

The performance of a CSP plant is highly affected by meteorological conditions such as solar
radiation, ambient temperature, wind speed, relative humidity, soiling, sunshape, and atmospheric
extinction. The average meteorological conditions of the proposed locations are listed in Table 3 [28].
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Table 3. The average meteorological conditions of the proposed locations.

Air
Temperature

Relative
Humidity

Wind
Speed

Daily Solar
Radiation–
Horizontal

Annual Solar
Radiation–
Horizontal

Yearly
Sun-Shine

hrs.
◦C % m/s KWh/m2/day KWh/m2/year Hrs

Quetta 18 33.7 4.5 5.46 1992.9 3341.25
Hyderabad 26.5 43.4 3.5 5.27 1923.55 3328.7

Multan 25.3 39.4 3.3 5.09 1857.85 3097.6
Peshawar 22.7 44.3 5.0 5.16 1883.4 2887

Specifically, DNI is the most important parameters affecting the performance of a CSP plant.
The meteorological data of the proposed location in a typical meteorological year (.TMY) format
was obtained from the national renewable energy laboratory (NREL) database [29]. The DNI of the
proposed locations is presented in Figure 12 [29].
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4.1. Simulation Results of the Proposed 50 MWe PT Plant

In this section, the system description and performance evaluation of the 50 MWe PT plant for
four locations in Pakistan, which include Quetta, Hyderabad, Multan, and Peshawar are presented.
The reason for considering the 50 MWe PT plant is that most of the commercial PT plants are operating
under the same capacity [17]. The performance simulations of all CSP plants have been carried out
using SAM software. SAM software is developed and provided by the NREL, which is operated by the
Alliance for Sustainable Energy, for the United States (U.S.) Department of Energy (DOE) and may be
used for any purpose whatsoever [28]. SAM can be used to simulate the techno-economic evaluations
of different renewable energy sources, including CSP technologies [28]. Numerous studies have been
conducted on CSP technologies using SAM [14,15,17,30,31]. The technical assumptions considered for
the simulations of the 50 MWe PT plant are presented in Table 4.

Firstly, simulations were carried for the proposed PT plant with evaporative cooling. Simulation
results for monthly electric power produced by the 50 MWe PT plant for all locations is depicted in
Figure 13. It can be observed that maximum electricity production is obtained in summers whereas
minimum in winters for all cases. It is attributed to higher solar radiation in summers, which leads to
increased thermal energy and consequently increased electricity production, and vice versa for winters.
Although hourly highest solar radiation is obseverd in winter for all cases, monthly highest DNI is not
obtained in winters. The reason is inconsistency of solar radiation which is due to sunshape, atmospheric
extinction, and soiling. On the other hand, the consistency of solar radiation can be seen for summer
which leads to the highest monthly DNI. The higher monthly DNI leads to higher electricy production.

Specifically, it can be observed that monthly electricity production in Quetta is highest compared
to other cities, followed by Hyderabad, Peshawar, and Multan. This is because of the potential of
solar radiation in the region which highly affects electricity production. In addition, other annual
performance parameters of the simulation are presented in Table 5. It was found that maximum
annual energy production, gross-to-net-conversion, and capacity factor contributed to Quetta and
Hyderabad. Therefore, the performance of the PT plant is promising in Pakistan, specifically Quetta
and Hyderabad. In addition, cooling water requirements increased with increased energy production,
as listed in Table 5. For instance, the highest energy production in Quetta leads to highest cooling water
demand. Since the supply of cooling water could be an issue in regions such as Quetta, the simulations
have been carried out with a dry/air-cooling system to investigate the effect on system performance.

Table 4. Design characteristics and specifications of the 50 MWe PT plant.

Description Technical Parameter Value

Solar field parameters Solar multiple 2
Row spacing 15

Number of field subsections 2
Heat transfer fluid Field HTF Therminol VP-1

Field HTF min operating temperature 12 ◦C
Field HTF max operating temperature 400 ◦C

Solar field design point Single loop aperture 3762.4

Number of loops 104
Total aperture reflective area 391,290 m2

Total land area 1,643,000 m2

Collectors Collector type Solargenix SGX-1

Reflective aperture area per solar collector assembly 470.3 m2

Aperture Width 5 m
Length of the collector assembly 100 m

Number of modules per assembly 12

Mirror reflectance 0.935

Length of a single module 8.33 m

Receivers Receiver type Schott PTR70 2008
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Table 4. Cont.

Description Technical Parameter Value

Absorber tube inner diameter 0.066 m
Absorber tube outer diameter 0.07 m
Glass envelope inner diameter 0.115 m
Glass envelope outer diameter 0.12 m

Absorber material type 304 L

Power cycle Design gross output 50 MWe

Estimated gross-to-net conversion factor 0.9
Estimated net output at design 45 MWe

Rated cycle conversion efficiency 0.3774
Boiler operating pressure 100 bar

Design loop outlet temperature 391 ◦C
Design loop inlet temperature 293 ◦C

Condenser type Evaporative/Air cooled
Reference condenser water dT 10 ◦C

Thermal storage Full load hours of TES 12 h

Storage volume 21,504.1 m3

Storage HTF fluid Hitec Solar salt
Tank diameter 36.99 m

Tank loss coefficient 0.43 W/m2.K
Storage type Two tank

Mirror washing Water usage per wash 0.7 L/m2, aper.

Washes per year 63

The simulation results for monthly electricity production with air cooling for all regions are
presented in Figure 14. Comparing Figures 13 and 14, it was found that electricity production reduced
considerably. For instance, maximum electricity production was 17.848 GWh in September with
evaporative cooling, which reduced to 15.75 GWh with air cooling in Quetta. Other performance
parameters of the simulations with the air cooling system are presented in Table 6. Comparing Tables 5
and 6, it can be seen that annual energy production, gross-to-net-conversion, and capacity factor also
reduced. For example, annual energy production, gross-to-net-conversion, and capacity factor were
148.59 GWh, 94.4%, 37.7%, respectively, with evaporative cooling in Quetta which reduced to 133.253
GWh, 90.2%, 33.8%, respectively, with air cooling. Nevertheless, electricity production through the PT
plant with air cooling is still promising, especially in Quetta and Hyderabad.
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Table 5. Performance parameters of the 50 MWe PT plant with evaporative cooling.

Parameters Unit Quetta Hyderabad Multan Peshawar

Annual electricity generated GWh 148.59 104.46 88.71 84.19
Gross-to-net conversion % 94.4 94.6 93.3 92.1

Capacity factor % 37.7 26.5 22.2 21.4
Cooling water requirements m3/year 503,951 364,530 305,059 318,679
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Table 6. Performance parameters of the 50 MWe PT plant with air cooling.

Parameters Unit Quetta Hyderabad Multan Peshawar

Annual electricity generated GWh 133.253 89.54 70.98 75.83
Gross-to-net conversion % 90.2 89.1 87 86.8

Capacity factor % 33.8 22.7 18 19.2
Cooling water requirements m3/year 32,601 28,130 26,242 26,713

4.2. Simulation Results of the Proposed 50 MWe SPT Plant

This section presents the system description and performance evaluation of the 50 MWe SPT plant
in Pakistan. The technical assumptions of the 50 MWe SPT plant for simulations are summarized
in Table 7, and 50 MWe SPT plant’s heliostat field is presented in Figure 15. For the SPT plant, the
simulations were carried for both the evaporative cooling and air cooling. Firstly, the simulation
results of the 50 MWe SPT plant with evaporative cooling for four locations in Pakistan are shown in
Figure 16. A similar trend can be observed for maximum electricity production in summers, whereas
minimum in winters, as discussed in Section 4.1. Also, the highest monthly electricity production
was achieved in Quetta. Also, Table 8 presents the annual performance parameters of the 50 MWe
SPT plant with evaporative cooling. It was found that the maximum annual energy production,
gross-to-net- conversion, and capacity factor contributed to Quetta followed by Hyderabad, Peshawar,
and Multan. Moreover, 50 MWe SPT simulations have been carried out with air cooling, and the
monthly electricity production is illustrated in Figure 17. With air cooling, highest electricity production
was also obtained in Quetta followed by Hyderabad, Peshawar, and Multan. However, comparing the
simulation results of the 50 MWe SPT plant with evaporative and air cooling, the electricity generation
dropped significantly for all locations. The annual performance of the 50 MWe SPT plant with air
cooling is reported in Table 9. Comparing Tables 8 and 9, it can be noticed that the annual energy
production, gross-to-net-conversion, and capacity factor also reduced. For example, annual energy
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production, gross-to-net-conversion, and capacity factor with evaporative cooling in Quetta were
233.23 GWh, 95.8%, 57.6%, respectively, which reduced to 209.80 GWh, 89.98%, 53.2%, respectively,
with air cooling. Nonetheless, comparing the simulation results of the PT and SPT plant, the SPT
plant shows better performance in terms of monthly electricity production and annual performance
parameters. The reason behind this is the higher concentration ratio and higher efficiency. Furthermore,
it is important to note that cooling water requirements of the SPT plant are lower than the PT plant for
all locations.
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Table 7. Design characteristics and specifications of the 50 MWe SPT plant.

System Design

Heliostat field Solar multiple 2.4

Tower and receiver HTF hot temperature 574 ◦C
HTF cold temperature 290 ◦C

Thermal storage Full load hours of storage 12 h

Power cycle Design turbine gross output 50 MWe
Estimated gross-to-net conversion factor 0.9

Estimated net output at design 45 MWe
Cycle thermal efficiency 0.412

Heliostat field

Heliostat properties Heliostat width 12.2 m
Heliostat height 12.2 m

Single heliostat area 144.375 m2
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Table 7. Cont.

System Design

Land area Base land area 7,022,833 m2

Non-solar field land area 182,109 m2

Total land area 7,203,404 m2

Power cycle

Rankine cycle parameters Boiler operating pressure 100 bar
Condenser type Evaporative/Air cooled

Reference condenser water dT 10 ◦C

Thermal storage
Total tank volume 7132 m3

Storage HTF fluid Salt (60% NaNO3 40%
KNO3)

Tank diameter 21.3 m

Mirror washing Water usage per wash 0.7 L/m2, aper.

Washes per year 63
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Table 8. Performance parameters of the 50 MWe SPT plant with evaporative cooling.

Parameters Unit Quetta Hyderabad Multan Peshawar

Annual electricity generated GWh 233.23 164.98 133.70 149.28
Gross-to-net conversion % 95.8 94.8 94.2 94.37

Capacity factor % 57.6 40.3 32.8 35.8
Cooling water requirements m3/year 490,923 3,599,528 302,639 317,557

Table 9. Performance parameters of the 50 MWe SPT plant with air cooling.

Parameters Unit Quetta Hyderabad Multan Peshawar

Annual electricity generated GWh 209.80 141.96 113.52 124.09
Gross-to-net conversion % 89.98 88.94 87.88 88.57

Capacity factor % 53.2 36 28.8 31.5
Cooling water requirements m3/year 38,273 34,858 31,852 32,241
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4.3. Simulation Results of the Proposed 50 MWe LFR Plant

The technical assumptions for simulations of a 50 MWe LFR plant are listed in Table 10, and
monthly electricity production from the plant with evaporative cooling is illustrated in Figure 18.
It can be observed that the highest monthly energy production corresponds to summers and lowest
to winters. This observation is similar to the PT plant and SPT plant. Also, to the maximum energy
production to Quetta. In addition, annual performance parameters of the proposed 50 MWe LFR plant
with evaporative cooling are presented in Table 11. Similar to the PT plant and SPT plant, maximum
annual energy production, gross-to-net-conversion, and capacity factor contributed to Quetta followed
by Hyderabad, Peshawar, and Multan. Figure 19 illustrated the monthly electricity production of the
proposed 50 MWe LFR plant with air cooling. A reduction in monthly electricity production for all
cities can be observed for the plant with air cooling. Similarly, a reduction in annual performance
parameters for the LFR plant with air cooling can be observed in Table 12. Furthermore, comparing
the simulation results of the LFR with PT and SPT plant, it can be observed that the monthly energy
production and annual performance parameters of the LFR plant showed lower performance in terms
of monthly electricity production and annual performance parameters. The reason behind this is its
simple design, low concentration ratio, and lower efficiency. However, the cooling water requirements
of the LFR plant are lowest among all CSP technologies.

Table 10. Design characteristics and specifications of the 50 MWe LFR plant.

Solar field

Solar field parameters Solar multiple 2.3
Field aperture 850,000 m2

Number of collector modules in a loop 16

Number of subfield headers 2

Heat transfer fluid Field HTF Hitec XL
Field HTF min: operating temperature 238 ◦C
Field HTF max: operating temperature 593 ◦C
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Table 10. Cont.

Solar field

Design point Single loop aperture 7524.8 m2

Number of loops 71

Land area Solar field area 854,817 m2

Collector and Receiver
Reflective aperture area of the collector 470.3 m2

Length of the collector module 44.8 m
Length of crossover pipping in a loop 15 m

Power cycle

Plant capacity Design gross output 50 MWe
Estimated gross-to-net conversion factor 0.9

Estimated net output at design 45 MWe

Power block design point Rated cycle conversion efficiency 0.38
Reference HTF outlet temperature at design
Reference HTF inlet temperature at design

525 ◦C
293 ◦C

Rankine cycle parameters Boiler operating pressure 100 bar
Condenser type Evaporative/air cooling

Reference condenser water dT 10 ◦C

Thermal storage
Equivalent full-load thermal storage hours 12 h

Total tank volume 9138.74 m3

Storage HTF fluid Hitec XL
Tank diameter 24.12 m

Loss coefficient from the tank 0.4 W/m2.K

Mirror washing Water usage per wash 0.02 L/m2, aper.
Washes per year 120
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Table 11. Performance parameters of 50 MWe LFR plant with evaporative cooling.

Parameters Unit Quetta Hyderabad Multan Peshawar

Annual electricity generated GWh 134.26 98.70 79.37 82.65
Gross-to-net conversion % 96.15 95.57 94.92 94.92

Capacity factor % 34.1 25 20.1 21
Cooling water requirements m3/year 432,329 331,636 275,783 280,224
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Table 12. Performance parameters of the 50 MWe LFR plant with air cooling.

Parameters Unit Quetta Hyderabad Multan Peshawar

Annual electricity generated GWh 119.85 84.57 67.317 71.39
Gross-to-net conversion % 92.09 90.38 89.05 89.95

Capacity factor % 30.4 21.5 17.1 18.1
Cooling water requirements m3/year 12,827 10,030 8540 8656

4.4. Simulation Results of the Proposed 5 MWe PD System

The performance of the 5 MWe parabolic dish system for different locations in Pakistan is presented
in this section. Since large-scale parabolic dish systems are rarely commercialized, investigations have
been carried out with a capacity of 5 MWe. The technical assumptions of the proposed parabolic dish
system are listed in Table 13, and monthly electricity production is presented in Figure 20. As seen,
the highest monthly electricity production corresponds to Quetta while lowest to Multan. Annual
performance parameters (Table 14) indicated that the higher annual energy production, gross-to-net
conversion, and capacity factor correspond to Quetta. Specifically, comparing the annual results of the
5 MW PD system with the other 50 MWe CSP plant, it was found that the results of the PD system are
very promising. This is attributed to the higher concertation ratio and high operating temperature.
However, the capital and operation and maintenance (O & M) cost of the PD systems are highest [15].
In addition, the technology is at the demonstration stage, and most of the existing PD systems are not
connected to the grids [15]. Thus, for Pakistan, which already lacks in the large scale CSP plant, it
would be a tough decision to invest in PD systems at present. However, PD systems are attractive for
small scale projects at remote areas.
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Table 13. Design characteristics and specifications of the PD system.

Solar Field

Field layout Number of collectors, North-South 20
Number of collectors, East-West 10

Number of collectors 200
Total solar field area 45,000 m2

System properties
Total capacity 5000 kW

Stirling Engine

Estimated generation Single unit nameplate capacity 25 kW
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Table 14. Performance parameters of the 5 MWe PD system.

Parameters Unit Quetta Hyderabad Multan Peshawar

Annual electricity generated GWh 8.9 6.29 5.42 5.855
Gross-to-net conversion % 43.59 41.28 41.03 42.09

Capacity factor % 20.4 14.4 12.4 13.4

5. Economic Analyses

The purpose of economic analysis is to evaluate the profitability/feasibility of CSP plants. Generally,
the economic feasibility of power plants is evaluated in terms of LCOE. The LCOE evaluates the
electricity costs produced throughout the lifetime of the CSP plant. Specifically, real LCOE and nominal
LCOE were evaluated for the CSP plants. The nominal LCOE uses the current value of the dollar, and
it is used for short term analysis. Whereas real LCOE uses constant and inflation adjusted value of the
dollar, and it is used for long term analysis [28,32]. Determination of nominal LCOE takes into account
different factors including

• Electricity generation;
• Direct capital cost: Equipment and installation cost;
• Indirect capital cost: Approvals, engineering, and land cost;
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• Operation and maintenance (O&M) cost: Equipment operation, labor cost, and maintenance
cost, etc.

The economic analyses of the proposed CSP plants at different locations of Pakistan were carried
out using SAM. The economic assumptions considered for the simulations of CSP plants are listed
in Table 15. The LCOE of the CSP plants with evaporative cooling and air cooling are summarized
in Table 16. It is important to mention here that the water costs are not considered in the evaluation
of LCOE.

Table 15. Assumptions and data used for economic analysis of the CSP plant.

Parameters Unit Values

50 MWe PT Plant-Net capital cost $ 422,455,744
50 MWe SPT Plant-Net capital cost $ 597,225,600
50 MWe LFR Plant-Net capital cost $ 314,223,840
5 MWe PD system-Net capital cost $ 14,620,023

Life time Years 30 [28]
Inflation rate %/year 2.5 [28,32]

Real discount rate %/year 5.5 [28,32]
Nominal discount rate %/year 8.14 [28,32]

Firstly, comparing evaporative cooling and air cooling, it was found that LCOE of CSP plants
with evaporative cooling was lower for all cases compared to air cooling. For instance, real LCOE was
3.69 ¢/kWh with evaporative cooling for the PT plant in Quetta, and it increased to 4.12 ¢/kWh with
air cooling. It is due to the fact that air cooling reduces the plant’s efficiency, which reduces energy
production and increases the LCOE. Then, it was found that the LCOE is lowest for the PD system.
It is attributed to its high concentration ratio, high temperature operation, and higher efficiency, which
led to high power production and consequently reduced the energy cost. However, the PD system
are not commercialized yet, as discussed in Section 4.4. Subsequently, the LCOE for the PT plant is
second lowest. Even though the capital cost of the PT plant is high, but an adequate amount of energy
production led to reduce the LCOE. The LCOE for LFR plant is high compared to the PD system
and PT plant. In the LFR plant, the capital cost is lowest, but lower energy production due to lower
efficiency led to increase the LCOE. The highest LCOE was observed for the SPT plant. Although
energy production of the SPT plant was highest, the high capital cost increased the LCOE.

Nevertheless, the energy cost is competitive with the energy cost of existing conventional power
plants in Pakistan [32]. Specifically, the LCOE of the PT Plant is much lower. Also, the LCOE of CSP
plants for different locations in Pakistan is in good agreement with the LCOE of CSP plants available
in the most recent literature [15,21,33–35]. Thus, it can be concluded that the CSP plants in Pakistan
are economically feasible/viable.

Additionally, it has been observed that solar field cost contributes the biggest in the net capital
cost of the CSP plant. The simulations revealed that the contribution of solar field cost in net capital
cost of CSP plants was as follows: PT plant (32.4%), SPT (35.6%), LFR plant (28.6%), and PD system
(47.9%). In Pakistan, the land cost in the Baluchistan plateau and Indus plain is low, which could
reduce the net capital cost of CSP plants. On the other hand, since most of the CSP equipment are
imported, which increases the overall cost, the net capital can be reduced by localization. Localization
will enhance the local industry and create more jobs in the country. Consequently, the socio-economic
condition of the country will improve. Also, the LCOE of the CSP plants can be further reduced by
carbon trading under the clean development mechanism (CDM) of the Kyoto Protocol (KP).

In summary, the results of the CSP plants simulations are promising for different regions of
Pakistan. Specifically, Quetta and Hyderabad regions are very attractive for CSP development, and PT
and SPT could be suitable CSP technologies in the region. Specifically, SPT plants with air cooling
could be a promising option for energy production in Quetta. Moreover, low LCOE revealed that
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CSP plants are economically viable too. Therefore, the utilization of solar energy for CSP generation
could provide opportunities for clean energy production and eradicate environmental pollution in
the country.

Table 16. Net capital cost and levelized cost of energy (LCOE) of the CSP plants in Pakistan.

Parameters Unit Quetta Hyderabad Multan Peshawar

50 MWe PT plant with evaporative cooling

Nominal LCOE Cents/kWh 4.69 6.68 8.28 7.98
Real LCOE Cents/kWh 3.69 5.25 6.52 6.28

50 MWe PT plant with air cooling

Nominal LCOE Cents/kWh 5.23 7.79 9.82 9.20
Real LCOE Cents/kWh 4.12 6.13 7.73 7.23

50 MWe SPT plant with evaporative cooling

Nominal LCOE Cents/kWh 14.58 20.45 26.61 24.72
Real LCOE Cents/kWh 10.98 15.27 19.89 15.57

50 MWe SPT plant with air cooling

Nominal LCOE Cents/kWh 15.15 20.99 27.15 25.27
Real LCOE Cents/kWh 11.43 15.83 20.47 19.06

50 MWe LFR plant with evaporative cooling

Nominal LCOE Cents/kWh 14.77 19.97 24.75 23.78
Real LCOE Cents/kWh 11.29 15.27 18.93 18.18

50 MWe LFR plant with aircooling

Real LCOE Cents/kWh 16.50 23.25 29.13 27.48
Nominal LCOE Cents/kWh 12.62 17.78 22.27 21.01

5 MWe parabolic dish system

Real LCOE Cents/kWh 3.34 4.75 5.51 5.10
Nominal LCOE Cents/kWh 2.63 3.73 4.33 4.01

1 USD = 115.65 PKR [36].

6. Conclusions

This paper has investigated the potential of CSP, performance, and economic analyses of four CSP
technologies for different locations in Pakistan. Following a brief introduction of the CSP technologies,
assessment of CSP sites, including solar resource, land, and water availability in Pakistan, was
investigated. It was found that CSP potential is promising in Baluchistan, Sindh, and the lower
(southern) parts of Punjab province. Particularly, Quetta (Baluchistan province) has the highest CSP
potential in the country with DNI 2100 kWh/m2. Also, the availability of flat land is abundant in the
Indus River plain (Sindh and Punjab province). On the other hand, the plains and deserts (especially
Kharan Desert) in the Baluchistan plateau are suitable for CSP plants whereas vast flatlands are rear in
northern highlands which make these areas less suitable for the CSP installation.

Furthermore, water availability is uneven in Pakistan. Sindh and Punjab provinces have a wide
network of rivers which makes these regions most suitable for power plants with wet cooling. On the
other hand, Baluchistan plateau does not have many networks of rivers except for a few areas. Thus,
the CSP plant with dry cooling could be a better option.

Based on site selection, performance simulations of four CSP technologies for four cities of
Pakistan, including Quetta, Hyderabad, Multan, and Peshawar were investigated with SAM software.
Design gross output for the PT, SPT, and LFR plant was considered to be 50 MWe, whereas 5 MWe for
the PD system. The simulations revealed that the highest energy production was obtained in summers,
whereas the lowest in winters. For all CSP technologies, maximum energy production was obtained



Processes 2019, 7, 575 24 of 26

for Quetta followed by Hyderabad, Multan, and Peshawar. For 50 MWe plants, the performance and
power production capacity was higher for the SPT plant followed by the PT plant and LFR plant.
The performance of CSP plants with evaporative cooling was higher compared to air cooling.

Nevertheless, the performance of all 50 MWe plants with air cooling was found quite satisfactory,
especially the SPT plant in Quetta. The performance of the 5 MWe PD system was highest among
all CSP plants, but it cannot be commercialized on a large scale because the technology is still at the
demonstration stage. However, PD systems could be promising for small scale projects in remote areas.
Generally, Quetta, Hyderabad, Sukkur, and Multan regions are very attractive for CSP development,
and PT and SPT could be suitable CSP technologies in the region. Specifically, the SPT plant with air
cooling could be a promising option for energy production in Quetta.

Economic analyses of the CSP plants for different locations were undertaken using SAM software.
The assessment revealed that the net capital cost was highest for the PD system, followed by the SPT
plant, PT plant, and LFR plant, respectively. The solar field cost contributed major share in the net
capital cost of all CSP plants. Furthermore, energy cost evaluation showed that the LCOE was lowest
for PD systems followed by the PT plant and LFR plant. The highest LCOE was observed for the SPT
plant. Although energy production of the SPT plant was higher, high capital cost increased the LCOE.
The calculated LCOE is in good agreement with the LCOE of CSP plants available in the literature, and
competitive with an energy cost of existing conventional power plants in Pakistan. Thus, it can be
concluded that the CSP plants in Pakistan are economically feasibility. Therefore, the utilization of
solar energy for CSP generation could provide opportunities for clean energy production and eradicate
environmental pollution in the country.
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